1
|
Wang B, Wang W, Li J, Li J. Zinc finger protein 36 like 2-histone deacetylase 1 axis is involved in the bone responses to mechanical stress. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167162. [PMID: 38604490 DOI: 10.1016/j.bbadis.2024.167162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
The molecular mechanism underlying the promotion of fracture healing by mechanical stimuli remains unclear. The present study aimed to investigate the role of zinc finger protein 36 like 2 (ZFP36L2)-histone deacetylase 1 (HDAC1) axis on the osteogenic responses to moderate mechanical stimulation. Appropriate stimulation of fluid shear stress (FSS) was performed on MC3T3-E1 cells transduced with ZFP36L2 and HDAC1 recombinant adenoviruses, aiming to validate the influence of mechanical stress on the expression of ZFP36L2-HDAC1 and the osteogenic differentiation and mineralization. The results showed that moderate FSS stimulation significantly upregulated the expression of ZFP36L2 in MC3T3-E1 cells (p < 0.01). The overexpression of ZFP36L1 markedly enhanced the levels of osteogenic differentiation markers, including bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), Osterix, and collagen type I alpha 1 (COL1A1) (p < 0.01). ZFP36L2 accelerated the degradation of HDAC1 by specifically binding to its 3' UTR region, thereby fulfilling its function at the post-transcriptional regulatory gene level and promoting the osteogenic differentiation and mineralization fate of cells. Mechanical unloading notably diminished/elevated the expression of ZFP36L2/HDAC1, decreased bone mineral density and bone volume fraction, hindered the release of osteogenic-related factors and vascular endothelial growth factor in callus tissue (p < 0.01), and was detrimental to fracture healing. Collectively, proper stress stimulation plays a crucial role in facilitating osteogenesis through the promotion of ZFP36L2 and subsequent degradation of HDAC1. Targeting ZFP36L2-HDAC1 axis may provide promising insights to enhance bone defect healing.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Wei Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Jingyu Li
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| | - Jianjun Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
2
|
Luo M, Zhao Z, Yi J. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne) 2023; 14:1150068. [PMID: 37415664 PMCID: PMC10321525 DOI: 10.3389/fendo.2023.1150068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetes mellitus (DM) has been shown to be a clinical risk factor for bone diseases including osteoporosis and fragility. Bone metabolism is a complicated process that requires coordinated differentiation and proliferation of bone marrow mesenchymal stem cells (BMSCs). Owing to the regenerative properties, BMSCs have laid a robust foundation for their clinical application in various diseases. However, mounting evidence indicates that the osteogenic capability of BMSCs is impaired under high glucose conditions, which is responsible for diabetic bone diseases and greatly reduces the therapeutic efficiency of BMSCs. With the rapidly increasing incidence of DM, a better understanding of the impacts of hyperglycemia on BMSCs osteogenesis and the underlying mechanisms is needed. In this review, we aim to summarize the current knowledge of the osteogenesis of BMSCs in hyperglycemia, the underlying mechanisms, and the strategies to rescue the impaired BMSCs osteogenesis.
Collapse
Affiliation(s)
- Meng Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zakeri S, Aminian H, Sadeghi S, Esmaeilzadeh-Gharehdaghi E, Razmara E. Krüppel-like factors in bone biology. Cell Signal 2022; 93:110308. [PMID: 35301064 DOI: 10.1016/j.cellsig.2022.110308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022]
Abstract
The krüppel-like factor (KLF) family is a group of zinc finger transcription factors and contributes to different cellular processes such as differentiation, proliferation, migration, and apoptosis. While different studies show the roles of this family in skeletal development-specifically in chondrocyte and osteocyte development and bone homeostasis-there are few reviews summarizing their importance. To fill this gap, this review discusses current knowledge on different functions of the KLF family during skeletal development, including their roles in stem cell maintenance and differentiation, cell apoptosis, and cell cycle. To understand the importance of the KLF family, we also review genotype-phenotype correlations in different animal models. We also discuss how KLF proteins function through different signaling pathways and display their paramount importance in skeletal development. To highlight their roles in cartilage- or bone-related cells, we also use single-cell RNA sequencing publicly available data on mouse hindlimb. We also challenge our knowledge of how the KLF family is epigenetically regulated-e.g., using DNA methylation, histone modifications, and noncoding RNAs-during chondrocyte and osteocyte development.
Collapse
Affiliation(s)
- Sina Zakeri
- Department of Veterinary Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hesam Aminian
- Department of Biology, Faculty of Sciences, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Soheila Sadeghi
- Department of Biology, Faculty of Basic Sciences, Sanandaj Branch, Islamic Azad University, Kurdistan, Iran
| | | | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
The interaction of canonical Wnt/β-catenin signaling with protein lysine acetylation. Cell Mol Biol Lett 2022; 27:7. [PMID: 35033019 PMCID: PMC8903542 DOI: 10.1186/s11658-021-00305-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Canonical Wnt/β-catenin signaling is a complex cell-communication mechanism that has a central role in the progression of various cancers. The cellular factors that participate in the regulation of this signaling are still not fully elucidated. Lysine acetylation is a significant protein modification which facilitates reversible regulation of the target protein function dependent on the activity of lysine acetyltransferases (KATs) and the catalytic function of lysine deacetylases (KDACs). Protein lysine acetylation has been classified into histone acetylation and non-histone protein acetylation. Histone acetylation is a kind of epigenetic modification, and it can modulate the transcription of important biological molecules in Wnt/β-catenin signaling. Additionally, as a type of post-translational modification, non-histone acetylation directly alters the function of the core molecules in Wnt/β-catenin signaling. Conversely, this signaling can regulate the expression and function of target molecules based on histone or non-histone protein acetylation. To date, various inhibitors targeting KATs and KDACs have been discovered, and some of these inhibitors exert their anti-tumor activity via blocking Wnt/β-catenin signaling. Here, we discuss the available evidence in understanding the complicated interaction of protein lysine acetylation with Wnt/β-catenin signaling, and lysine acetylation as a new target for cancer therapy via controlling this signaling.
Collapse
|
5
|
Alahdal M, Huang R, Duan L, Zhiqin D, Hongwei O, Li W, Wang D. Indoleamine 2, 3 Dioxygenase 1 Impairs Chondrogenic Differentiation of Mesenchymal Stem Cells in the Joint of Osteoarthritis Mice Model. Front Immunol 2021; 12:781185. [PMID: 34956209 PMCID: PMC8693178 DOI: 10.3389/fimmu.2021.781185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
Osteoarthritis (OA) is a serious joint inflammation that leads to cartilage degeneration and joint dysfunction. Mesenchymal stem cells (MSCs) are used as a cell-based therapy that showed promising results in promoting cartilage repair. However, recent studies and clinical trials explored unsatisfied outcomes because of slow chondrogenic differentiation and increased calcification without clear reasons. Here, we report that the overexpression of indoleamine 2,3 dioxygenase 1 (IDO1) in the synovial fluid of OA patients impairs chondrogenic differentiation of MSCs in the joint of the OA mice model. The effect of MSCs mixed with IDO1 inhibitor on the cartilage regeneration was tested compared to MSCs mixed with IDO1 in the OA animal model. Further, the mechanism exploring the effect of IDO1 on chondrogenic differentiation was investigated. Subsequently, miRNA transcriptome sequencing was performed for MSCs cocultured with IDO1, and then TargetScan was used to verify the target of miR-122-5p in the SF-MSCs. Interestingly, we found that MSCs mixed with IDO1 inhibitor showed a significant performance to promote cartilage regeneration in the OA animal model, while MSCs mixed with IDO1 failed to stimulate cartilage regeneration. Importantly, the overexpression of IDO1 showed significant inhibition to Sox9 and Collagen type II (COL2A1) through activating the expression of β-catenin, since inhibiting of IDO1 significantly promoted chondrogenic signaling of MSCs (Sox9, COL2A1, Aggrecan). Further, miRNA transcriptome sequencing of SF-MSCs that treated with IDO1 showed significant downregulation of miR-122-5p which perfectly targets Wnt1. The expression of Wnt1 was noticed high when IDO1 was overexpressed. In summary, our results suggest that IDO1 overexpression in the synovial fluid of OA patients impairs chondrogenic differentiation of MSCs and cartilage regeneration through downregulation of miR-122-5p that activates the Wnt1/β-catenin pathway.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/pathology
- Cartilage, Articular/physiology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Chondrogenesis/drug effects
- Chondrogenesis/physiology
- Female
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/pharmacology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/drug effects
- Mice
- MicroRNAs/metabolism
- Middle Aged
- Osteoarthritis, Knee/enzymology
- Osteoarthritis, Knee/pathology
- Rats
- Rats, Wistar
- Regeneration/drug effects
- Regeneration/physiology
- Synovial Fluid/enzymology
Collapse
Affiliation(s)
- Murad Alahdal
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China
| | - Rongxiang Huang
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China
| | - Deng Zhiqin
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Ouyang Hongwei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Wan C, Zhang F, Yao H, Li H, Tuan RS. Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications. Front Cell Dev Biol 2021; 9:626708. [PMID: 33937229 PMCID: PMC8085601 DOI: 10.3389/fcell.2021.626708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of histone modifications in cartilage development, pathology and regeneration is becoming increasingly evident. Understanding the molecular mechanisms and consequences of histone modification enzymes in cartilage development, homeostasis and pathology provides fundamental and precise perspectives to interpret the biological behavior of chondrocytes during skeletal development and the pathogenesis of various cartilage related diseases. Candidate molecules or drugs that target histone modifying proteins have shown promising therapeutic potential in the treatment of cartilage lesions associated with joint degeneration and other chondropathies. In this review, we summarized the advances in the understanding of histone modifications in the regulation of chondrocyte fate, cartilage development and pathology, particularly the molecular writers, erasers and readers involved. In addition, we have highlighted recent studies on the use of small molecules and drugs to manipulate histone signals to regulate chondrocyte functions or treat cartilage lesions, in particular osteoarthritis (OA), and discussed their potential therapeutic benefits and limitations in preventing articular cartilage degeneration or promoting its repair or regeneration.
Collapse
Affiliation(s)
- Chao Wan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fengjie Zhang
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hanyu Yao
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Rocky S Tuan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
7
|
Deng Y, Zhu W, Anhua Lin, Wang C, Xiong C, Xu F, Li J, Huang S, Zhang N, Huo Y. Exendin-4 promotes bone formation in diabetic states via HDAC1-Wnt/β-catenin axis. Biochem Biophys Res Commun 2021; 544:8-14. [PMID: 33516884 DOI: 10.1016/j.bbrc.2021.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023]
Abstract
Exendin-4 has been found to have hypoglycemic effect and prevent bone loss in diabetic patients, but its mechanism of preventing bone loss is still unclear. In this study, high-fat diet combined with streptozotocin was used to establish type 2 diabetes mellitus (T2DM) mice, and bone marrow mesenchyme stem cells (BMSCs) were isolated for osteogenic induction in vitro. Alizarin red staining and ALP activity detection were used to observe the effect of exendin-4 on osteogenic differentiation of BMSCs. Western blot was used to detect the proteins expression in BMSCs. In vivo, the effects of exendin-4 treatment on body weight, blood glucose, bone density and bone quality of T2DM mice were observed by treatment with exendin-4. The results showed that exendin-4 promoted osteogenic differentiation of T2DM derived BMSCs, down-regulated histone deacetylase 1 (HDAC1) and p-β-Catenin proteins expression, and up-regulated Wnt3, β-Catenin and runt-related transcription factor 2 (Runx 2) proteins expression. In vivo, exendin-4 effectively suppressed the blood glucose and increased body weight of T2DM mice, and significantly improved bone density and bone quality of the right tibia. Interestingly, by over-expression of HDAC1 in BMSCs, the effect of exendin-4 on promoting osteogenic differentiation of BMSCs was attenuated, and the regulation of Wnt3a, β-Catenin, p-β-Catenin or Runx2 proteins were reversed. By injecting adenovirus containing HDAC1 into the right tibia of mice, the effect of exendin-4 on bone density and bone quality of T2DM mice was significantly attenuated. All above results suggest that the HDAC1-Wnt/β-Catenin signal axis is involved in the anti-diabetic bone loss effect of exendin-4, and HDAC1 may be the target of exendin-4.
Collapse
Affiliation(s)
- Ying Deng
- Endocrinology Department, Jiangxi Provincial People(')s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Wenyi Zhu
- Medical Department of Graduate School, Nanchang University, Nanchang, PR China
| | - Anhua Lin
- Endocrinology Department, Jiangxi Provincial People(')s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Chenxiu Wang
- Endocrinology Department, Jiangxi Provincial People(')s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Changhui Xiong
- Department of Science and Education, Jiangxi Provincial People(')s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Fanghua Xu
- Pathology Department, Pingxiang People's Hospital of Southern Medical University, Pingxiang, Jiangxi, 337055, PR China
| | - Jinfeng Li
- Endocrinology Department, Jiangxi Provincial People(')s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Shuijin Huang
- Endocrinology Department, Jiangxi Provincial People(')s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Na Zhang
- Endocrinology Department, Jiangxi Provincial People(')s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Yanan Huo
- Endocrinology Department, Jiangxi Provincial People(')s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
8
|
Hodjat M, Khan F, Saadat KA. Epigenetic alterations in aging tooth and the reprogramming potential. Ageing Res Rev 2020; 63:101140. [PMID: 32795505 DOI: 10.1016/j.arr.2020.101140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Tooth compartments and associated supportive tissues exhibit significant alterations during aging, leading to their impaired functioning. Aging not only affects the structure and function of dental tissue but also reduces its capacity to maintain physiological homeostasis and the healing process. Decreased cementocyte viability; diminished regenerative potential of stem cells residing in the pulp, alveolar bone and periodontal ligament; and impaired osteogenic and odontogenic differentiation capacity of progenitor cells are among the cellular impacts associated with oral aging. Various physiological and pathological phenomena are regulated by the epigenome, and hence, changes in epigenetic markers due to external stimuli have been reported in aging oral tissues and are considered a possible molecular mechanism underlying dental aging. The role of nutri-epigenetics in aging has emerged as an attractive research area. Thus far, various nutrients and bioactive compounds have been identified to have a modulatory effect on the epigenetic machinery, showing a promising response in dental aging. The human microbiota is another key player in aging and can be a target for anti-aging interventions in dental tissue. Considering the reversible characteristics of epigenetic markers and the potential for environmental factors to manipulate the epigenome, to minimize the deteriorative effects of aging, it is important to evaluate the linkage between external stimuli and their effects in terms of age-related epigenetic modifications.
Collapse
|
9
|
Zhang H, Ji L, Yang Y, Zhang X, Gang Y, Bai L. The Role of HDACs and HDACi in Cartilage and Osteoarthritis. Front Cell Dev Biol 2020; 8:560117. [PMID: 33102472 PMCID: PMC7554620 DOI: 10.3389/fcell.2020.560117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Epigenetics plays an important role in the pathogenesis and treatment of osteoarthritis (OA). In recent decades, HDAC family members have been associated with OA. This paper aims to describe the different role of HDACs in the pathogenesis of OA through interaction with microRNAs and the regulation of relevant signaling pathways. We found that HDACs are involved in cartilage and chondrocyte development but also play a crucial role in OA. However, the distinct HDAC mechanism in the pathogenesis and treatment of OA require further investigation. Furthermore, HDAC inhibitors (HDACi) can protect cartilage from disease, which may represent a potential therapeutic approach against OA.
Collapse
Affiliation(s)
- He Zhang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lu Ji
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaoning Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Gang
- Department of Orthopedic Surgery, Panjin Central Hospital, Panjin, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Lu J, Zhou Z, Sun B, Han B, Fu Q, Han Y, Yuan W, Xu Z, Chen A. MiR-520d-5p modulates chondrogenesis and chondrocyte metabolism through targeting HDAC1. Aging (Albany NY) 2020; 12:18545-18560. [PMID: 32950972 PMCID: PMC7585120 DOI: 10.18632/aging.103831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) play an essential role in the chondrogenesis and the progression of osteoarthritis (OA). This study aimed to determine miRNAs associated with chondrogenesis of human mesenchymal stem cells (hMSCs) and chondrocyte metabolism. MiRNAs were screened in hMSCs during chondrogenesis by RNA-seq and qRT-PCR. MiRNA expression was determined in primary human chondrocytes (PHCs), and degraded cartilage samples. MiRNA mimics and inhibitors were transfected to cells to determine the effect of miRNA. Bioinformatic analysis and luciferase reporter assays were applied to determine the target gene of miRNA. The results demonstrated that miR-520d-5p was increased in hMSCs chondrogenesis. The overexpression and knockdown of miR-520d-5p promoted and inhibited chondrogenesis, and regulated chondrocyte metabolism. Histone deacetylase 1 (HDAC1) was decreased in hMSCs chondrogenesis, and HDAC1 was a targeting gene of miR-520d-5p. CI994, HDAC1 inhibitor, elevated cartilage-specific gene expressions and promoted hMSCs chondrogenesis. In IL-1β-treated PHCs, CI994 promoted AGGRECAN expression and suppressed MMP-13 expression, abolishing the effect of IL-1β on PHCs. Taken together, these results suggest that miR-520d-5p promotes hMSCs chondrogenesis and regulates chondrocyte metabolism through targeting HDAC1. This study provides novel understanding of the molecular mechanism of OA progression.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Zhibin Zhou
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Bin Sun
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Bin Han
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Qiang Fu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Yaguang Han
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Wang Yuan
- Department of Medicinal and Materials, General Hospital of Northern Theater Command, Shenyang, P. R. of China
| | - Zeng Xu
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| | - Aimin Chen
- Department of Orthopedics and Trauma Surgery, Changzheng Hospital, Shanghai, P. R. of China
| |
Collapse
|
11
|
Ren J, Huang D, Li R, Wang W, Zhou C. Control of mesenchymal stem cell biology by histone modifications. Cell Biosci 2020; 10:11. [PMID: 32025282 PMCID: PMC6996187 DOI: 10.1186/s13578-020-0378-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered the most promising seed cells for regenerative medicine because of their considerable therapeutic properties and accessibility. Fine-tuning of cell biological processes, including differentiation and senescence, is essential for achievement of the expected regenerative efficacy. Researchers have recently made great advances in understanding the spatiotemporal gene expression dynamics that occur during osteogenic, adipogenic and chondrogenic differentiation of MSCs and the intrinsic and environmental factors that affect these processes. In this context, histone modifications have been intensively studied in recent years and have already been indicated to play significant and universal roles in MSC fate determination and differentiation. In this review, we summarize recent discoveries regarding the effects of histone modifications on MSC biology. Moreover, we also provide our insights and perspectives for future applications.
Collapse
Affiliation(s)
- Jianhan Ren
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Delan Huang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Runze Li
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Weicai Wang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Chen Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| |
Collapse
|
12
|
Concise Review: The Regulatory Mechanism of Lysine Acetylation in Mesenchymal Stem Cell Differentiation. Stem Cells Int 2020; 2020:7618506. [PMID: 32399051 PMCID: PMC7204305 DOI: 10.1155/2020/7618506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Nowadays, the use of MSCs has attracted considerable attention in the global science and technology field, with the self-renewal and multidirectional differentiation potential for diabetes, obesity treatment, bone repair, nerve repair, myocardial repair, and so on. Epigenetics plays an important role in the regulation of mesenchymal stem cell differentiation, which has become a research hotspot in the medical field. This review focuses on the role of lysine acetylation modification on the determination of MSC differentiation direction. During this progress, the recruitment of lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) is the crux of transcriptional mechanisms in the dynamic regulation of key genes controlling MSC multidirectional differentiation.
Collapse
|
13
|
Xu J, Wang Y, Hsu CY, Gao Y, Meyers CA, Chang L, Zhang L, Broderick K, Ding C, Peault B, Witwer K, James AW. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife 2019; 8:e48191. [PMID: 31482845 PMCID: PMC6764819 DOI: 10.7554/elife.48191] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
The vascular wall is a source of progenitor cells that are able to induce skeletal repair, primarily by paracrine mechanisms. Here, the paracrine role of extracellular vesicles (EVs) in bone healing was investigated. First, purified human perivascular stem cells (PSCs) were observed to induce mitogenic, pro-migratory, and pro-osteogenic effects on osteoprogenitor cells while in non-contact co-culture via elaboration of EVs. PSC-derived EVs shared mitogenic, pro-migratory, and pro-osteogenic properties of their parent cell. PSC-EV effects were dependent on surface-associated tetraspanins, as demonstrated by EV trypsinization, or neutralizing antibodies for CD9 or CD81. Moreover, shRNA knockdown in recipient cells demonstrated requirement for the CD9/CD81 binding partners IGSF8 and PTGFRN for EV bioactivity. Finally, PSC-EVs stimulated bone repair, and did so via stimulation of skeletal cell proliferation, migration, and osteodifferentiation. In sum, PSC-EVs mediate the same tissue repair effects of perivascular stem cells, and represent an 'off-the-shelf' alternative for bone tissue regeneration.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Yiyun Wang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Ching-Yun Hsu
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Yongxing Gao
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | | | - Leslie Chang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Leititia Zhang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
- Department of Oral and Maxillofacial Surgery, School of StomatologyChina Medical UniversityShenyangChina
| | | | - Catherine Ding
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research CenterUCLA, Orthopaedic HospitalLos AngelesUnited States
| | - Bruno Peault
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research CenterUCLA, Orthopaedic HospitalLos AngelesUnited States
- Centre For Cardiovascular ScienceUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Kenneth Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins UniversityBaltimoreUnited States
- Department of NeurologyJohns Hopkins UniversityBaltimoreUnited States
| | | |
Collapse
|
14
|
Zhang H, Ji L, Yang Y, Wei Y, Zhang X, Gang Y, Lu J, Bai L. The Therapeutic Effects of Treadmill Exercise on Osteoarthritis in Rats by Inhibiting the HDAC3/NF-KappaB Pathway in vivo and in vitro. Front Physiol 2019; 10:1060. [PMID: 31481898 PMCID: PMC6710443 DOI: 10.3389/fphys.2019.01060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/02/2019] [Indexed: 01/03/2023] Open
Abstract
Osteoarthritis (OA) is a disease characterized by non-bacterial inflammation. Histone deacetylase 3 (HDAC3) is a crucial positive regulator in the inflammation that leads to the development of non-OA inflammatory disease. However, the precise involvement of HDAC3 in OA is still unknown, and the underlying mechanism of exercise therapy in OA requires more research. We investigated the involvement of HDAC3 in exercise therapy-treated OA. Expression levels of HDAC3, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), matrix metalloproteinase-13 (MMP-13), HDAC3 and nuclear factor-kappaB (NF-kappaB) were measured by western blotting, reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. Cartilage damage and OA evaluation were measured by hematoxylin and eosin staining and Toluidine blue O staining according to the Mankin score and OARSI score, respectively. We found that moderate-intensity treadmill exercise could relieve OA. Meanwhile, the expression of HDAC3, MMP-13, ADAMTS-5 and NF-kappaB decreased, and collagen II increased in the OA + moderate-intensity treadmill exercise group (OAM) compared with the OA group (OAG) or OA + high- or low-intensity treadmill exercise groups (OAH or OAL). Furthermore, we found the selective HDAC3 inhibitor RGFP966 could also alleviate inflammation in OA rat model through inhibition of nuclear translocation of NF-kappaB. To further explore the relationship between HDAC3 and NF-kappaB, we investigated the change of NF-kappaB relocation in IL-1β-treated chondrocytes under the stimulation of RGFP966. We found that RGFP966 could inhibit the expression of inflammatory markers of OA via regulation of HDAC3/NF-kappaB pathway. These investigations revealed that RGFP966 is therefore a promising new drug for treating OA.
Collapse
Affiliation(s)
- He Zhang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lu Ji
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaoning Zhang
- Department of Anesthesiology Department, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Gang
- Department of Orthopedic Surgery, Panjin Central Hospital, Panjin, China
| | - Jinghan Lu
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Cappato S, Giacopelli F, Tonachini L, Ravazzolo R, Bocciardi R. Identification of reference genes for quantitative PCR during C3H10T1/2 chondrogenic differentiation. Mol Biol Rep 2019; 46:3477-3485. [PMID: 30847849 PMCID: PMC6548758 DOI: 10.1007/s11033-019-04713-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/20/2019] [Indexed: 01/03/2023]
Abstract
C3H10T1/2, a mouse mesenchymal stem cell line, is a well-known in vitro model of chondrogenesis that can be easily employed to recapitulate some of the mechanisms intervening in this process. Moreover, these cells can be used to validate the effect of candidate molecules identified by high throughput screening approaches applied to the development of targeted therapy for human disorders in which chondrogenic differentiation may be involved, as in conditions characterized by heterotopic endochondral bone formation. Chondrogenic differentiation of C3H10T1/2 cells can be monitored by applying quantitative polymerase chain reaction (qPCR), one of the most sensitive methods that allows detection of small dynamic changes in gene expression between samples obtained under different experimental conditions. In this work, we have used qPCR to monitor the expression of specific markers during chondrogenic differentiation of C3H10T1/2 cells in micromass cultures. Then we have applied the geNorm approach to identify the most stable reference genes suitable to get a robust normalization of the obtained expression data. Among 12 candidate reference genes (Ap3d1, Csnk2a2, Cdc40, Fbxw2, Fbxo38, Htatsf1, Mon2, Pak1ip1, Zfp91, 18S, ActB, GAPDH) we identified Mon2 and Ap3d1 as the most stable ones during chondrogenesis. ActB, GAPDH and 18S, the most commonly used in the literature, resulted to have an expression level too high compared to the differentiation markers (Sox9, Collagen type 2a1, Collagen type 10a1 and Collagen type 1a1), therefore are actually less recommended for these experimental conditions. In conclusion, we identified nine reference genes that can be equally used to obtain a robust normalization of the gene expression variation during the C3H10T1/2 chondrogenic differentiation.
Collapse
Affiliation(s)
- Serena Cappato
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, 16132, Genova, Italy
| | - Francesca Giacopelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, 16132, Genova, Italy
| | - Laura Tonachini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, 16132, Genova, Italy
| | - Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, 16132, Genova, Italy.,Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147, Genova, Italy
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, 16132, Genova, Italy. .,Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147, Genova, Italy.
| |
Collapse
|
16
|
New Approach for Differentiation of Bone Marrow Mesenchymal Stem Cells Toward Chondrocyte Cells With Overexpression of MicroRNA-140. ASAIO J 2018; 64:662-672. [DOI: 10.1097/mat.0000000000000688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Enhanced chondrogenesis differentiation of human induced pluripotent stem cells by MicroRNA-140 and transforming growth factor beta 3 (TGFβ3). Biologicals 2018; 52:30-36. [DOI: 10.1016/j.biologicals.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/07/2017] [Accepted: 01/26/2018] [Indexed: 12/17/2022] Open
|
18
|
Jing H, Su X, Gao B, Shuai Y, Chen J, Deng Z, Liao L, Jin Y. Epigenetic inhibition of Wnt pathway suppresses osteogenic differentiation of BMSCs during osteoporosis. Cell Death Dis 2018; 9:176. [PMID: 29416009 PMCID: PMC5833865 DOI: 10.1038/s41419-017-0231-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
Abstract
Disrupted Wnt signaling in osteoblastic-lineage cells leads to bone formation defect in osteoporosis. However, the factors repressing Wnt signaling are unclear. In our study, we found that Wnt signaling was suppressed persistently in bone marrow-derived mesenchymal stem cells (BMSCs) during osteoporosis. Accordingly, histone acetylation levels on Wnt genes (Wnt1, Wnt6, Wnt10a, and Wnt10b) were declined in BMSCs from OVX mice. By screening the family of histone acetyltransferase, we identified that GCN5 expression increased during osteogenic differentiation of BMSCs, whereas decreased after osteoporosis. Further analysis revealed that GCN5 promoted osteogenic differentiation of BMSCs by increasing acetylation on histone 3 lysine 9 loci on the promoters of Wnt genes. Reduced GCN5 expression suppressed Wnt signaling, resulting in osteogenic defect of BMSCs from OVX mice. Moreover, restoring GCN5 levels recovered BMSC osteogenic differentiation, and attenuated bone loss in OVX mice. Taken together, our study demonstrated that disrupted histone acetylation modification in BMSCs lead to bone formation defect during osteoporosis. The findings also introduced a novel therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Huan Jing
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Xiaoxia Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Bo Gao
- Department of Orthopaedic Surgery. Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yi Shuai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China.,Department of Oral Implantology, School of Stomatology, State Key Laboratory of Military Stomatology, The Fourth Military Medical University, Xi'an, Shanxi, 710032, China
| | - Zhihong Deng
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li Liao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. .,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. .,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
19
|
Cheng XS, Sun SB, Zhong F, He K, Zhou J. Knockdown of Histone Methyltransferase hSETD1A Inhibits Progression, Migration, and Invasion in Human Hepatocellular Carcinoma. Oncol Res 2017; 24:239-45. [PMID: 27656834 PMCID: PMC7838640 DOI: 10.3727/096504016x14648701448011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Our aim was to study the expression of human SET domain containing protein 1A (hSETD1A) in hepatocellular carcinoma patients and its relationship with human hepatocellular carcinoma cell function. A total of 30 patients with hepatocellular carcinoma were enrolled in this study. The expression of hSETD1A was detected by real-time polymerase chain reaction (PCR) and Western blotting. The immortalized normal human liver cell line including SMMC-7721 was subjected to real-time PCR for hSETD1A mRNA. Furthermore, hSETD1A-small hairpin RNA (shRNA) was used to knock down hSETD1A expression in SMMC-7721 cells. Cell proliferation, cell apoptosis, and cell migration were determined by CCK8, flow cytometry, and Transwell assays. The positive expression rate level of hSETD1A mRNA and protein in liver carcinoma tissues was 73.33%. hSETD1A knockdown using a specific hSETD1A-shRNA inhibited cell proliferation and promoted cell apoptosis in SMMC-7721 cells. It was also found that downregulation of hSETD1A inhibited cell migration ability but did not affect cell invasion. In conclusion, the expression of hSETD1A occurs at a high rate in hepatocellular carcinoma patients. The expression state of hSETD1A may be a prognostic factor in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xin-Sheng Cheng
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
20
|
Effect of adenovirus-mediated TGF-β1 gene transfer on the function of rabbit articular chondrocytes. J Orthop Sci 2017; 22:149-155. [PMID: 27876193 DOI: 10.1016/j.jos.2016.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 03/18/2016] [Accepted: 05/18/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Articular chondrocytes are important in maintaining normal cartilage tissue and preventing articular degeneration. Exogenous genes have previously been transduced into articular cells using adenoviral vectors to contribute to the maintenance of cell function. This study aimed to transfer the transforming growth factor-β1 gene (TGF-β1) into rabbit articular chondrocytes by adenovirus infection to elucidate its effects on cell function. METHODS Rabbit chondrocytes were isolated and cultured both as monolayers and three-dimensional culture systems. To achieve overexpression, TGF-β1 was transfected by adenovirus infection, using the LacZ gene as a control. TGF-β1 protein expression was analyzed by western blotting. Quantitative DNA fluorometric analysis evaluated cell proliferation, and quantitative reverse transcriptase PCR determined the mRNA expression of related chondrocyte marker genes. Western blotting and glycosaminoglycan quantitative testing were used to examine changes in extracellular matrix components. RESULTS TGF-β1 protein expression was found to increase in Adv-TGF-β1-transduced cells, reaching a maximum after chondrocytes had been cultured for 4 weeks. Adv-hTGF-β1 transduction altered chondrocyte morphology from fibrocyte-like long spindle-shaped to round or oval. TGF-β1-transduced cells showed an increase in DNA synthesis, glycosaminoglycan content, and increased aggrecan and collagen II protein expression, while collagen I was significantly decreased. Moreover, TGF-β1 overexpression significantly promoted the mRNA expression of the chondrogenic gene SOX9, and inhibited that of the hypertrophic marker COL10A1 and the mineralization marker MMP-13. CONCLUSIONS TGF-β1 overexpression positively improved the phenotype, function, and proliferation of chondrocytes, even after several generations.
Collapse
|
21
|
A comprehensive transcriptomic analysis of differentiating embryonic stem cells in response to the overexpression of Mesogenin 1. Aging (Albany NY) 2016; 8:2324-2336. [PMID: 27713115 PMCID: PMC5115891 DOI: 10.18632/aging.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/22/2016] [Indexed: 11/25/2022]
Abstract
The mutation of somitogenesis protein Mesogenin 1 (Msgn1) has been widely used to study the direct link between somitogenesis and the development of an embryo. Several studies have used gene expression profiling of somitogenesis to identify the key genes in the process, but few have focused on the pathways involved and the coexpression patterns of associated pathways. Here we employed time-course microarray datasets of differentiating embryonic stem cells by overexpressing the transcription factor Msgn1 from the public database library of Gene Expression Omnibus (GEO). Then we applied gene set enrichment analysis (GSEA) to the datasets and performed candidate transcription factors selection. As a result, several significantly regulated pathways and transcription factors (TFs), as well as some of the specific signaling pathways, were identified during somitogenesis under Msgn1 overexpression, most of which had not been reported previously. Finally, significant core genes such as Hes1 and Notch1 as well as some of the TFs such as PPARs and FOXs were identified to construct coexpression networks of related pathways, the expression patterns of which had been validated by our following quantitative real-time PCR (qRT-PCR). The results of our study may help us better understand the molecular mechanisms of somitogenesis in mice at the genome-wide level.
Collapse
|
22
|
Choi HJ, Kwon S, Kim DW. A post-translational modification cascade employing HDAC9-PIASy-RNF4 axis regulates chondrocyte hypertrophy by modulating Nkx3.2 protein stability. Cell Signal 2016; 28:1336-1348. [DOI: 10.1016/j.cellsig.2016.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022]
|
23
|
Ham O, Lee CY, Kim R, Lee J, Oh S, Lee MY, Kim J, Hwang KC, Maeng LS, Chang W. Therapeutic Potential of Differentiated Mesenchymal Stem Cells for Treatment of Osteoarthritis. Int J Mol Sci 2015; 16:14961-78. [PMID: 26147426 PMCID: PMC4519882 DOI: 10.3390/ijms160714961] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, and irreversible degenerative joint disease. Conventional OA treatments often result in complications such as pain and limited activity. However, transplantation of mesenchymal stem cells (MSCs) has several beneficial effects such as paracrine effects, anti-inflammatory activity, and immunomodulatory capacity. In addition, MSCs can be differentiated into several cell types, including chondrocytes, osteocytes, endothelia, and adipocytes. Thus, transplantation of MSCs is a suggested therapeutic tool for treatment of OA. However, transplanted naïve MSCs can cause problems such as heterogeneous populations including differentiated MSCs and undifferentiated cells. To overcome this problem, new strategies for inducing differentiation of MSCs are needed. One possibility is the application of microRNA (miRNA) and small molecules, which regulate multiple molecular pathways and cellular processes such as differentiation. Here, we provide insight into possible strategies for cartilage regeneration by transplantation of differentiated MSCs to treat OA patients.
Collapse
Affiliation(s)
- Onju Ham
- Catholic Kwandong University International St. Mary's Hospital, Incheon 404-834, Korea.
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, 50 Yonsei-ro, Seodamun-gu, Seoul 120-759, Korea.
| | - Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Korea.
| | - Jihyun Lee
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Korea.
| | - Sekyung Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu 702-701, Korea.
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Korea.
| | - Ki-Chul Hwang
- Catholic Kwandong University International St. Mary's Hospital, Incheon 404-834, Korea.
| | - Lee-So Maeng
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, the Catholic University of Korea, College of Medicine, Incheon 403-720, Korea.
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Korea.
| |
Collapse
|