1
|
Lee J, Kim MH, Kim H. Anti-Oxidant and Anti-Inflammatory Effects of Astaxanthin on Gastrointestinal Diseases. Int J Mol Sci 2022; 23:ijms232415471. [PMID: 36555112 PMCID: PMC9779521 DOI: 10.3390/ijms232415471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
A moderate amount of reactive oxygen species (ROS) is produced under normal conditions, where they play an important role in cell signaling and are involved in many aspects of the immune response to pathogens. On the other hand, the excessive production of ROS destructs macromolecules, cell membranes, and DNA, and activates pro-inflammatory signaling pathways, which may lead to various pathologic conditions. Gastrointestinal (GI) mucosa is constantly exposed to ROS due to the presence of bacteria and other infectious pathogens in food, as well as alcohol consumption, smoking, and the use of non-steroidal anti-inflammatory drugs (NSAID). Prolonged excessive oxidative stress and inflammation are two major risk factors for GI disorders such as ulcers and cancers. Bioactive food compounds with potent anti-oxidant and anti-inflammatory activity have been tested in experimental GI disease models to evaluate their therapeutic potential. Astaxanthin (AST) is a fat-soluble xanthophyll carotenoid that is naturally present in algae, yeast, salmon, shrimp, and krill. It has been shown that AST exhibits protective effects against GI diseases via multiple mechanisms. Residing at the surface and inside of cell membranes, AST directly neutralizes ROS and lipid peroxyl radicals, enhances the activity of anti-oxidant enzymes, and suppresses pro-inflammatory transcription factors and cytokines. In addition, AST has been shown to inhibit cancer cell growth and metastasis via modulating cell proliferation-related pathways, apoptosis, and autophagy. Considering the potential benefits of AST in GI diseases, this review paper aims to summarize recent advances in AST research, focusing on its anti-oxidant and anti-inflammatory effects against gastric and intestinal ulcers and cancers.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Hyun Kim
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| |
Collapse
|
2
|
Peng ZT, Liu H. Puerarin attenuates LPS-induced inflammatory injury in gastric epithelial cells by repressing NLRP3 inflammasome-mediated apoptosis. Toxicol In Vitro 2022; 81:105350. [PMID: 35331853 DOI: 10.1016/j.tiv.2022.105350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
Abstract
The NLRP3 inflammasome plays a crucial role in microbially induced gastric epithelial injury, but the underlying mechanisms remain unclear. Here, we aimed to assess the impacts of puerarin on LPS-induced inflammatory damage and the involvement of the AMPK/SIRT1/NLRP3 signaling pathways in this process in GES-1 cells. Cell viability and cytotoxicity were determined using CCK-8 and lactate dehydrogenase assay kits. Apoptosis was measured using annexin staining followed by flow cytometry. Cytokine levels were detected by ELISA, and protein expression was analyzed using western blotting. Protein overexpression was achieved by transfection with relevant pcDNA3.1 vectors, and protein knockdown was achieved by transfection with relevant siRNAs. Puerarin ameliorated LPS-induced cytotoxicity and apoptosis, while repressing LPS-stimulated NLRP3 inflammasome-mediated pyroptosis in GES-1 cells, as evidenced by significantly decreased expression of NLRP3, ASC, cleaved caspase-1, IL-1β and IL-18. NLRP3 knockdown efficiently repressed LPS-induced inflammatory injury in GES-1 cells. Puerarin activated the AMPK/SIRT1 pathway in LPS-treated GES-1 cells, and knockdown of both AMPK and SIRT1 reversed the protective effects of puerarin against LPS-induced inflammatory damage. AMPK overexpression strengthened, while AMPK knockdown weakened, the ability of puerarin to inhibit NLRP3-mediated inflammatory injury in LPS-treated GES-1 cells. Our findings suggest that puerarin may ameliorate LPS-induced inflammatory injury in GES-1 cells by activating the AMPK/SIRT1 signaling pathway and thereby repressing NLRP3 inflammasome-mediated apoptosis.
Collapse
Affiliation(s)
- Zi-Tan Peng
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, People's Republic of China; Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventionHubei, Huangshi, Hubei, People's Republic of China
| | - Hui Liu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, People's Republic of China; Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventionHubei, Huangshi, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Zhang K, Huang Q, Deng S, Yang Y, Li J, Wang S. Mechanisms of TLR4-Mediated Autophagy and Nitroxidative Stress. Front Cell Infect Microbiol 2021; 11:766590. [PMID: 34746034 PMCID: PMC8570305 DOI: 10.3389/fcimb.2021.766590] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pathogenic infections have badly affected public health and the development of the breeding industry. Billions of dollars are spent every year fighting against these pathogens. The immune cells of a host produce reactive oxygen species and reactive nitrogen species which promote the clearance of these microbes. In addition, autophagy, which is considered an effective method to promote the destruction of pathogens, is involved in pathological processes. As research continues, the interplay between autophagy and nitroxidative stress has become apparent. Autophagy is always intertwined with nitroxidative stress. Autophagy regulates nitroxidative stress to maintain homeostasis within an appropriate range. Intracellular oxidation, in turn, is a strong inducer of autophagy. Toll-like receptor 4 (TLR4) is a pattern recognition receptor mainly involved in the regulation of inflammation during infectious diseases. Several studies have suggested that TLR4 is also a key regulator of autophagy and nitroxidative stress. In this review, we describe the role of TLR4 in autophagy and oxidation, and focus on its function in influencing autophagy-nitroxidative stress interactions.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yecheng Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Guangdong Provincial Research Center of Gene Editing Engineering Technology, Foshan University, Foshan, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Sanchez-Garrido J, Shenoy AR. Regulation and repurposing of nutrient sensing and autophagy in innate immunity. Autophagy 2020; 17:1571-1591. [PMID: 32627660 PMCID: PMC8354595 DOI: 10.1080/15548627.2020.1783119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nutrients not only act as building blocks but also as signaling molecules. Nutrient-availability promotes cell growth and proliferation and suppresses catabolic processes, such as macroautophagy/autophagy. These effects are mediated by checkpoint kinases such as MTOR (mechanistic target of rapamycin kinase), which is activated by amino acids and growth factors, and AMP-activated protein kinase (AMPK), which is activated by low levels of glucose or ATP. These kinases have wide-ranging activities that can be co-opted by immune cells upon exposure to danger signals, cytokines or pathogens. Here, we discuss recent insight into the regulation and repurposing of nutrient-sensing responses by the innate immune system during infection. Moreover, we examine how natural mutations and pathogen-mediated interventions can alter the balance between anabolic and autophagic pathways leading to a breakdown in tissue homeostasis and/or host defense.Abbreviations: AKT1/PKB: AKT serine/threonine kinase 1; ATG: autophagy related; BECN1: beclin 1; CGAS: cyclic GMP-AMP synthase; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; FFAR: free fatty acid receptor; GABARAP: GABA type A receptor-associated protein; IFN: interferon; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NLR: NOD (nucleotide-binding oligomerization domain) and leucine-rich repeat containing proteins; PI3K, phosphoinositide 3-kinase; PRR: pattern-recognition receptor; PtdIns3K: phosphatidylinositol 3-kinase; RALB: RAS like proto-oncogene B; RHEB: Ras homolog, MTORC1 binding; RIPK1: receptor interacting serine/threonine kinase 1; RRAG: Ras related GTP binding; SQSTM1/p62: sequestosome 1; STING1/TMEM173: stimulator of interferon response cGAMP interactor 1; STK11/LKB1: serine/threonine kinase 11; TBK1: TANK binding kinase 1; TLR: toll like receptor; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; TRIM: tripartite motif protein; ULK1: unc-51 like autophagy activating kinase 1; V-ATPase: vacuolar-type H+-proton-translocating ATPase.
Collapse
Affiliation(s)
- Julia Sanchez-Garrido
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Avinash R Shenoy
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.,Satellite Group Leader, The Francis Crick Institute, London, UK
| |
Collapse
|
5
|
Lee H, Lim JW, Kim H. Effect of Astaxanthin on Activation of Autophagy and Inhibition of Apoptosis in Helicobacter pylori-Infected Gastric Epithelial Cell Line AGS. Nutrients 2020; 12:nu12061750. [PMID: 32545395 PMCID: PMC7353244 DOI: 10.3390/nu12061750] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection leads to the massive apoptosis of the gastric epithelial cells, causing gastric ulcers, gastritis, and gastric adenocarcinoma. Autophagy is a cellular recycling process that plays important roles in cell death decisions and can protect cells by preventing apoptosis. Upon the induction of autophagy, the level of the autophagy substrate p62 is reduced and the autophagy-related ratio of microtubule-associated proteins 1A/1B light chain 3B (LC3B)-II/LC3B-I is heightened. AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are involved in the regulation of autophagy. Astaxanthin (AST) is a potent anti-oxidant that plays anti-inflammatory and anti-cancer roles in various cells. In the present study, we examined whether AST inhibits H. pylori-induced apoptosis through AMPK-mediated autophagy in the human gastric epithelial cell line AGS (adenocarcinoma gastric) in vitro. In this study, H. pylori induced apoptosis. Compound C, an AMPK inhibitor, enhanced the H. pylori-induced apoptosis of AGS cells. In contrast, metformin, an AMPK activator, suppressed H. pylori-induced apoptosis, showing that AMPK activation inhibits H. pylori-induced apoptosis. AST inhibited H. pylori-induced apoptosis by increasing the phosphorylation of AMPK and decreasing the phosphorylation of RAC-alpha serine/threonine-protein kinase (Akt) and mTOR in H. pylori-stimulated cells. The number of LC3B puncta in H. pylori-stimulated cells increased with AST. These results suggest that AST suppresses the H. pylori-induced apoptosis of AGS cells by inducing autophagy through the activation of AMPK and the downregulation of its downstream target, mTOR. In conclusion, AST may inhibit gastric diseases associated with H. pylori infection by increasing autophagy through the activation of the AMPK pathway.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
6
|
Li CL, Zhao JQ, Zang B. PRKAA1 rs13361707 C/T polymorphism confers decreased susceptibility to esophageal cancer: A case-control study. J Clin Lab Anal 2020; 34:e23406. [PMID: 32488984 PMCID: PMC7521242 DOI: 10.1002/jcla.23406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background Several studies probed into the connection between esophageal cancer (EC) risk and PRKAA1 rs13361707 C/T
polymorphism, but obtained insignificant findings. Methods In this study, 814 EC cases and 961
controls from Eastern China were recruited to validate the relationship between this polymorphism and EC susceptibility. Results Data suggested rs13361707 C/T
polymorphism in PRKAA1 gene was significantly related with a lower risk for EC. Such significant connection was also uncovered in subgroups of males, smokers, drinkers and individuals with age ≥ 60 years. In addition, this polymorphism
was linked with the pathological grading, distant metastasis, and histology of EC. Conclusion In summary, PRKAA1 rs13361707 C/T
polymorphism is related to the risk and clinical properties of EC patients in East China.
Collapse
Affiliation(s)
- Cheng-Lin Li
- Department of Thoracic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jian-Qiang Zhao
- Department of Thoracic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Bao Zang
- Department of Thoracic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
7
|
Zhang Y, Zhou X, Zhang Q, Zhang Y, Wang X, Cheng L. Involvement of NF-κB signaling pathway in the regulation of PRKAA1-mediated tumorigenesis in gastric cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3677-3686. [PMID: 31841039 DOI: 10.1080/21691401.2019.1657876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AMP-activated alpha 1 catalytic subunit (PRKAA1) is one of the subunits of the mammalian 5'-AMP-activated protein kinase (AMPK) playing an important role in maintaining intracellular energy metabolism and associating with the risk of gastric cancer (GC). This paper aims to uncover the influences of PRKAA1 on the tumorigenesis of GC, as well as the underlying mechanisms. We found that Helicobacter pylori (H. pylori) infection markedly increased p-NF-κBp50 and NF-κBp50 expression, along with the PRKAA1 expression, which was inhibited by NF-κBp50 knockdown. NF-κBp50 and PRKAA1 expression were lower in non-tumor gastric tissues compared with that in GC tumor tissues. Up-regulation of PRKAA1 expression was correlated with poor survival in GC patients. MKN-45 and BGC-823 cells stably knockdown of PRKAA1 were transplanted into nude mice and observed the decreased cell metastasis in the lungs. PRKAA1 knockdown in GC cells showed significant decreases in the cell invasion and migration and inhibited MMP-2 expression and NF-κB activation, whereas PRKAA1 involved in NF-κBp50 mediated GC cell invasion and migration. In conclusion, our findings suggest the involvement of NF-κBp50 in the regulation of PRKAA1 in GC tumorigenesis.
Collapse
Affiliation(s)
- Yangmei Zhang
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xichang Zhou
- Department of Cancer Diagnosis and Treatment Center, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinglin Zhang
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Youwei Zhang
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang Wang
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Long Cheng
- Department of Cancer Diagnosis and Treatment Center, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Jiang M, Ma L, Huang Y, Wu H, Dou J, Zhou C. Antimicrobial activities of peptide Cbf-K 16 against drug-resistant Helicobacter pylori infection in vitro and in vivo. Microb Pathog 2019; 138:103847. [PMID: 31704464 DOI: 10.1016/j.micpath.2019.103847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent, and has developed antimicrobial resistance to virtually all existing antibiotics. Currently, treatment of H. pylori infection (involving proton pump inhibitors and broad-spectrum antibiotics) is suboptimal, with high failure rates. Thus, there is a pressing need to develop new anti-H. pylori therapies. Cbf-K16, a cathelicidin-like antimicrobial peptide, presented broad antimicrobial activity during our previous research. This study further evaluated the therapeutic potential and the mode of action underlying Cbf-K16 against clarithromycin- and amoxicillin-resistant H. pylori SS1. The MIC and MBC of Cbf-K16 against the tested H. pylori were 16 and 32 μg/ml, respectively, and its killing kinetics was time-dependent, reflecting the thorough elimination of drug-resistant bacteria within 24 h. This peptide also protected H. pylori-infected gastric epithelial cells (GES-1) from death by reducing the cell supernatant and intracellular bacterial counts by 1.9 and 2.9-log10 units, respectively. These data indicated the powerful antimicrobial effects of Cbf-K16in vitro. Meanwhile, notable antimicrobial activity in the mouse gastritis model was observed, with decreasing bacterial counts by 3.9-log10 units in stomach tissues and Cbf-K16 could effectively suppress the secretion of inflammatory cytokine IL-8. For its mode of action, Cbf-K16 not only neutralized the negative potential and increased the membrane uptake of NPN and PI by 78.5% and 85.1%, respectively, but also bound to genomic DNA, which in turn downregulated the expression of adhesion genes (alpA and alpB) and virulence gene (cagA), indicating its effective activities on membrane disruption, DNA-binding and gene expression. The data above demonstrated that Cbf-K16 possessed effective antimicrobial and anti-inflammatory activities and downregulated the expression of adhesion- and cytotoxin-associated genes of drug-resistant H. pylori SS1, making it a potential candidate for anti-infective therapy.
Collapse
Affiliation(s)
- Meiling Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Ya Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Haomin Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Jie Dou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
9
|
Bei S, Li F, Li H, Li J, Zhang X, Sun Q, Feng L. Inhibition of gastric cancer cell growth by a PI3K-mTOR dual inhibitor GSK1059615. Biochem Biophys Res Commun 2019; 511:13-20. [PMID: 30765226 DOI: 10.1016/j.bbrc.2019.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/29/2022]
Abstract
Gastric cancer (GC) is a common malignancy. Developing novel and efficient anti-GC agents is urgent. GSK1059615 is a PI3K (phosphatidylinositol 3-kinase) and mTOR (mammalian target of rapamycin) dual inhibitor. It activity in human GC cells is tested here. In AGS cells and primary human GC cells, GSK1059615 potently inhibited cell growth, survival, proliferation and cell cycle progression. Further, significant apoptosis activation was detected in GSK1059615-treated GC cells. Contrarily in the primary human gastric epithelial cells, GSK1059615 failed to induce significant cytotoxicity and apoptosis. GSK1059615 blocked PI3K-AKT-mTOR cascade activation, inducing microRNA-9 downregulation but LMX1A (LIM homeobox transcription factor 1α) upregulation in GC cells. Significantly, GSK1059615 administration (i.p., daily, at 10 or 30 mg/kg) in nude mice potently inhibited subcutaneous AGS xenograft growth. AKT-mTOR inhibition and LMX1A upregulation were detected in AGS xenograft tissues with GSK1059615 administration. Together, we conclude that GSK1059615 inhibits GC cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Songhua Bei
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Huanqin Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Jian Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaohong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Qi Sun
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China.
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Silwal P, Kim JK, Yuk JM, Jo EK. AMP-Activated Protein Kinase and Host Defense against Infection. Int J Mol Sci 2018; 19:ijms19113495. [PMID: 30404221 PMCID: PMC6274990 DOI: 10.3390/ijms19113495] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
5′-AMP-activated protein kinase (AMPK) plays diverse roles in various physiological and pathological conditions. AMPK is involved in energy metabolism, which is perturbed by infectious stimuli. Indeed, various pathogens modulate AMPK activity, which affects host defenses against infection. In some viral infections, including hepatitis B and C viral infections, AMPK activation is beneficial, but in others such as dengue virus, Ebola virus, and human cytomegaloviral infections, AMPK plays a detrimental role. AMPK-targeting agents or small molecules enhance the antiviral response and contribute to the control of microbial and parasitic infections. In addition, this review focuses on the double-edged role of AMPK in innate and adaptive immune responses to infection. Understanding how AMPK regulates host defenses will enable development of more effective host-directed therapeutic strategies against infectious diseases.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
11
|
Is TAK1 a Direct Upstream Kinase of AMPK? Int J Mol Sci 2018; 19:ijms19082412. [PMID: 30111748 PMCID: PMC6121279 DOI: 10.3390/ijms19082412] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Alongside Liver kinase B1 (LKB1) and Ca2+/Calmodulin-dependent protein kinase kinase 2 (CaMKK2), Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) has been suggested as a direct upstream kinase of AMP-activated protein kinase (AMPK). Several subsequent studies have reported on the TAK1-AMPK relationship, but the interpretation of the respective data has led to conflicting views. Therefore, to date the acceptance of TAK1 as a genuine AMPK kinase is lagging behind. This review provides with argumentation, whether or not TAK1 functions as a direct upstream kinase of AMPK. Several specific open questions that may have precluded the consensus are discussed based on available data. In brief, TAK1 can function as direct AMPK upstream kinase in specific contexts and in response to a subset of TAK1 activating stimuli. Further research is needed to define the intricate signals that are conditional for TAK1 to phosphorylate and activate AMPKα at T172.
Collapse
|
12
|
de Araújo S, Oliveira AP, Sousa FBM, Souza LKM, Pacheco G, Filgueiras MC, Nicolau LAD, Brito GAC, Cerqueira GS, Silva RO, Souza MHLP, Medeiros JVR. AMPK activation promotes gastroprotection through mutual interaction with the gaseous mediators H 2S, NO, and CO. Nitric Oxide 2018; 78:60-71. [PMID: 29857061 DOI: 10.1016/j.niox.2018.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Activation of 5' adenosine monophosphate-activated protein kinase (AMPK) stimulates production of the gaseous mediators nitric oxide (NO) and carbon monoxide (CO), which are involved in mucosal defense and gastroprotection. As AMPK itself has gastroprotective effects against several gastric ulcer etiologies, in the present study, we aimed to elucidate whether AMPK may also prevent ethanol-induced injury and play a key role in the associated gastroprotection mediated by hydrogen sulfide (H2S), NO, and CO. Mice were pretreated with AICAR (20 mg/kg, an AMPK activator) alone or with 50% ethanol. Other groups were pretreated with respective gaseous mediator inhibitors PAG, l-NAME, or ZnPP IX 30 min prior to AICAR, or with gaseous mediator donors NaHS, Lawesson's reagent and l-cysteine (H2S), SNP, l-Arginine (NO), Hemin, or CORM-2 (CO) 30 min prior to ethanol with or without compound C (10 mg/kg, a non-selective AMPK inhibitor). H2S, nitrate/nitrite (NO3-/NO2-), bilirubin levels, GSH and MDA concentration were evaluated in the gastric mucosa. The gastric mucosa was also collected for histopathological analysis and AMPK expression assessment by immunohistochemistry. Pretreatment with AICAR attenuated the ethanol-induced injury and increased H2S and bilirubin levels but not NO3-/NO2- levels in the gastric mucosa. In addition, inhibition of H2S, NO, or CO synthesis exacerbated the ethanol-induced gastric damage and inhibited the gastroprotection by AICAR. Pretreatment with compound C reversed the gastroprotective effect of NaHS, Lawesson's reagent, l-cysteine, SNP, l-Arginine, CORM-2, or Hemin. Compound C also reversed the effect of NaHS on H2S production, SNP on NO3-/NO2- levels, and Hemin on bilirubin levels. Immunohistochemistry revealed that AMPK is present at basal levels mainly in the gastric mucosa cells, and was increased by pretreatment with NaHS, SNP, and CORM-2. In conclusion, our findings indicate that AMPK activation exerts gastroprotection against ethanol-induced gastric damage and mutually interacts with H2S, NO, or CO to facilitate this process.
Collapse
Affiliation(s)
- Simone de Araújo
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Ana P Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Francisca B M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Luan K M Souza
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Marcelo C Filgueiras
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Lucas A D Nicolau
- Departments of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gerly Anne C Brito
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, Fortaleza, Ceará, Brazil
| | - Gilberto S Cerqueira
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, Fortaleza, Ceará, Brazil
| | - Renan O Silva
- Departments of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcellus H L P Souza
- Departments of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jand Venes R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Federal University of Piauí, Parnaíba, Piauí, Brazil.
| |
Collapse
|
13
|
Li P, Fan JB, Gao Y, Zhang M, Zhang L, Yang N, Zhao X. miR-135b-5p inhibits LPS-induced TNFα production via silencing AMPK phosphatase Ppm1e. Oncotarget 2018; 7:77978-77986. [PMID: 27793001 PMCID: PMC5363637 DOI: 10.18632/oncotarget.12866] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022] Open
Abstract
AMPK activation in monocytes could suppress lipopolysaccharide (LPS)-induced tissue-damaging TNFa production. We are set to provoke AMPK activation via microRNA (“miRNA”) downregulating its phosphatase Ppm1e. In human U937 and THP-1 monocytes, forced expression of microRNA-135b-5p (“miR-135b-5p”) downregulated Ppm1e and activated AMPK signaling. Further, LPS-induced TNFα production in above cells was dramatically attenuated. Ppm1e shRNA knockdown in U937 cells also activated AMPK and inhibited TNFα production by LPS. AMPK activation is required for miR-135b-induced actions in monocytes, AMPKα shRNA knockdown or T172A dominant negative mutation almost abolished miR-135b-5p's suppression on LPS-induced TNFα production. Significantly, miR-135b-5p inhibited LPS-induced reactive oxygen species (ROS) production, NFκB activation and TNFα mRNA expression in human macrophages. AMPKα knockdown or mutation again abolished above actions by miR-135b-5p. We conclude that miR-135b-5p expression downregulates Ppm1e to activate AMPK signaling, which inhibits LPS-induced TNFα production via suppressing ROS production and NFκB activation.
Collapse
Affiliation(s)
- Ping Li
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Jian-Bo Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yanxia Gao
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Ming Zhang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Li Zhang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Ning Yang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Xiaojing Zhao
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| |
Collapse
|
14
|
Backert S, Haas R, Gerhard M, Naumann M. The Helicobacter pylori Type IV Secretion System Encoded by the cag Pathogenicity Island: Architecture, Function, and Signaling. Curr Top Microbiol Immunol 2018. [DOI: 10.1007/978-3-319-75241-9_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
AntogomiR-451 protects human gastric epithelial cells from ethanol via activating AMPK signaling. Biochem Biophys Res Commun 2018; 497:339-346. [PMID: 29432731 DOI: 10.1016/j.bbrc.2018.02.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/25/2022]
Abstract
The prevention and treatment efficiency of ethanol-induced gastric epithelial injury are not satisfied. We have previously shown that AMP-activated protein kinase (AMPK) activation exerts a pro-survival function in human gastric epithelial cells (GECs). miroRNA-451 ("miR-451")'s inhibitor, antagomiR-451, can activate AMPK signaling. In the present study, we show that forced-expression of antagomiR-451 via a lentiviral vector depleted miR-451, leading to AMPK activation in established GES-1 cells and primary human GECs. AntagomiR-451 efficiently protected GES-1 cells and primary human GECs from ethanol-induced viability reduction and apoptosis. AMPK activation is required for antagomiR-451-induced GEC protection. AMPKα1 knockdown (by targeted-shRNAs) or knockout (by CRISPR-Cas-9 KO plasmid) blocked antagomiR-451-induced AMPK activation, and GEC protection against ethanol. Further experimental results show that antagomiR-451 significantly attenuated ethanol-induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage. Collectively, antagomiR-451 protects human GECs from ethanol via activating AMPK signaling.
Collapse
|
16
|
Xu YY, Chen FL, Ji F, Fei HD, Xie Y, Wang SG. Activation of AMP-activated protein kinase by compound 991 protects osteoblasts from dexamethasone. Biochem Biophys Res Commun 2017; 495:1014-1021. [PMID: 29175330 DOI: 10.1016/j.bbrc.2017.11.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022]
Abstract
Dexamethasone (Dex) induces direct cytotoxicity to cultured osteoblasts. The benzimidazole derivative compound 991 ("C991") is a novel and highly-efficient AMP-activated protein kinase (AMPK) activator. Here, in both MC3T3-E1 osteoblastic cells and primary murine osteoblasts, treatment with C991 activated AMPK signaling, and significantly attenuated Dex-induced apoptotic and non-apoptotic cell death. AMPKα1 knockdown (by shRNA), complete knockout (by CRISPR/Cas9 method) or dominant negative mutation (T172A) not only blocked C991-mediated AMPK activation, but also abolished its pro-survival effect against Dex in osteoblasts. Further studies showed that C991 boosted nicotinamide adenine dinucleotide phosphate (NADPH) activity and induced mRNA expression of NF-E2-related factor 2 (Nrf2)-regulated genes (heme oxygenase-1 and NADPH quinone oxidoreductase 1). Additionally, C991 alleviated Dex-induced reactive oxygen species (ROS) production in osteoblasts. Notably, genetic AMPK inhibition reversed the anti-oxidant actions by C991 in Dex-treated osteoblasts. Together, we conclude that C991 activates AMPK signaling to protect osteoblasts from Dex.
Collapse
Affiliation(s)
- Yong-Yi Xu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Feng-Li Chen
- Clinical Laboratory, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Feng Ji
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China.
| | - Hao-Dong Fei
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Yue Xie
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Shou-Guo Wang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China.
| |
Collapse
|
17
|
Zhao Z, Feng L, Wang J, Cheng D, Liu M, Ling M, Xu W, Sun K. NPC-26 kills human colorectal cancer cells via activating AMPK signaling. Oncotarget 2017; 8:18312-18321. [PMID: 28407688 PMCID: PMC5392330 DOI: 10.18632/oncotarget.15436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
NPC-26 is novel mitochondrion-interfering compound. The current study tested its potential effect against colorectal cancer (CRC) cells. We demonstrated that NPC-26 induced potent anti-proliferative and cytotoxic activities against CRC cell lines (HCT-116, DLD-1 and HT-29). Activation of AMP-activated protein kinase (AMPK) signaling mediated NPC-26-induced CRC cell death. AMPKα1 shRNA knockdown or dominant negative mutation abolished NPC-26-induced AMPK activation and subsequent CRC cell death. NPC-26 disrupted mitochondrial function, causing mitochondrial permeability transition pore (mPTP) opening and reactive oxygen species (ROS) production. ROS scavengers (NAC or MnTBAP) and mPTP blockers (cyclosporin A or sanglifehrin A) blocked NPC-26-induced AMPK activation and attenuated CRC cell death. Significantly, intraperitoneal injection of NPC-26 potently inhibited HCT-116 tumor growth in severe combined immuno-deficient (SCID) mice. Yet, its anti-tumor activity was significantly weakened against AMPKα1-silenced HCT-116 tumors. Together, we conclude that NPC-26 kills CRC cells possibly via activating AMPK signaling.
Collapse
Affiliation(s)
- Zhen Zhao
- Clinical Laboratory, Minhang Hospital, Fudan University, Shanghai, China
| | - Li Feng
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiqin Wang
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Deshan Cheng
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Mei Liu
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Meirong Ling
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiping Xu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Keyu Sun
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Zhang S, Zhang Y, Cheng Q, Ma Z, Gong G, Deng Z, Xu K, Wang G, Wei Y, Zou X. Silencing protein kinase C ζ by microRNA-25-5p activates AMPK signaling and inhibits colorectal cancer cell proliferation. Oncotarget 2017; 8:65329-65338. [PMID: 29029434 PMCID: PMC5630334 DOI: 10.18632/oncotarget.18649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022] Open
Abstract
Developing novel strategies against human colorectal cancer (CRC) cells is needed. Activation of AMP-activated protein kinase (AMPK) could possibly inhibit CRC cells. Protein kinase C ζ (PKCζ) is an AMPK negative regulator. Here we found that PKCζ expression was significantly elevated in human colon cancer tissues and CRC cells. PKCζ upregulation was correlated with AMPK in-activation and mTOR complex 1 (mTORC1) over-activation. Reversely, PKCζ shRNA knockdown activated AMPK signaling and inhibited HT-29 cell proliferation. Significantly, downregulation of microRNA-25-5p (miR-25-5p), a PKCζ-targeting miRNA, could be the cause of PKCζ upregulation. Exogenous expression of miR-25-5p silenced PKCζ to activate AMPK signaling, which inhibited HT-29 cell proliferation. In vivo studies showed that HT-29 xenograft growth in mice was inhibited after expressing PKCζ shRNA or miR-25-5p. Collectively, PKCζ could be a novel oncogenic protein of human CRC. PKCζ silence, by targeted-shRNA or miR-25-5p expression, activates AMPK and inhibits HT-29 cell proliferation.
Collapse
Affiliation(s)
- Shihu Zhang
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiyang Zhang
- Digestive Department, Affiliated Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, China
| | - Qing Cheng
- Department of Gynaecology and Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Guanwen Gong
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengming Deng
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Xu
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Gaoyuan Wang
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yousong Wei
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoping Zou
- Digestive Department, Affiliated Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Yang X, He XQ, Li GD, Xu YQ. AntagomiR-451 inhibits oxygen glucose deprivation (OGD)-induced HUVEC necrosis via activating AMPK signaling. PLoS One 2017; 12:e0175507. [PMID: 28445531 PMCID: PMC5405932 DOI: 10.1371/journal.pone.0175507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 01/14/2023] Open
Abstract
Oxygen glucose deprivation (OGD) application in cultured human umbilical vein endothelial cells (HUVECs) mimics ischemic injuries. AntagomiR-451, the miroRNA-451 ("miR-451") inhibitor, could activate pro-survival AMP-activated protein kinase (AMPK) signaling. In the current study, we showed that forced-expression of antagomiR-451 depleted miRNA-451 and significantly attenuated OGD-induced necrosis of HUVECs. Activation of AMPK was required for antagomiR-451-mediated pro-survival actions. AMPK inhibition, by AMPKα shRNA or dominant negative mutation, almost completely abolishedantagomiR-451-mediated HUVEC protection again OGD. Reversely, forced-activation of AMPK by exogenous expression of constructively-active AMPKα inhibited OGD-induced HUVEC necrosis. At the molecular level, antagomiR-451 expression in HUVECs inhibited OGD-induced programmed necrosis, the latter was evidenced by mitochondrial p53-cyclophilinD (Cyp-D) association, mitochondrial depolarization as well as reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) breach. Together, we suggest that antagomiR-451 activates AMPK to inhibit OGD-induced programmed necrosis in HUVECs.
Collapse
Affiliation(s)
- Xi Yang
- Department of Orthopedics, Kunming General Hospital, PLA, Kunming, China
- Brigade of Postgraduate Management, Third Military Medical University, Chongqing, China
| | - Xiao-Qing He
- Department of Orthopedics, Kunming General Hospital, PLA, Kunming, China
| | - Guo-Dong Li
- Department of Orthopedics, Kunming General Hospital, PLA, Kunming, China
| | - Yong-Qing Xu
- Department of Orthopedics, Kunming General Hospital, PLA, Kunming, China
| |
Collapse
|
20
|
Azzolini M, Mattarei A, La Spina M, Fanin M, Chiodarelli G, Romio M, Zoratti M, Paradisi C, Biasutto L. New natural amino acid-bearing prodrugs boost pterostilbene's oral pharmacokinetic and distribution profile. Eur J Pharm Biopharm 2017; 115:149-158. [PMID: 28254379 DOI: 10.1016/j.ejpb.2017.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 12/14/2022]
Abstract
The biomedical effects of the natural phenol pterostilbene are of great interest but its bioavailability is negatively affected by the phenolic group in position 4' which is an ideal target for the conjugative enzymes of phase II metabolism. We report the synthesis and characterization of prodrugs in which the hydroxyl moiety is reversibly protected as a carbamate ester linked to the N-terminus of a natural amino acid. Prodrugs comprising amino acids with hydrophobic side chains were readily absorbed after intragastric administration to rats. The Area Under the Curve for pterostilbene in blood was optimal when prodrugs with isoleucine or β-alanine were used. The prodrug incorporating isoleucine was used for further studies to map distribution into major organs. When compared to pterostilbene itself, administration of the isoleucine prodrug afforded increased absorption, reduced metabolism and higher concentrations of pterostilbene, sustained for several hours, in most of the organs examined. Experiments using Caco-2 cells as an in vitro model for human intestinal absorption suggest that the prodrug could have promising absorption profiles also in humans; its uptake is partly due to passive diffusion, and partly mediated by H+-dependent transporters expressed on the apical membrane of enterocytes, such as PepT1 and OATP.
Collapse
Affiliation(s)
- Michele Azzolini
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy
| | - Andrea Mattarei
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Martina La Spina
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Fanin
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Giacomo Chiodarelli
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Matteo Romio
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mario Zoratti
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy
| | - Cristina Paradisi
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Lucia Biasutto
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
21
|
Lee S, Jeong S, Kim W, Kim D, Yang Y, Yoon JH, Kim BJ, Min DS, Jung Y. Rebamipide induces the gastric mucosal protective factor, cyclooxygenase-2, via activation of 5'-AMP-activated protein kinase. Biochem Biophys Res Commun 2017; 483:449-455. [PMID: 28011266 DOI: 10.1016/j.bbrc.2016.12.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Rebamipide, an amino acid derivative of 2(1H)-quinolinone, has been used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. Induction of cyclooxygenase (COX)-2, a gastric mucosal protective factor, by rebamipide has been suggested as the major mechanism of the drug action. However, how rebamipide induces COX-2 at the molecular level needs further investigation. In this study, the molecular mechanism underlying the induction of COX-2 by rebamipide was investigated. In gastric carcinoma cells and macrophage cells, rebamipide induced phosphorylation of AMP-activated protein kinase (AMPK), leading to phosphorylation of acetyl-CoA carboxylase (ACC), a substrate of AMPK. The induction of COX-2 by rebamipide was dependent on AMPK activation because compound C, an AMPK inhibitor, abolished COX-2 induction by rebamipide. In a mouse ulcer model, rebamipide protected against hydrochloric acid/ethanol-induced gastric ulcer, and these protective effects were deterred by co-administration of compound C. In parallel, in the gastric tissues, rebamipide increased the phosphorylation AMPK, whereas compound C reduced the levels of COX-2 and phosphorylated ACC, which were increased by rebamipide. Taken together, the activation of AMPK by rebamipide may be a molecular mechanism that contributes to induction of COX-2, probably resulting in protection against gastric ulcers.
Collapse
Affiliation(s)
- Sunyoung Lee
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Dohoon Kim
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Yejin Yang
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Jeong-Hyun Yoon
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Byung Joo Kim
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Do Sik Min
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea.
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea.
| |
Collapse
|
22
|
Helicobacter pylori: A Paradigm Pathogen for Subverting Host Cell Signal Transmission. Trends Microbiol 2017; 25:316-328. [PMID: 28057411 DOI: 10.1016/j.tim.2016.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori colonizes the gastric mucosa in the human stomach and represents a major risk factor for peptic ulcer disease and gastric cancer. Here, we summarize our current knowledge of the complex impact of H. pylori on manipulating host signalling networks, that is, by the cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). We show that H. pylori infections reflect a paradigm for interspecies contact-dependent molecular communication, which includes the disruption of cell-cell junctions and cytoskeletal rearrangements, as well as proinflammatory, cell cycle-related, proliferative, antiapoptotic, and DNA damage responses. The contribution of these altered signalling cascades to disease outcome is discussed.
Collapse
|
23
|
Eom SY, Hong SM, Yim DH, Kwon HJ, Kim DH, Yun HY, Song YJ, Youn SJ, Hyun T, Park JS, Kim BS, Kim YD, Kim H. Additive interactions between PRKAA1 polymorphisms and Helicobacter pylori CagA infection associated with gastric cancer risk in Koreans. Cancer Med 2016; 5:3236-3335. [PMID: 27726301 PMCID: PMC5119980 DOI: 10.1002/cam4.926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/01/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022] Open
Abstract
Although several studies reported genetic polymorphisms in protein kinase AMP‐activated alpha 1 catalytic subunit (PRKAA1) and their associations with gastric cancer risk, few have evaluated associations between Helicobacter pylori infection and PRKAA1 gene‐environment interactions. Here, we evaluated the effects of interactions between H. pylori infection and PRKAA1 polymorphisms on gastric cancer risk in Koreans. In this hospital‐based case–control study, PRKAA1 genotypes were analyzed and H. pylori infection and CagA status were examined using a serologic method in 846 pairs of gastric cancer patients and controls matched for age and sex. H. pylori seropositivity was associated with a 1.43‐fold [95% confidence interval: 1.12–1.81] increase in the risk of gastric cancer, and CagA low‐positive titers during H. pylori infection increased the risk by 1.85‐fold (95% confidence interval, 1.38–2.48). Significant positive interaction between the PRKAA1 rs13361707 genotype and H. pylori infection was verified on an additive scale [relative excess risk due to interaction, 0.55; 95% confidence interval, 0.05–1.04; P = 0.030], and the gene‐environment interaction between PRKAA1 rs13361707 and CagA status was also statistically significant (relative excess risk due to interaction, 0.50; 95% confidence interval, 0.30–0.70; P < 0.001). Our results indicated that H. pylori infection, CagA status, and PRKAA1 polymorphisms were risk factors for gastric cancer in Koreans, and that the combination of two of these factors rather than their independent effects synergistically increased the risk.
Collapse
Affiliation(s)
- Sang-Yong Eom
- Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Seon-Mi Hong
- Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Dong-Hyuk Yim
- Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hyo-Jin Kwon
- Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Dae-Hoon Kim
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hyo-Yung Yun
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Young-Jin Song
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sei-Jin Youn
- Department of Internal Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Taisun Hyun
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Korea
| | - Joo-Seung Park
- Department of Surgery, College of Medicine, Eulji University, Daejon, Korea
| | - Byung Sik Kim
- Department of Surgery, Asan Medical Center, College of Medicine, Ulsan University, Seoul, Korea
| | - Yong-Dae Kim
- Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Heon Kim
- Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
24
|
Guo F, Liu SQ, Gao XH, Zhang LY. AICAR induces AMPK-independent programmed necrosis in prostate cancer cells. Biochem Biophys Res Commun 2016; 474:277-283. [PMID: 27103440 DOI: 10.1016/j.bbrc.2016.04.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
Abstract
AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine) is an AMP-activated protein kinase (AMPK) agonist, which induces cytotoxic effect to several cancer cells. Its potential activity in prostate cancer cells and the underlying signaling mechanisms have not been extensively studied. Here, we showed that AICAR primarily induced programmed necrosis, but not apoptosis, in prostate cancer cells (LNCaP, PC-3 and PC-82 lines). AICAR's cytotoxicity to prostate cancer cells was largely attenuated by the necrosis inhibitor necrostatin-1. Mitochondrial protein cyclophilin-D (CYPD) is required for AICAR-induced programmed necrosis. CYPD inhibitors (cyclosporin A and sanglifehrin A) as well as CYPD shRNAs dramatically attenuated AICAR-induced prostate cancer cell necrosis and cytotoxicity. Notably, AICAR-induced cell necrosis appeared independent of AMPK, yet requiring reactive oxygen species (ROS) production. ROS scavengers (N-acetylcysteine and MnTBAP), but not AMPKα shRNAs, largely inhibited prostate cancer cell necrosis and cytotoxicity by AICAR. In summary, the results of the present study demonstrate mechanistic evidences that AMPK-independent programmed necrosis contributes to AICAR's cytotoxicity in prostate cancer cells.
Collapse
Affiliation(s)
- Feng Guo
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province 250013, China
| | - Shuang-Qing Liu
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province 250013, China
| | - Xing-Hua Gao
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province 250013, China
| | - Long-Yang Zhang
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province 250013, China.
| |
Collapse
|
25
|
Guo S, Mao L, Ji F, Wang S, Xie Y, Fei H, Wang XD. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death. Biochem Biophys Res Commun 2016; 471:545-52. [PMID: 26891866 DOI: 10.1016/j.bbrc.2016.02.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 12/25/2022]
Abstract
Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13' cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway.
Collapse
Affiliation(s)
- Shiguang Guo
- Department of Intensive Care Unit, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Li Mao
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Feng Ji
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China.
| | - Shouguo Wang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Yue Xie
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Haodong Fei
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Xiao-dong Wang
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China.
| |
Collapse
|
26
|
Mesquita I, Moreira D, Sampaio-Marques B, Laforge M, Cordeiro-da-Silva A, Ludovico P, Estaquier J, Silvestre R. AMPK in Pathogens. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:287-323. [PMID: 27812985 DOI: 10.1007/978-3-319-43589-3_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During host-pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host-pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.
Collapse
Affiliation(s)
- Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Diana Moreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | | | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France.,Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3Bs-PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
27
|
Hu X, Jiang F, Bao Q, Qian H, Fang Q, Shao Z. Compound 13, an α1-selective small molecule activator of AMPK, potently inhibits melanoma cell proliferation. Tumour Biol 2015; 37:1071-8. [DOI: 10.1007/s13277-015-3854-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/28/2015] [Indexed: 12/25/2022] Open
|
28
|
Zhao H, Zhu H, Lin Z, Lin G, Lv G. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis. Biochem Biophys Res Commun 2015; 463:510-7. [PMID: 26022128 DOI: 10.1016/j.bbrc.2015.05.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK-HO-1 signaling.
Collapse
Affiliation(s)
- Hangyong Zhao
- Department of Gastroenterology, Wuxi Third People's Hospital of Nantong University, Wuxi 214041, China
| | - Huanghuang Zhu
- Department of Gastroenterology, Wuxi Third People's Hospital of Nantong University, Wuxi 214041, China
| | - Zhou Lin
- Department of Gastroenterology, Wuxi Third People's Hospital of Nantong University, Wuxi 214041, China
| | - Gang Lin
- Department of Gastroenterology, Wuxi Third People's Hospital of Nantong University, Wuxi 214041, China
| | - Guoqiang Lv
- Department of Gastroenterology, Wuxi Third People's Hospital of Nantong University, Wuxi 214041, China.
| |
Collapse
|