1
|
Wicaksono IA, Destiarani W, Romadhon SF, Nugraha BAP, Yusuf M, Milanda T, Amalia R. Transmembrane Prostate Androgen-Induced Protein 1 Molecular Modeling and Refinement Using Coarse-Grained Molecular Dynamics. ACS OMEGA 2025; 10:2712-2724. [PMID: 39895701 PMCID: PMC11780462 DOI: 10.1021/acsomega.4c08451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025]
Abstract
Transmembrane prostate androgen-induced protein 1 (TMEPAI), a type 1b transmembrane protein, is highly expressed in many types of cancer and is involved in cancer signaling pathways. TMEPAI affects the TGF-β, androgen receptor, Wnt, and MAPK/ERK signaling pathways. Although TMEPAI interactions are known, information about their structure is limited. This study performed TMEPAI structure prediction via a computational approach with template-free modeling using multiple Web server and refining with coarse-grained molecular dynamics to improve the understanding of its characterization, mechanism, and interactions, followed by intensive server-based validation. As a result, the predicted TMEPAI isoform structure was validated for all parameters, and the trRosetta server provided the most reliable predicted structure. This research is expected to provide preliminary scientific information about the TMEPAI structure prediction and apply it to develop targeted cancer therapy drugs.
Collapse
Affiliation(s)
- Imam Adi Wicaksono
- Department
of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Laboratory
of Translational Pharmaceutical Research, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Wanda Destiarani
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Shidqi Fajri Romadhon
- Department
of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Laboratory
of Translational Pharmaceutical Research, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Bagas Adi Prasetya Nugraha
- Department
of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Laboratory
of Translational Pharmaceutical Research, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Muhammad Yusuf
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research
Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Tiana Milanda
- Department
of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Riezki Amalia
- Department
of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Laboratory
of Translational Pharmaceutical Research, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Center
of
Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
2
|
Zhu Q, Wang Y, Liu Y, Yang X, Shuai Z. Prostate transmembrane androgen inducible protein 1 (PMEPA1): regulation and clinical implications. Front Oncol 2023; 13:1298660. [PMID: 38173834 PMCID: PMC10761476 DOI: 10.3389/fonc.2023.1298660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Prostate transmembrane androgen inducible protein 1 (PMEPA1) can promote or inhibit prostate cancer cell growth based on the cancer cell response to the androgen receptor (AR). Further, it can be upregulated by transforming growth factor (TGF), which downregulates transforming growth factor-β (TGF-β) signaling by interfering with R-Smad phosphorylation to facilitate TGF-β receptor degradation. Studies have indicated the increased expression of PMEPA1 in some solid tumors and its functioning as a regulator of multiple signaling pathways. This review highlights the multiple potential signaling pathways associated with PMEPA1 and the role of the PMEPA1 gene in regulating prognosis, including transcriptional regulation and epithelial mesenchymal transition (EMT). Moreover, the relevant implications in and outside tumors, for example, as a biomarker and its potential functions in lysosomes have also been discussed.
Collapse
Affiliation(s)
- Qicui Zhu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yaqian Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| |
Collapse
|
3
|
Li Y, Zhang Y, Li L, Zhang M, Song N, Zhao Q, Liu Z, Diao A. TMEPAI promotes degradation of the NF-κB signaling pathway inhibitory protein IκBα and contributes to tumorigenesis. Int J Biol Macromol 2023; 235:123859. [PMID: 36868334 DOI: 10.1016/j.ijbiomac.2023.123859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
The transmembrane prostate androgen-induced protein (TMEPAI) is known to be highly expressed in various types of cancer and promoted oncogenic abilities. However, the mechanisms whereby TMEPAI facilitates tumorigenesis are not fully understood. Here we reported that expression of TMEPAI activated the NF-κB signaling. TMEPAI showed direct interaction with NF-κB pathway inhibitory protein IκBα. Though ubiquitin ligase Nedd4 (neural precursor cell expressed, developmentally down-regulated 4) did not interact with IκBα directly, TMEPAI recruited Nedd4 for ubiquitination of IκBα, leading to IκBα degradation through the proteasomal and lysosomal pathway, and promoted activation of NF-κB signaling. Further study indicated NF-κB signaling is involved in TMEPAI-induced cell proliferation and tumor growth in immune deficient mice. This finding helps to further understand the mechanism of TMEPAI on tumorigenesis and suggests TMEPAI is potential target for cancer treatment.
Collapse
Affiliation(s)
- Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China.
| | - Yaxin Zhang
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Lu Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Mei Zhang
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Ning Song
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Qing Zhao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Zhenxing Liu
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Aipo Diao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China.
| |
Collapse
|
4
|
Wang CI, Chu PM, Chen YL, Lin YH, Chen CY. Chemotherapeutic Drug-Regulated Cytokines Might Influence Therapeutic Efficacy in HCC. Int J Mol Sci 2021; 22:ijms222413627. [PMID: 34948424 PMCID: PMC8707970 DOI: 10.3390/ijms222413627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the second leading cause of cancer-related mortality worldwide. Processes involved in HCC progression and development, including cell transformation, proliferation, metastasis, and angiogenesis, are inflammation-associated carcinogenic processes because most cases of HCC develop from chronic liver damage and inflammation. Inflammation has been demonstrated to be a crucial factor inducing tumor development in various cancers, including HCC. Cytokines play critical roles in inflammation to accelerate tumor invasion and metastasis by mediating the migration of immune cells into damaged tissues in response to proinflammatory stimuli. Currently, surgical resection followed by chemotherapy is the most common curative therapeutic regimen for HCC. However, after chemotherapy, drug resistance is clearly observed, and cytokine secretion is dysregulated. Various chemotherapeutic agents, including cisplatin, etoposide, and 5-fluorouracil, demonstrate even lower efficacy in HCC than in other cancers. Tumor resistance to chemotherapeutic drugs is the key limitation of curative treatment and is responsible for treatment failure and recurrence, thus limiting the ability to treat patients with advanced HCC. Therefore, the capability to counteract drug resistance would be a major clinical advancement. In this review, we provide an overview of links between chemotherapeutic agents and inflammatory cytokine secretion in HCC. These links might provide insight into overcoming inflammatory reactions and cytokine secretion, ultimately counteracting chemotherapeutic resistance.
Collapse
Affiliation(s)
- Chun-I Wang
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Correspondence: ; Tel./Fax: +886-6-2353535 (ext. 5329)
| |
Collapse
|
5
|
Qiu D, Hu J, Hu J, Yu A, Othmane B, He T, Ding J, Cheng X, Ren W, Tan X, Yu Q, Chen J, Zu X. PMEPA1 Is a Prognostic Biomarker That Correlates With Cell Malignancy and the Tumor Microenvironment in Bladder Cancer. Front Immunol 2021; 12:705086. [PMID: 34777336 PMCID: PMC8582246 DOI: 10.3389/fimmu.2021.705086] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate transmembrane protein androgen induced 1 (PMEPA1) has been reported to promote cancer progression, but the potential role of PMEPA1 in bladder cancer (BLCA) remains elusive. We assess the role of PMEPA1 in BLCA, via a publicly available database and in vitro study. PMEPA1 was identified from 107 differentially expressed genes (DEGs) to have prognostic value. GO, KEGG, and GSEA analysis indicated that PMEPA1 was involved in cancer progression and the tumor microenvironment (TME). Then bioinformatical analysis in TCGA, GEO, TIMER, and TISIDB show a positive correlation with the inflammation and infiltration levels of three tumor-infiltrating immune cells (TAMs, CAFs, and MDSCs) and immune/stromal scores in TME. Moreover, in vitro study revealed that PMEPA1 promotes bladder cancer cell malignancy. Immunohistochemistry and survival analysis shed light on PMEPA1 potential to be a novel biomarker in predicting tumor progression and prognosis. At last, we also analyzed the role of PMEPA1 in predicting the molecular subtype and the response to several treatment options in BLCA. We found that PMEPA1 may be a novel potential biomarker to predict the progression, prognosis, and molecular subtype of BLCA.
Collapse
Affiliation(s)
- Dongxu Qiu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Anze Yu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX, United States
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Tongchen He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ding
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xu Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Wenbiao Ren
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Xiyan Tan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoyan Yu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
PMEPA1/TMEPAI Is a Unique Tumorigenic Activator of AKT Promoting Proteasomal Degradation of PHLPP1 in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13194934. [PMID: 34638419 PMCID: PMC8508116 DOI: 10.3390/cancers13194934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Transmembrane prostate androgen-induced protein (TMEPAI), also known as PMEPA1, is highly expressed in many types of cancer and promotes oncogenic abilities. However, the mechanisms whereby TMEPAI facilitates tumorigenesis are not fully understood. We previously established TMEPAI-knockout (KO) cells from human triple-negative breast cancer (TNBC) cell lines and found that TMEPAI-KO cells showed reduced tumorigenic abilities. Here, we report that TMEPAI-KO cells upregulated the expression of pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) and suppressed AKT Ser473 phosphorylation, which was consistent with TCGA dataset analysis. Additionally, the knockdown (KD) of PHLPP1 in TMEPAI-KO cells partially but significantly rescued AKT Ser473 phosphorylation, as well as in vitro and in vivo tumorigenic activities, thus showing that TMEPAI functions as an oncogenic protein through the regulation of PHLPP1 subsequent to AKT activation. Furthermore, we demonstrated that TMEPAI PPxY (PY) motifs are essential for binding to NEDD4-2, an E3 ubiquitin ligase, and PHLPP1-downregulatory ability. Moreover, TMEPAI enhanced the complex formation of PHLPP1 with NEDD4-2 and PHLPP1 polyubiquitination, which leads to its proteasomal degradation. These findings indicate that the PY motifs of TMEPAI suppress the amount of PHLPP1 and maintain AKT Ser473 phosphorylation at high levels to enhance the tumorigenic potentiality of TNBC.
Collapse
|
7
|
Tan B, Chen Y, Xia L, Yu X, Peng Y, Zhang X, Yang Z. PMEPA1 facilitates non-small cell lung cancer progression via activating the JNK signaling pathway. Cancer Biomark 2021; 31:203-210. [PMID: 33896822 DOI: 10.3233/cbm-200966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Prostate transmembrane protein androgen-induced 1 (PMEPA1), a critical checkpoint of multiple signaling pathways, has been demonstrated to play a crucial role in various types of cancers. However, little is known about its function in non-small cell lung cancer (NSCLC). OBJECTIVE Our objective is to explore the function of PMEPA1 and its potential mechanisms in NSCLC progression. METHODS PMEPA1 expression and prognostic significance in adenocarcinoma of lung cancer (LUAD) and squamous cell carcinoma of lung cancer (LUSC) were determined using Gene Expression Profiling Interactive Analysis (GEPIA). Next, a series of cell assays were performed to examine whether overexpression or depletion of PMEPA1 affected the malignant behaviors of NSCLC H1299 cells, such as proliferation and migration. Luciferase reporter gene assays and SP600125 (a JNK inhibitor) were employed to ascertain the regulatory relationship between PMEPA1 and JNK. RESULTS PMEPA1 is overexpressed in LUAD and LUSC tissues and portends a worse prognosis for cancer patients. Gain and loss of function experiments demonstrated that PMEPA1 executes oncogenetic function in H1299 cells. Mechanism studies elucidated that PMEPA1 stimulated the transcriptional activity of the JNK pathway. CONCLUSION PMEPA1 increased the H1299 cell viability, proliferation, and migration which works, at least partially, by triggering the JNK activity. Hence, our findings support that the PMEPA1/JNK axis might be a promising therapeutic target for this challenging disease.
Collapse
|
8
|
Wang B, Zhong JL, Li HZ, Wu B, Sun DF, Jiang N, Shang J, Chen YF, Xu XH, Lu HD. Diagnostic and therapeutic values of PMEPA1 and its correlation with tumor immunity in pan-cancer. Life Sci 2021; 277:119452. [PMID: 33831430 DOI: 10.1016/j.lfs.2021.119452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022]
Abstract
AIMS The prostate transmembrane protein, androgen induced 1 (PMEPA1) is differentially expressed in pan-cancer. However, PMEPA1 specific role in cancers has not been fully clarified. This study aims to explore the potential role of Pmepa1 in pan-cancer and specific cancer, with a view to deepening the research on the pathological mechanism of cancer. MAIN METHODS The Perl language and R language were used to identify the correlation between PMEPA1 expression level and clinical indicators, prognosis values, tumor microenvironment, immune cells' infiltration, immune checkpoint genes, TMB and MSI. The Therapeutic Target Database was used for identifying potential therapeutic drugs that target the pathways that are significantly affected by PMEPA1 expression. KEY FINDINGS PMEPA1 differential expression significantly correlated with patients' age, race, tumors' stage and status. PMEPA1 high expression was closely correlated with poor prognosis in many cancer types, excluding prostate adenocarcinoma. PMEPA1 expression was closely related to tumor cells and the immune microenvironment in stromal and immune cells' level, immune cells' infiltration, immune checkpoint genes, tumor mutational burden and microsatellite instability. We also found that the activity of the olfactory transduction pathway was closely related to PMEPA1 expression. In pan-cancer, Trifluoperazine and Halofantrine have the potential to reduce PMEPA1 expression. SIGNIFICANCE This study integrated existing data to explore PMEPA1 potential function in cancers, provided insights for the future cancer-related studies.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Jun-Long Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Hui-Zi Li
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Di-Fang Sun
- Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Ning Jiang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Jie Shang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Yu-Feng Chen
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
| | - Xiang-He Xu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| | - Hua-Ding Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China.
| |
Collapse
|
9
|
Sharad S, Dobi A, Srivastava S, Srinivasan A, Li H. PMEPA1 Gene Isoforms: A Potential Biomarker and Therapeutic Target in Prostate Cancer. Biomolecules 2020; 10:biom10091221. [PMID: 32842649 PMCID: PMC7565192 DOI: 10.3390/biom10091221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
The identification of prostate transmembrane protein androgen induced 1 (PMEPA1), an androgen responsive gene, came initially from the studies of androgen regulatory gene networks in prostate cancer. It was soon followed by the documentation of the expression and functional analysis of transmembrane prostate androgen-induced protein (TMEPAI)/PMEPA1 in other solid tumors including renal, colon, breast, lung, and ovarian cancers. Further elucidation of PMEPA1 gene expression and sequence analysis revealed the presence of five isoforms with distinct extracellular domains (isoforms a, b, c, d, and e). Notably, the predicted amino acid sequences of PMEPA1 isoforms show differences at the N-termini, a conserved membrane spanning and cytoplasmic domains. PMEPA1 serves as an essential regulator of multiple signaling pathways including androgen and TGF-β signaling in solid tumors. Structure-function studies indicate that specific motifs present in the cytoplasmic domain (PY, SIM, SH3, and WW binding domains) are utilized to mediate isoform-specific functions through interactions with other proteins. The understanding of the “division of labor” paradigm exhibited by PMEPA1 isoforms further expands our knowledge of gene’s multiple functions in tumorigenesis. In this review, we aim to summarize the most recent advances in understanding of PMEPA1 isoform-specific functions and their associations with prostate cancer progression, highlighting the potentials as biomarker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| | - Albert Dobi
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Hua Li
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD 20817, USA; (A.D.); (S.S.); (A.S.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| |
Collapse
|
10
|
Puteri MU, Watanabe Y, Wardhani BWK, Amalia R, Abdelaziz M, Kato M. PMEPA1/TMEPAI isoforms function via its PY and Smad-interaction motifs for tumorigenic activities of breast cancer cells. Genes Cells 2020; 25:375-390. [PMID: 32181976 DOI: 10.1111/gtc.12766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
PMEPA1 (prostate transmembrane protein, androgen-induced 1)/TMEPAI (transmembrane prostate androgen-induced protein) is highly expressed in diverse cancers, including breast, lung and prostate cancers. It consists of four isoforms with distinct extracellular regions (isoforms a-d). The expression and function of these isoforms are still poorly understood. Hence, we aimed to identify the preferentially expressed isoforms in breast cancer cells and analyze possible differences in tumorigenic functions. In this study, we used 5' Rapid Amplification of cDNA Ends (RACE) and Western blot analyses to identify the mRNA variants and protein isoforms of TMEPAI and found that TMEPAI isoform d as the major isoform expressed by TGF-β stimulation in breast cancer cells. We then generated CRISPR/Cas9-mediated TMEPAI knockout (KO) breast cancer cell lines and used a lentiviral expression system to complement each isoform individually. Although there were no clear functional differences between isoforms, double PPxY (PY) motifs and a Smad-interaction motif (SIM) of TMEPAI were both essential for colony and sphere formation. Collectively, our results provide a novel insight into TMEPAI isoforms in breast cancer cells and showed that coordination between double PY motifs and a SIM of TMEPAI are essential for colony and sphere formation but not for monolayer cell proliferation.
Collapse
Affiliation(s)
- Meidi U Puteri
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Bantari W K Wardhani
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctoral Program in Biomedicine, Faculty of Medicine, Universitas Indonesia, Jakarta Pusat, Indonesia
| | - Riezki Amalia
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Jawa Barat, Indonesia
| | - Mohammed Abdelaziz
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Pathology, Faculty of Medicine, Sohag University, Nasr City, Egypt
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Sharad S, Dillman AA, Sztupinszki ZM, Szallasi Z, Rosner I, Cullen J, Srivastava S, Srinivasan A, Li H. Characterization of unique PMEPA1 gene splice variants (isoforms d and e) from RNA Seq profiling provides novel insights into prognostic evaluation of prostate cancer. Oncotarget 2020; 11:362-377. [PMID: 32064040 PMCID: PMC6996919 DOI: 10.18632/oncotarget.27406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer is a disease with heterogeneity of multiple gene transcriptomes and biological signaling pathways involved in tumor development. The prostate transmembrane protein, androgen induced 1 (PMEPA1), a multifunctional protein played critical roles in prostate tumorigenesis. The pleiotropic nature of PMEPA1 in modulating androgen and TGF-β signaling as well as splice variants mechanisms for functional regulations of cancer-associated genes prompted us to investigate the biological roles of PMEPA1 isoforms in prostate cancer. In addition to 4 reported PMEPA1 isoforms (a, b, c and d), one novel isoform PMEPA1-e was identified with RNA Seq analysis of hormone responsive VCaP, LNCaP cells and human prostate cancer samples from The Cancer Genome Atlas (TCGA) dataset. We analyzed the structures, expressions, biological functions and clinical relevance of PMEPA1-e isoform and less characterized isoforms c and d in the context of prostate cancer and AR/TGF-β signaling. The expression of PMEPA1-e was induced by androgen and AR. In contrast, PMEPA1-d was responsive to TGF-β and inhibited TGF-β signaling. Both PMEPA1-d and PMPEA1-e promoted the growth of androgen independent prostate cancer cells. Although PMEPA1-c was responsive to TGF-β, it was found to have no impacts on cell growth and androgen/TGF-β signaling. The TCGA data analysis from 499 patients showed higher expression ratios of PMEAP1-b versus -d or -e strongly associated with enhanced Gleason score. Taken together, our findings first time defined the prostate tumorigenesis mediated by PMEPA1-d and -e isoforms, providing novel insights into the new strategies for prognostic evaluation and therapeutics of prostate tumor.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA.,These authors contributed equally to this work
| | - Allissa Amanda Dillman
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | | | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark.,Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.,SE-NAP Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, 1085, Hungary
| | - Inger Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Urology Service, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, 20817, USA
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, 20814, USA.,These authors contributed equally to this work
| |
Collapse
|
12
|
Wardhani BW, Puteri MU, Watanabe Y, Louisa M, Setiabudy R, Kato M. TGF-β-Induced TMEPAI Attenuates the Response of Triple-Negative Breast Cancer Cells to Doxorubicin and Paclitaxel. J Exp Pharmacol 2020; 12:17-26. [PMID: 32158279 PMCID: PMC6986256 DOI: 10.2147/jep.s235233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is a refractory type of breast cancer with poor prognosis and limited choice for treatment. Previous studies had shown that TNBC has high expressions of transmembrane prostate androgen-induced protein (TMEPAI). TMEPAI was known to be induced by TGF-β/Smad signaling and have tumorigenic functions that converting TGF-β from tumor suppressor to tumor promoter and inducing epithelial–mesenchymal transition (EMT). Therefore, we aimed to define the role of TMEPAI in triple-negative breast cancer cells treatment using several anti-cancers in the presence of TGF-β. Methods TMEPAI-knock out (KO) was carried out in a triple-negative breast cancer cell, BT549. TMEPAI editing was developed using the CRISPR-Cas9 system using two combinations of sgRNA to remove exon 4 of the TMEPAI gene entirely. Genotyping and proteomic analysis were performed to check the establishment of the TMEPAI-KO cells. Wild type (WT) and KO cells were used to determine inhibitory concentration 50% (IC50) of several anti-cancers: doxorubicin, cisplatin, paclitaxel, and bicalutamide in the presence of TGF-β treatment. Results KO cells were successfully established by completely removing the TMEPAI gene, which was proven in genomic and proteomic analysis. Further, in TMEPAI-KO cells, we found a significant reduction of IC50 for doxorubicin and paclitaxel, and minimal effects were seen for cisplatin and bicalutamide. Our findings suggest that TGF-β-induced TMEPAI attenuates the response of TNBC to doxorubicin and paclitaxel, but not to cisplatin and bicalutamide. Conclusion TGF-β induced TMEPAI contributes to the reduced response of TNBC treatment to doxorubicin and paclitaxel, but minimal on cisplatin and bicalutamide. Further study is needed to confirm our findings in other growth factor-induced cells, as well as in in vivo model.
Collapse
Affiliation(s)
- Bantari Wk Wardhani
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Meidi Utami Puteri
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Rianto Setiabudy
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Sharad S, Sztupinszki ZM, Chen Y, Kuo C, Ravindranath L, Szallasi Z, Petrovics G, Sreenath TL, Dobi A, Rosner IL, Srinivasan A, Srivastava S, Cullen J, Li H. Analysis of PMEPA1 Isoforms ( a and b) as Selective Inhibitors of Androgen and TGF-β Signaling Reveals Distinct Biological and Prognostic Features in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121995. [PMID: 31842254 PMCID: PMC6966662 DOI: 10.3390/cancers11121995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
Dysfunctions of androgen/TGF-β signaling play important roles in prostate tumorigenesis. Prostate Transmembrane Protein Androgen Induced 1 (PMEPA1) inhibits androgen and TGF-β signaling via a negative feedback loop. The loss of PMEPA1 confers resistance to androgen signaling inhibitors and promotes bone metastasis. Conflicting reports on the expression and biological functions of PMEPA1 in prostate and other cancers propelled us to investigate isoform specific functions in prostate cancer (PCa). One hundred and twenty laser capture micro-dissection matched normal prostate and prostate tumor tissues were analyzed for correlations between quantitative expression of PMEPA1 isoforms and clinical outcomes with Q-RT-PCR, and further validated with a The Cancer Genome Atlas (TCGA) RNA-Seq dataset of 499 PCa. Cell proliferation was assessed with cell counting, plating efficiency and soft agar assay in androgen responsive LNCaP and TGF-β responsive PC3 cells. TGF-β signaling was measured by SMAD dual-luciferase reporter assay. Higher PMEPA1-a mRNA levels indicated biochemical recurrence (p = 0.0183) and lower PMEPA1-b expression associated with metastasis (p = 0.0173). Further, lower PMEPA1-b and a higher ratio of PMEPA1-a vs. -b were correlated to higher Gleason scores and lower progression free survival rate (p < 0.01). TGF-β-responsive PMEPA1-a promoted PCa cell growth, and androgen-responsive PMEPA1-b inhibited cancer cell proliferation. PMEPA1 isoforms -a and -b were shown to be promising candidate biomarkers indicating PCa aggressiveness including earlier biochemical relapse and lower disease specific life expectancy via interrupting androgen/TGF-β signaling.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| | | | - Yongmei Chen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Claire Kuo
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (Z.M.S.); (Z.S.)
- Computational Health Informatics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- SE-NAP Brain Metastasis Research group, 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Taduru L. Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Inger L. Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Department of Urology, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20817, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Drive, Suite 300, Bethesda, MD 20817, USA; (Y.C.); (C.K.); (L.R.); (G.P.); (T.L.S.); (A.D.); (I.L.R.); (A.S.); (J.C.)
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Suite 100, Bethesda, MD 20817, USA
- Correspondence: (S.S.); (H.L.); Tel.: +1-240-694-4931 (S.S.); +1-240-694-4944 (H.L.)
| |
Collapse
|
14
|
Abdelaziz M, Watanabe Y, Kato M. PMEPA1/TMEPAI knockout impairs tumour growth and lung metastasis in MDA-MB-231 cells without changing monolayer culture cell growth. J Biochem 2019; 165:411-414. [PMID: 30873542 DOI: 10.1093/jb/mvz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/13/2019] [Indexed: 11/14/2022] Open
Abstract
Prostate transmembrane protein androgen-induced 1 (PMEPA1)/transmembrane prostate androgen-induced protein (TMEPAI), a direct target and a negative regulator of transforming growth factor beta signalling, has an oncogenic role in many cancers. We observed that knockout (KO) of PMEPA1 in human breast cancer cell line MDA-MB-231 using a CRISPR-Cas9 system resulted in reduction of in vivo tumour growth and lung metastasis but not of in vitro monolayer growth capacity of these KO cell lines. This phenomenon was associated with PMEPA1 KO-mediated downregulation of the key proangiogenic factors vascular endothelial growth factor alpha (VEGFA) and interleukin-8 (IL8) that are essential for in vivo but not in vitro growing cells and are also substantial for initiation of lung metastasis.
Collapse
Affiliation(s)
- Mohammed Abdelaziz
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.,Department of Pathology, Faculty of Medicine, Sohag University, Nasr City, Eastern Avenue, Sohag, Egypt
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Zhang L, Wang X, Lai C, Zhang H, Lai M. PMEPA1 induces EMT via a non-canonical TGF-β signalling in colorectal cancer. J Cell Mol Med 2019; 23:3603-3615. [PMID: 30887697 PMCID: PMC6484414 DOI: 10.1111/jcmm.14261] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/27/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
Prostate transmembrane protein androgen induced 1 (PMEPA1) has been reported to promote cancer progression. Metastasis is the main factor leading to cancer progression and poor prognosis, and at the beginning of metastasis, epithelial‐to‐mesenchymal transition (EMT) is a crucial activation. However, the relationship between PMEPA1 and EMT in colorectal cancer metastasis is still poorly understood. In this study, we first testified that PMEPA1 expresses higher in tumour than normal tissue in Gene Expression Omnibus database, in the Cancer Genome Atlas (TCGA) as well as in the clinical data we collected. Moreover, the higher expression was associated with poor prognosis. We furthermore demonstrated PMEPA1 promotes colorectal cancer metastasis and EMT in vivo and in vitro. We found that PMEPA1 activates the bone morphogenetic proteins (BMP) signalling of TGF‐β signalling resulting in promoting EMT and accelerating the proliferation and metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Lei Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xue Wang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chong Lai
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Maode Lai
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Amalia R, Abdelaziz M, Puteri MU, Hwang J, Anwar F, Watanabe Y, Kato M. TMEPAI/PMEPA1 inhibits Wnt signaling by regulating β-catenin stability and nuclear accumulation in triple negative breast cancer cells. Cell Signal 2019; 59:24-33. [PMID: 30890370 DOI: 10.1016/j.cellsig.2019.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 11/17/2022]
Abstract
Transmembrane prostate androgen-induced protein (TMEPAI) is a type I transmembrane protein induced by several intracellular signaling pathways such as androgen, TGF-β, EGF, and Wnt signaling. It has been reported that TMEPAI functions to suppress TGF-β and androgen signaling but here, we report a novel function of TMEPAI in Wnt signaling suppression. First, we show that TMEPAI significantly inhibits TCF/LEF transcriptional activity stimulated by Wnt3A, LiCl, and β-catenin. Mechanistically, TMEPAI overexpression prevented β-catenin accumulation in the nucleus and TMEPAI knockout in triple negative breast cancer cell lines promoted β-catenin stability and nuclear accumulation together with increased mRNA levels of Wnt target genes AXIN2 and c-MYC. The presence of TGF-β type I receptor kinase inhibitor did not affect the enhanced mRNA expression of AXIN2 in TMEPAI knockout cells. These data suggest that TMEPAI suppresses Wnt signaling by interfering with β-catenin stability and nuclear translocation in a TGF-β signaling-independent manner.
Collapse
Affiliation(s)
- Riezki Amalia
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM. 21, Jatinangor, Jawa Barat 45-363, Indonesia
| | - Mohammed Abdelaziz
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Pathology, Faculty of Medicine, Sohag University, Nasr City, Eastern Avenue, Sohag 82749, Egypt
| | - Meidi Utami Puteri
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Jongchan Hwang
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Femmi Anwar
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM. 21, Jatinangor, Jawa Barat 45-363, Indonesia
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
17
|
Itoh S, Itoh F. TMEPAI family: involvement in regulation of multiple signalling pathways. J Biochem 2018; 164:195-204. [DOI: 10.1093/jb/mvy059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/25/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| |
Collapse
|
18
|
Du Y, Liu Y, Xu Y, Juan J, Zhang Z, Xu Z, Cao B, Wang Q, Zeng Y, Mao X. The transmembrane protein TMEPAI induces myeloma cell apoptosis by promoting degradation of the c-Maf transcription factor. J Biol Chem 2018; 293:5847-5859. [PMID: 29467225 DOI: 10.1074/jbc.ra117.000972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/14/2018] [Indexed: 11/06/2022] Open
Abstract
TMEPAI (transmembrane prostate androgen-induced protein, also called prostate transmembrane protein, androgen-induced 1 (PMEPA1)) is a type I transmembrane (TM) protein, but its cellular function is largely unknown. Here, studying factors influencing the stability of c-Maf, a critical transcription factor in multiple myeloma (MM), we found that TMEPAI induced c-Maf degradation. We observed that TMEPAI recruited NEDD4 (neural precursor cell expressed, developmentally down-regulated 4), a WW domain-containing ubiquitin ligase, to c-Maf, leading to its degradation through the proteasomal pathway. Further investigation revealed that TMEPAI interacts with NEDD4 via its conserved PY motifs. Alanine substitution or deletion of these motifs abrogated the TMEPAI complex formation with NEDD4, resulting in failed c-Maf degradation. Functionally, TMEPAI suppressed the transcriptional activity of c-Maf. Of note, increased TMEPAI expression was positively associated with the overall survival of MM patients. Moreover, TMEPAI was down-regulated in MM cells, and re-expression of TMEPAI induced MM cell apoptosis. In conclusion, this study highlights that TMEPAI decreases c-Maf stability by recruiting the ubiquitin ligase NEDD4 to c-Maf for proteasomal degradation. Our findings suggest that the restoration of functional TMEPA1 expression may represent a promising complementary therapeutic strategy for treating patients with MM.
Collapse
Affiliation(s)
- Yanyun Du
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yan Liu
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujia Xu
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiaxiang Juan
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zubin Zhang
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuan Xu
- the Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215100, China
| | - Biyin Cao
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qi Wang
- the Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou 215100, China, and
| | - Xinliang Mao
- From the Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China, .,the Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
19
|
Yan X, Xiong X, Chen YG. Feedback regulation of TGF-β signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:37-50. [PMID: 29228156 DOI: 10.1093/abbs/gmx129] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs.
Collapse
Affiliation(s)
- Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Wardhani BW, Puteri MU, Watanabe Y, Louisa M, Setiabudy R, Kato M. Knock-out transmembrane prostate androgen-induced protein gene suppressed triple-negative breast cancer cell proliferation. MEDICAL JOURNAL OF INDONESIA 2017. [DOI: 10.13181/mji.v26i3.1823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Background: Triple negative breast cancer (TNBC) tends to grow more rapidly and has poorer prognosis compared to others. High expression of transmembrane prostate androgen-induced protein (TMEPAI) correlates with poor prognosis in TNBC patients. However, the mechanistic role of TMEPAI in tumorigenic remains unknown. This study aimed to knock-out TMEPAI in TNBC cell line to determine its function further in cells proliferation.Methods: CRISPR-Cas9 has been used previously to knock-out TMEPAI in Hs857T TNBC cell line. Hs587T TNBC parental cell line (wild-type/WT) and TMEPAI knock out Hs 586T cell lines were cultured in Dulbecco’s modified eagle medium (DMEM) supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin and amphotericin B. Both cell lines were seeded in 24-well plates and counted every two days, then proliferation rates were plotted. Afterwards, total RNA were isolated from the cells and Ki-67, and TGF-β mRNA expression levels as proliferation markers were determined.Results: Cell proliferation rates as displayed in growth curve plots showed that WT-TMEPAI cell line grew more rapidly than KO-TMEPAI. In accordance, mRNA expression levels of Ki-67 and TGF-β were significantly decreased KO-TMEPAI as compare to TMEPAI-WT.Conclusion: Knock-out of TMEPAI attenuates cell proliferation in TNBC.
Collapse
|
21
|
Development of Novel Monoclonal Antibodies for Evaluation of Transmembrane Prostate Androgen-Induced Protein 1 (TMEPAI) Expression Patterns in Gastric Cancer. Pathol Oncol Res 2017; 24:427-438. [DOI: 10.1007/s12253-017-0247-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
|
22
|
TMEPAI increases lysosome stability and promotes autophagy. Int J Biochem Cell Biol 2016; 76:98-106. [DOI: 10.1016/j.biocel.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/20/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
|