1
|
Müller L, Hatzfeld M. Emerging functions of Plakophilin 4 in the control of cell contact dynamics. Cell Commun Signal 2025; 23:109. [PMID: 40001215 PMCID: PMC11863852 DOI: 10.1186/s12964-025-02106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Plakophilin 4 (PKP4, also called p0071) is a unique armadillo family protein localized at adherens junctions that acts as a scaffold protein capable of clustering cadherins. PKP4 also regulates cadherin recycling which is vital to enable junction dynamics. In addition, PKP4 controls the mechanical properties of cells by regulating actin filament organization through small Rho-GTPases. In this setting, PKP4 controls the localization and activity of specific guanine exchange factors (GEFs) and of their opponents, the GTPase activating proteins (GAPs). Through the formation of multiprotein complexes with Rho-GTPases, their regulators and their effectors, PKP4 controls the spatio-temporal activity of Rho signaling to regulate cell adhesion and cell mechanics. In keratinocytes, PKP4 prevents differentiation and at the same time dampens proliferation. This is, in part achieved through an interaction with the Hippo pathway, which controls the activity of the transcriptional co-factors YAP and TAZ. In a feedback loop, YAP/TAZ modulate PKP4 localization and function. Here, we review the various functions of PKP4 in cell signaling, cell mechanics, cell adhesion and growth control. We discuss how these functions converge in the regulation of cell adhesion dynamics to allow cells to adapt to their changing environment and enable proliferation, delamination but, at the same time, guarantee cell barrier function.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Section for RNA biology and Pathogenesis, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany.
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Section for Pathobiochemistry, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| |
Collapse
|
2
|
Dugrenot E, Guernec A, Orsat J, Guerrero F. Gene expression of Decompression Sickness-resistant rats through a miRnome/transcriptome crossed approach. Commun Biol 2024; 7:1245. [PMID: 39358457 PMCID: PMC11446962 DOI: 10.1038/s42003-024-06963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Susceptibility to decompression sickness (DCS) is characterized by a wide inter-individual variability, the origins of which are still poorly understood. We selectively bred rats with at least a 3-fold greater resistance to DCS than standard rats after 6 generations. In order to better understand DCS mechanisms, we compared the static genome expression of these resistant rats from the 10th generation to their counterparts of the initial non-resistant Wistar strain, by a microarray transcriptomic approach coupled and crossed with a PCR plates miRnome study. Thus, we identified differentially expressed genes on selected males and females, as well as gender differences in those genes, and we crossed these transcripts with the respective targets of the differentially expressed microRNAs. Our results highlight pathways involved in inflammatory responses, circadian clock, cell signaling and motricity, phagocytosis or apoptosis, and they confirm the importance of inflammation in DCS pathophysiology.
Collapse
Affiliation(s)
- Emmanuel Dugrenot
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France.
- Tek Diving SAS, Brest, France.
- Divers Alert Network, Durham, NC, USA.
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC, USA.
| | - Anthony Guernec
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| | - Jérémy Orsat
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| | - François Guerrero
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| |
Collapse
|
3
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
4
|
Giorgio ED, Cutano V, Minisini M, Tolotto V, Dalla E, Brancolini C. A regulative epigenetic circuit supervised by HDAC7 represses IGFBP6 and IGFBP7 expression to sustain mammary stemness. Epigenomics 2021; 13:683-698. [PMID: 33878891 DOI: 10.2217/epi-2020-0347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: In the breast, the pleiotropic epigenetic regulator HDAC7 can influence stemness. Materials & Methods: The authors used MCF10 cells knocked-out for HDAC7 to explore the contribution of HDAC7 to IGF1 signaling. Results: HDAC7 buffers H3K27ac levels at the IGFBP6 and IGFBP7 genomic loci and influences their expression. In this manner, HDAC7 can tune IGF1 signaling to sustain stemness. In HDAC7 knocked-out cells, RXRA promotes the upregulation of IGFBP6/7 mRNAs. By contrast, HDAC7 increases FABP5 expression, possibly through repression of miR-218. High levels of FABP5 can reduce the delivery of all-trans-retinoic acid to RXRA. Accordingly, the silencing of FABP5 increases IGFBP6 and IGFBP7 expression and reduces mammosphere generation. Conclusion: The authors propose that HDAC7 controls the uptake of all-trans-retinoic acid, thus influencing RXRA activity and IGF1 signaling.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| | - Valentina Cutano
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| | - Vanessa Tolotto
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| |
Collapse
|
5
|
Gao Y, Yan Y, Fang Q, Zhang N, Kumar G, Zhang J, Song LJ, Yu J, Zhao L, Zhang HT, Ma CG. The Rho kinase inhibitor fasudil attenuates Aβ 1-42-induced apoptosis via the ASK1/JNK signal pathway in primary cultures of hippocampal neurons. Metab Brain Dis 2019; 34:1787-1801. [PMID: 31482248 DOI: 10.1007/s11011-019-00487-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a chronic, progressive, neurodegenerative disorder, is the most common type of dementia. Beta amyloid (Aβ) peptide aggregation and phosphorylated tau protein accumulation are considered as one of the causes for AD. Our previous studies have demonstrated the neuroprotective effect of the Rho kinase inhibitor fasudil, but the mechanism remains elucidated. In the present study, we examined the effects of fasudil on Aβ1-42 aggregation and apoptosis and identified the intracellular signaling pathways involved in these actions in primary cultures of mouse hippocampal neurons. The results showed that fasudil increased neurite outgrowth (52.84%), decreased Aβ burden (46.65%), Tau phosphorylation (96.84%), and ROCK-II expression. In addition, fasudil reversed Aβ1-42-induced decreased expression of Bcl-2 and increases in caspase-3, cleaved-PARP, phospho-JNK(Thr183/Tyr185), and phospho-ASK1(Ser966). Further, fasudil decreased mitochondrial membrane potential and intracellular calcium overload in the neurons treated with Aβ1-42. These results suggest that inhibition of Rho kinase by fasudil reverses Aβ1-42-induced neuronal apoptosis via the ASK1/JNK signal pathway, calcium ions, and mitochondrial membrane potential. Fasudil could be a drug of choice for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ye Gao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Yuqing Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
| | - Qingli Fang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Nianping Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Gajendra Kumar
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
- Bio-Signal technologies (HK) Limited, 9th Floor, Amtel Building,148 Des Voeux Road Central, Central, Hong Kong
| | - Jihong Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Linhu Zhao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, the Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.
| |
Collapse
|
6
|
Kiss A, Erdődi F, Lontay B. Myosin phosphatase: Unexpected functions of a long-known enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:2-15. [PMID: 30076859 DOI: 10.1016/j.bbamcr.2018.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 01/08/2023]
Abstract
Myosin phosphatase (MP) holoenzyme is a Ser/Thr specific enzyme, which is the member of protein phosphatase type 1 (PP1) family and composed of a PP1 catalytic subunit (PP1c/PPP1CB) and a myosin phosphatase targeting subunit (MYPT1/PPP1R12A). PP1c is required for the catalytic activity of the holoenzyme, while MYPT1 regulates MP through targeting the holoenzyme to its substrates. Above the well-characterized function of MP, as the major regulator of smooth muscle contractility mediating the dephosphorylation of 20 kDa myosin light chain, accumulating data support its role in other, non-contractile functions. In this review, we summarize the scaffold function of MP holoenzyme and its roles in processes such as cell cycle, development, gene expression regulation and neurotransmitter release. In particular, we highlight novel interacting proteins of MYPT1 and pathophysiological functions of MP relevant to tumorigenesis, insulin resistance and neurodegenerative disorders. This article is part of a Special Issue entitled: Protein Phosphatases as Critical Regulators for Cellular Homeostasis edited by Prof. Peter Ruvolo and Dr. Veerle Janssens.
Collapse
Affiliation(s)
- Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
7
|
The interplay between histone deacetylases and rho kinases is important for cancer and neurodegeneration. Cytokine Growth Factor Rev 2017; 37:29-45. [PMID: 28606734 DOI: 10.1016/j.cytogfr.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/24/2022]
Abstract
Rho associated coiled-coil containing kinases (ROCKs) respond to defined extra- and intracellular stimuli to control cell migration, cell proliferation, and apoptosis. Histone deacetylases (HDACs) are epigenetic modifiers that regulate nuclear and cytoplasmic signaling through the deacetylation of histones and non-histone proteins. ROCK and HDAC functions are important compounds of basic and applied research interests. Recent evidence suggests a physiologically important interplay between HDACs and ROCKs in various cells and organisms. Here we summarize the crosstalk between these enzymatic families and its implications for cancer and neurodegeneration.
Collapse
|
8
|
Compagnucci C, Barresi S, Petrini S, Billuart P, Piccini G, Chiurazzi P, Alfieri P, Bertini E, Zanni G. Rho Kinase Inhibition Is Essential During In Vitro Neurogenesis and Promotes Phenotypic Rescue of Human Induced Pluripotent Stem Cell-Derived Neurons With Oligophrenin-1 Loss of Function. Stem Cells Transl Med 2016; 5:860-9. [PMID: 27160703 DOI: 10.5966/sctm.2015-0303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/23/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED : Rho-GTPases have relevant functions in various aspects of neuronal development, such as differentiation, migration, and synaptogenesis. Loss of function of the oligophrenin-1 gene (OPHN1) causes X-linked intellectual disability with cerebellar hypoplasia and leads to hyperactivation of the rho kinase (ROCK) pathway. ROCK mainly acts through phosphorylation of the myosin phosphatase targeting subunit 1, triggering actin-myosin contractility. We show that during in vitro neurogenesis, ROCK activity decreases from day 10 until terminal differentiation, whereas in OPHN1-deficient human induced pluripotent stem cells (h-iPSCs), the levels of ROCK are elevated throughout differentiation. ROCK inhibition favors neuronal-like appearance of h-iPSCs, in parallel with transcriptional upregulation of nuclear receptor NR4A1, which is known to induce neurite outgrowth. This study analyzed the morphological, biochemical, and functional features of OPHN1-deficient h-iPSCs and their rescue by treatment with the ROCK inhibitor fasudil, shedding light on the relevance of the ROCK pathway during neuronal differentiation and providing a neuronal model for human OPHN1 syndrome and its treatment. SIGNIFICANCE The analysis of the levels of rho kinase (ROCK) activity at different stages of in vitro neurogenesis of human induced pluripotent stem cells reveals that ROCK activity decreases progressively in parallel with the appearance of neuronal-like morphology and upregulation of nuclear receptor NR4A1. These results shed light on the role of the ROCK pathway during early stages of human neurogenesis and provide a neuronal stem cell-based model for the treatment of OPHN1 syndrome and other neurological disorders due to ROCK dysfunction.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Sabina Barresi
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Stefania Petrini
- Research Laboratories, Confocal Microscopy Core Facility, and Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Pierre Billuart
- Department of Genetic and Development, Institut Cochin, Université Paris Descartes, Paris, France
| | - Giorgia Piccini
- Unit of Child Neuropsychiatry, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Pietro Chiurazzi
- Institute of Human and Medical Genetics, Catholic University, Rome, Italy
| | - Paolo Alfieri
- Unit of Child Neuropsychiatry, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|