1
|
Bhuia MS, Chowdhury R, Sonia FA, Kamli H, Shaikh A, El-Nashar HAS, El-Shazly M, Islam MT. Anticancer Potential of the Plant-Derived Saponin Gracillin: A Comprehensive Review of Mechanistic Approaches. Chem Biodivers 2023; 20:e202300847. [PMID: 37547969 DOI: 10.1002/cbdv.202300847] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
With the increasing prevalence of cancer and the toxic side effects of synthetic drugs, natural products are being developed as promising therapeutic approaches. Gracillin is a naturally occurring triterpenoid steroidal saponin with several therapeutic activities. It is obtained as a major compound from different Dioscorea species. This review was designated to summarize the research progress on the anti-cancer activities of gracillin focusing on the underlying cellular and molecular mechanisms, as well as its pharmacokinetic features. The data were collected (up to date as of May 1, 2023) from various reliable and authentic literatures comprising PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings demonstrated that gracillin displays promising anticancer effects through various molecular mechanisms, including anti-inflammatory effects, apoptotic cell death, induction of oxidative stress, cytotoxicity, induction of genotoxicity, cell cycle arrest, anti-proliferative effect, autophagy, inhibition of glycolysis, and blocking of cancer cell migration. Additionally, this review highlighted the pharmacokinetic features of gracillin, indicating its lower oral bioavailability. As a conclusion, it can be proposed that gracillin could serve as a hopeful chemotherapeutic agent. However, further extensive clinical research is recommended to establish its safety, efficacy, and therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ahmad Shaikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
2
|
Shen P, Shen X, Chen G, Zhao C, Cai H, Xu X, Duan Y, Wang X, Ju S. In silico and in vivo analysis of TIPE1 expression in diffuse large B cell lymphoma. Open Life Sci 2022; 17:1030-1037. [PMID: 36118167 PMCID: PMC9438966 DOI: 10.1515/biol-2022-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
TIPE1 is a gene in the TNFAIP8 family involved in immune regulation and tumorigenesis. Although previous studies demonstrated that TIPE1 might play different roles in different tumors, its expression and role in lymphoma are unclear. Here we observed TIPE1 expression in diffuse large B cell lymphoma (DLBCL). Two microarrays containing 96 tumor tissue specimens were obtained from the Affiliated Hospital of Nantong University biobank. All specimens came from patients with a clear pathological diagnosis of lymphoma, lymphadenitis, breast cancer, or bladder cancer, and we performed immunohistochemical experiments on these tissue specimens. GEPIA and TIMER platforms were used for bioinformatic analyses. We found higher TIPE1 expression in tumor tissues from patients with lymphoma compared with those with lymphadenitis, breast cancer, or bladder cancer. The GEPIA and TIMER analyses revealed that TIPE1 was upregulated in DLBCL tissues but not in invasive breast carcinoma, urothelial bladder carcinoma, or liver hepatocellular carcinoma tissues. TIPE1 expression was irrelevant for pathological stage, overall survival, or DLBCL immune infiltration levels. However, TIPE1 expression was correlated with MKI67 expression in DLBCL. Overall, TIPE1’s high expression levels in DLBCL may contribute to tumor growth in DLBCL.
Collapse
Affiliation(s)
- Pei Shen
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xianjuan Shen
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Guo Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Chunmei Zhao
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Hua Cai
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xinxin Xu
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xudong Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Shaoqing Ju
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Zhang H, Han WJ, Zhang ZL. The Importance of Tumor Necrosis Factor-α-Induced Protein-8 Like-2 in the Pathogenesis of Cervical Cancer and Preeclampsia via Regulation of Cell Invasion. TOHOKU J EXP MED 2022; 257:181-191. [PMID: 35418534 DOI: 10.1620/tjem.2022.j026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hong Zhang
- Department of Obstetrics, Yantaishan Hospital
| | - Wen-Jun Han
- Department of Gynecology, Qingdao Women and Children's Hospital
| | - Zhi-Lei Zhang
- Department of Gynecology, Qingdao Women and Children's Hospital
| |
Collapse
|
4
|
Bordoloi D, Harsha C, Padmavathi G, Banik K, Sailo BL, Roy NK, Girisa S, Thakur KK, Devi AK, Chinnathambi A, Alahmadi TA, Alharbi SA, Shakibaei M, Kunnumakkara AB. Loss of TIPE3 reduced the proliferation, survival and migration of lung cancer cells through inactivation of Akt/mTOR, NF-κB, STAT-3 signaling cascade. Life Sci 2022; 293:120332. [PMID: 35041835 DOI: 10.1016/j.lfs.2022.120332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Lung cancer is the foremost cause of cancer related mortality among men and one of the most fatal cancers among women. Notably, the 5-year survival rate of lung cancer is very less; 5% in developing countries. This low survival rate can be attributed to factors like late stage diagnosis, rapid postoperative recurrences in the patients undergoing treatment and development of chemoresistance against different agents used for treating lung cancer. Therefore, in this study we evaluated the potential of a recently identified protein namely TIPE3 which is known as a transfer protein of lipid second messengers as a lung cancer biomarker. TIPE3 was found to be significantly upregulated in lung cancer tissues indicating its role in the positive regulation of lung cancer. Supporting this finding, knockout of TIPE3 was also found to reduce the proliferation, survival and migration of lung cancer cells and arrested the G2 phase of cell cycle through inactivation of Akt/mTOR, NF-κB, STAT-3 signaling. It is well evinced that tobacco is the major risk factor of lung cancer which affects both males and females. Therefore, this study also evaluated the involvement of TIPE3 in tobacco mediated lung carcinogenesis. Notably, this study shows for the first time that TIPE3 positively regulates tobacco induced proliferation, survival and migration of lung cancer through modulation of Akt/mTOR signaling. Thus, TIPE3 plays critical role in the pathogenesis of lung cancer and hence it can be specifically targeted to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University, [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
5
|
Multiple Faces of the Glioblastoma Microenvironment. Int J Mol Sci 2022; 23:ijms23020595. [PMID: 35054779 PMCID: PMC8775531 DOI: 10.3390/ijms23020595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022] Open
Abstract
The tumor microenvironment is a highly dynamic accumulation of resident and infiltrating tumor cells, responsible for growth and invasion. The authors focused on the leading-edge concepts regarding the glioblastoma microenvironment. Due to the fact that the modern trend in the research and treatment of glioblastoma is represented by multiple approaches that target not only the primary tumor but also the neighboring tissue, the study of the microenvironment in the peritumoral tissue is an appealing direction for current and future therapies.
Collapse
|
6
|
Padmavathi G, Monisha J, Bordoloi D, Banik K, Roy NK, Girisa S, Singh AK, Longkumer I, Baruah MN, Kunnumakkara AB. Tumor necrosis factor-α induced protein 8 (TNFAIP8/TIPE) family is differentially expressed in oral cancer and regulates tumorigenesis through Akt/mTOR/STAT3 signaling cascade. Life Sci 2021; 287:120118. [PMID: 34740574 DOI: 10.1016/j.lfs.2021.120118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Highest incidence of oral cancer is reported in India with reduced survival rate in the advanced stages due to lack of effective biomarkers. Therefore, it is essential to develop novel biomarkers for the better management of this disease. In the current study, TNFAIP8/TIPE protein family comprising of four proteins is explored for its role in oral cancer. METHODS IHC analysis of oral cancer TMA and Western blot analysis of tobacco treated oral cancer cells were performed to determine the differential expression of TIPE proteins in oral cancer. Further, CRISPR/Cas9-mediated gene editing was done to generate TIPE proteins' knockouts and MTT, colony formation, wound healing, cell cycle and Western blot analysis were performed to determine the effect of gene knockouts on various cancer hallmarks and the associated molecular targets of TIPE proteins. RESULTS AND DISCUSSION IHC results revealed that expression of TIPE, TIPE2 and TIPE3 were upregulated and TIPE1 was downregulated in oral cancer tissues compared to normal tissues. Similar results were observed upon treating oral cancer cells with tobacco carcinogens. Furthermore, knockout of TIPE or TIPE2 or TIPE3 significantly reduced the survival, proliferation, colony formation and migration of oral cancer cells whereas knockout of TIPE1 had an opposite effect. Further, TIPE, TIPE2 and TIPE3 knockout-mediated inhibition of proliferation was associated with inhibition of cell cycle progression at S or G2/M phases, and downregulation of proteins involved in cancer progression. We found that TIPE, TIPE1 and TIPE2 proteins regulate oral cancer progression through modulation of Akt/mTOR signaling cascade, whereas TIPE3 acts through an Akt-independent mTOR/STAT3 pathway. CONCLUSION Collectively, the TIPE proteins were proved to play significant roles in the progression of oral cancer thus warranting research and clinic attention for their therapeutic and prognostic values and raising the importance of specific targeting of TIPE proteins in cancer treatment.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Javadi Monisha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Anuj Kumar Singh
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Imliwati Longkumer
- North-East Cancer Hospital and Research Institute, Guwahati 781023, Assam, India
| | | | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
7
|
Liu Y, Wang X, Wan L, Liu X, Yu H, Zhang D, Sun Y, Shi Y, Zhang L, Zhou H, Wang J, Wei Z. TIPE2 inhibits the migration and invasion of endometrial cells by targeting β-catenin to reverse epithelial-mesenchymal transition. Hum Reprod 2021; 35:1377-1390. [PMID: 32469403 DOI: 10.1093/humrep/deaa062] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Do changes in tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TIPE2) levels in endometrium of patients with adenomyosis alter the proliferation, migration and invasion ability of endometrial cells? SUMMARY ANSWER TIPE2 expression levels were low in eutopic and ectopic endometrium of adenomyosis patients, and TIPE2 inhibited the migration and invasion of endometrial cells, mainly by targeting β-catenin, to reverse the epithelial-mesenchymal transition (EMT). WHAT IS KNOWN ALREADY Adenomyosis is a benign disease, but it has some pathophysiological characteristics similar to the malignant tumor. TIPE2 is a novel negative immune regulatory molecule, and it also participates in the development of malignant tumors. STUDY DESIGN, SIZE, DURATION Control endometrium (n = 48 women with non-endometrial diseases) and eutopic/ectopic endometrium from patients with adenomyosis (n = 50), human endometrial cancer cell lines, and primary endometrial cells from the eutopic endometrium of adenomyosis patients were used in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS The expression level of TIPE2 mRNA and protein in the eutopic/ectopic endometrial tissues of adenomyosis patients and control endometrium was determined by quantitative RT-PCR (qRT-PCR), western blot and immunohistochemistry. The effects of TIPE2 overexpression and knockdown on the proliferation, migration and invasion of endometrial cell lines and primary adenomyotic endometrial cells were determined using a cell counting kit-8, 5-ethynyl-2'-deoxyuridine assay, colony-forming assay, transwell migration assay and matrigel invasion assay. The expression of EMT-related markers and signal molecules was detected by western blot. The interaction between TIPE2 and β-catenin was detected by co-immunoprecipitation and laser confocal microscopy. MAIN RESULTS AND THE ROLE OF CHANCE The mRNA and protein expression levels of TIPE2 in the eutopic and ectopic endometrial tissues of adenomyosis patients were significantly downregulated compared with the control endometrium (P ˂ 0.01). TIPE2 could bind to β-catenin and inhibit the nuclear translocation of β-catenin, downregulate the expression of stromal cell markers, upregulate the expression of glandular epithelial cell markers, decrease the occurrence of epithelial-mesenchymal transition (EMT) and suppress the migration and invasion of endometrial cells (P ˂ 0.01). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this study, the experiments were performed only in eutopic and ectopic endometrial tissues, endometrial cancer cell lines and primary adenomyotic endometrial cells. A mouse model of adenomyosis will be constructed to detect the effects of TIPE2 in vivo. WIDER IMPLICATIONS OF THE FINDINGS These results suggest that TIPE2 is involved in the development of adenomyosis, which provides a potential new diagnostic and therapeutic strategy for the treatment of adenomyosis. STUDY FUNDINGS/COMPETING INTEREST(S) This present study was supported by grants from the National Natural Science Foundation of China (81471437, 81771554), Natural Science Foundation of Shandong (ZR2018MH013), Science and technology development plan provided by Health and Family Planning Committee in Shandong (2014-25). The authors declare that they have no conflicts of interest.
Collapse
Affiliation(s)
- Yuqiu Liu
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China.,Department of Gynecology and Obstetrics, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, P. R. China.,Department of Gynecology and Obstetrics, Weifang Medical College, Weifang, Shandong, P. R. China
| | - Xiaoyan Wang
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Lu Wan
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Xihong Liu
- Department of Pathology, The Fourth People's Hospital of Jinan, Jinan, Shandong, P. R. China
| | - Huayun Yu
- Department of Gynecology and Obstetrics, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Derui Zhang
- Department of Gynecology and Obstetrics, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Yingshuo Sun
- Department of Gynecology and Obstetrics, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, P. R. China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Huaiyu Zhou
- Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Jianing Wang
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Zengtao Wei
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China.,Department of Gynecology and Obstetrics, Clinical Medical School, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
8
|
Sun Y, Cao S, Li Z, Liu X, Xu J, Tian Y, Shen S, Zhou Y. A novel prognostic factor TIPE2 inhibits cell proliferation and promotes apoptosis in pancreatic ductal adenocarcinoma (PDAC). Int J Med Sci 2021; 18:2051-2062. [PMID: 33850476 PMCID: PMC8040395 DOI: 10.7150/ijms.51497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a newly discovered negative immune regulator. Studies have shown that TIPE2 causes significant malignant biological effects and is differentially expressed in various malignant tumors. However, the expression and roles of TIPE2 in pancreatic ductal adenocarcinoma (PDAC) are largely unknown. Materials and Methods: The expression of TIPE2 in PDAC tissues was assessed by immunohistochemistry, qPCR and western blot analysis and related clinicopathological parameters including survival time were analyzed. After overexpression of TIPE2, cell proliferation and apoptosis analysis were conducted, and the associated underlying molecular mechanism was also explored. Results: In the present study, TIPE2 was upregulated in early PDAC tissues, and TIPE2 expression decreased as the tumor progressed (P<0.001). TIPE2 expression was negatively associated with tumor size, TNM stage and metastasis of lymph nodes. Furthermore, as an independent risk factor, TIPE2 could be used to predict the survival of patients with PDAC (P=0.035). TIPE2 overexpression significantly suppressed the viability, proliferation and induced apoptosis of PDAC cells by inhibiting survivin and increasing the activity of caspase3/7. Conclusions: For the first time, this study demonstrated that TIPE2 is an independent prognostic factor in PDAC. TIPE2 inhibited the proliferation and induced apoptosis via regulating survivin/caspase3/7 signaling pathway. These results indicated that TIPE2 is a potential biomarker for predicting the prognosis of PDAC patients and plays a pivotal role in the progression of PDAC.
Collapse
Affiliation(s)
- Yuqi Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Shougen Cao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Zequn Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xiaodong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jinxiang Xu
- Department of Hepatology, The First People's Hospital of Luoyang City, Luoyang, Henan, People's Republic of China
| | - Yulong Tian
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Shuai Shen
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Yanbing Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
9
|
Zhong M, Chen Z, Yan Y, Bahet A, Cai X, Chen H, Ran H, Qu K, Han Z, Zhuang G, Zhang S, Wang Y. Expression of TIPE family members in human colorectal cancer. Oncol Lett 2020; 21:118. [PMID: 33376549 PMCID: PMC7751461 DOI: 10.3892/ol.2020.12379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
The tumor necrosis factor α-induced protein 8 (TNFAIP8)-like (TIPE) protein family comprises four members, namely TNFAIP8, TIPE1, TIPE2 and TIPE3, which are involved in multiple processes in cancer. The current study aimed to investigate the expression patterns and potential clinical roles of the TIPE family members in human colorectal cancer (CRC). Paired tumor and adjacent tissue samples were collected from 49 patients with CRC, and the relative mRNA expression levels of the TIPE family members in these samples were evaluated by using reverse transcription-quantitative PCR, and the protein levels in five randomly selected pairs of tumor and adjacent tissue samples were detected by western blot analysis. The mRNA expression levels of the TIPE family members were significantly downregulated in CRC tumor tissues compared with those in the adjacent tissues; however, within each sample, TNFAIP8 and TIPE3 protein levels were only partially consistent with their mRNA levels. In addition, the mRNA expression levels between each pair of TIPE family members exhibited a positive linear relationship, and TIPE2 mRNA levels exhibited strong linear associations with those of TNFAIP8 and TIPE1. TNFAIP8 mRNA expression levels in tumor tissues were significantly associated with the tumor differentiation grade, and TIPE2 mRNA expression levels in tumor tissues were significantly associated with sex. TIPE1 and TIPE3 mRNA expression levels in tumor tissues exhibited no associations with patient clinicopathological characteristics. In addition, the mRNA expression patterns of the TIPE family members were analyzed using data from The Cancer Genome Atlas data set, and the results also demonstrated that TNFAIP8, TIPE2 and TIPE3 mRNA levels were downregulated in patients with colon adenocarcinoma compared with those in normal controls. These results provided evidence that the four members of the TIPE family may affect each other to mediate the carcinogenesis of CRC, and that TIPE2 may serve an important role in CRC.
Collapse
Affiliation(s)
- Mengya Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Zhijian Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yang Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Argen Bahet
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xin Cai
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Huiyu Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Honggang Ran
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Kaiyong Qu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Zhaopu Han
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Guohong Zhuang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Shifeng Zhang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China.,Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China.,Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, Fujian 361004, P.R. China
| | - Yinan Wang
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
10
|
Gu Z, Cui X, Sun P, Wang X. Regulatory Roles of Tumor Necrosis Factor-α-Induced Protein 8 Like-Protein 2 in Inflammation, Immunity and Cancers: A Review. Cancer Manag Res 2020; 12:12735-12746. [PMID: 33364825 PMCID: PMC7751774 DOI: 10.2147/cmar.s283877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α)-induced protein 8 (TNFAIP8/TIPE) family, including TNFAIP8 (TIPE), TNFAIP8 like-protein 1 (TNFAIP8L1/TIPE1), TNFAIP8 like-protein 2 (TNFAIP8L2/TIPE2), and TNFAIP8 like-protein 3 (TNFAIP8L3/TIPE3), plays a vital role in regulating inflammatory responses, immune homeostasis, and cancer development. Over the last decade, studies have shown that TIPE2 protein is differentially expressed in diverse cells and tissues. The dysregulation of TIPE2 protein can lead to dysregulation of inflammatory responses and immune homeostasis, and change the basic characteristics of cancers. In consideration of the immeasurable values of TIPE2 in diagnosis, treatment, and prognosis of various human diseases, this review will focus on the expression pattern, structure, and regulatory roles of TIPE2 in inflammation, immunity, and cancers.
Collapse
Affiliation(s)
- Zhengzhong Gu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xiaohan Cui
- Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
11
|
Zhao LL. TIPE2 suppresses progression and tumorigenesis of the oral tongue squamous cell carcinoma by regulating FoxP3 + regulatory T cells. J Bioenerg Biomembr 2020; 52:279-289. [PMID: 32594290 DOI: 10.1007/s10863-020-09840-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
To discover the effect of tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) on the oral tongue squamous cell carcinoma (OTSCC) via affecting FoxP3+ regulatory T (Treg) cells. Immunohistochemistry was conducted to examine TIPE2 and FoxP3 expressions in OTSCC tumor tissues and corresponding oral mucosa. Tca8113 cells were transfected with TIPE2/control lentiviral activation particles followed by the detection with qRT-PCR, Western blotting, MTT assay, Wound healing, Transwell assay and Annexin V-FITC/PI staining. In vivo experiment was carried out on the nude mice xenografts of OTSCC with TIPE2 overexpression to observe the tumor volume and survival, and the CD4+ T cell subgroups were detected by flow cytometry. TIPE2 was lower in the OTSCC tissues than the corresponding oral mucosa, which was correlated with T stage, N stage, TNM stage, and differentiation of patients. Patients with TIPE2-positive expression had worse prognosis and lower expression of FoxP3+ Treg cells than the negative ones. Furthermore, TIPE2 overexpression curbed proliferation, invasion and migration of Tca8113 cells, while cell apoptosis was increased. Besides, TIPE2 suppressed the tumor growth and extended the survival of OTSCC mice, with the decreased proportion of FoxP3+ Treg cells in the spleen and tumor-infiltrated lymphocytes (TILs). The clinical results showed the down-regulation of TIPE2 in OTSCC tissues. Meanwhile TIPE2 overexpression affected OTSCC cells biological behavior in vitro, as well as exhibited strong tumor-growth suppressive effects in vivo, which may be a potential therapeutic target in OTSCC via regulating FoxP3+ Treg cells.
Collapse
Affiliation(s)
- Li-Li Zhao
- Department of Stomatology, Caoxian people's Hospital, Heze City, 274400, Shandong Province, China.
| |
Collapse
|
12
|
TIPE2 suppressed cisplatin resistance by inducing autophagy via mTOR signalling pathway. Exp Mol Pathol 2020; 113:104367. [PMID: 31917287 DOI: 10.1016/j.yexmp.2020.104367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 12/13/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Tumour necrosis factor-α-induced protein-8-like-2 (TIPE2) has been associated with the progression of numerous cancers. Cisplatin, as a classical chemotherapy strategy for cancers, has been applied in non-small-cell lung cancer (NSCLC) clinical therapy but bears the disadvantage of chemoresistance. The aim of this study was to investigate the role of TIPE2 in cisplatin resistance and illustrate the detailed molecular mechanism. In this study, we proved that TIPE2 was down-regulated in cisplatin (DDP)-resistant NSCLC tissues and DDP-resistant NSCLC cells compared with the sensitive control. The inhibition of TIPE2 contributed to cell cisplatin-resistance, and the overexpression of TIPE2 enhanced cisplatin sensitivity and autophagy. Furthermore, increased TIPE2 elevated apoptosis in DDP-resistant NSCLC cells. In addition, TIPE2 restored the activity of mTOR signalling. Preconditioning with the mTOR activator 3BDO abrogated TIPE2-mediated depression in cisplatin-evoked autophagy. In conclusion, aberrant TIPE2 expression may contribute to the occurrence of chemoresistance by interfering with autophagy in NSCLC in an mTOR-dependent manner. TIPE2 could be used as a novel therapeutic target to overcome cisplatin-resistant NSCLC.
Collapse
|
13
|
Bordoloi D, Banik K, Padmavathi G, Vikkurthi R, Harsha C, Roy NK, Singh AK, Monisha J, Wang H, Kumar AP, Kunnumakkara AB. TIPE2 Induced the Proliferation, Survival, and Migration of Lung Cancer Cells Through Modulation of Akt/mTOR/NF-κB Signaling Cascade. Biomolecules 2019; 9:E836. [PMID: 31817720 PMCID: PMC6995575 DOI: 10.3390/biom9120836] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Lung cancer represents the most common cause of cancer deaths in the world, constituting around 11.6% of all new cancer cases and 18.4% of cancer-related deaths. The propensity for early spread, lack of suitable biomarkers for early diagnosis, as well as prognosis and ineffective existing therapies, contribute to the poor survival rate of lung cancer. Therefore, there is an urgent need to develop novel biomarkers for early diagnosis and prognosis which in turn can facilitate newer therapeutic avenues for the management of this aggressive neoplasm. TIPE2 (tumor necrosis factor-α-induced protein 8-like 2), a recently identified cytoplasmic protein, possesses enormous potential in this regard. Immunohistochemical analysis showed that TIPE2 was significantly upregulated in different stages and grades of lung cancer tissues compared to normal lung tissues, implying its involvement in the positive regulation of lung cancer. Further, knockout of TIPE2 resulted in significantly reduced proliferation, survival, and migration of human lung cancer cells through modulation of the Akt/mTOR/NF-κB signaling axis. In addition, knockout of TIPE2 also caused arrest in the S phase of the cell cycle of lung cancer cells. As tobacco is the most predominant risk factor for lung cancer, we therefore evaluated the effect of TIPE2 in tobacco-mediated lung carcinogenesis as well. Our results showed that TIPE2 was involved in nicotine-, nicotine-derived nitrosamine ketone (NNK)-, N-nitrosonornicotine (NNN)-, and benzo[a]pyrene (BaP)-mediated lung cancer through inhibited proliferation, survival, and migration via modulation of nuclear factor kappa B (NF-κB)- and NF-κB-regulated gene products, which are involved in the regulation of diverse processes in lung cancer cells. Taken together, TIPE2 possesses an important role in the development and progression of lung cancer, particularly in tobacco-promoted lung cancer, and hence, specific targeting of it holds an enormous prospect in newer therapeutic interventions in lung cancer. However, these findings need to be validated in the in vivo and clinical settings to fully establish the diagnostic and prognostic importance of TIPE2 against lung cancer.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Kishore Banik
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Choudhary Harsha
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Nand Kishor Roy
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Anuj Kumar Singh
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Javadi Monisha
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| | - Hong Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (D.B.); (K.B.); (G.P.); (R.V.); (C.H.); (N.K.R.); (A.K.S.); (J.M.)
| |
Collapse
|
14
|
Zhang YY, Huang NN, Fan YC, Li YS, Zhao J, Wang D, Zhang F, Li XH. Peripheral tumor necrosis factor-a-induced protein 8-like 2 mRNA level for predicting 3-month mortality of patients with acute ischemic stroke. J Neurol 2018; 265:2573-2586. [PMID: 30171409 DOI: 10.1007/s00415-018-9036-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022]
Abstract
Tumor necrosis factor-a-induced protein 8-like 2 (TIPE2) is a novel negative regulator for maintaining immune homeostasis. This study aimed to investigate TIPE2 mRNA in peripheral blood mononuclear cells for predicting 3-month functional outcomes and mortality of patients with acute ischemic stroke. A total of 182 consecutive patients were prospective collected, and there were 55 (30.2%) patients with unfavorable outcome and 33 (18.1%) patients died at the end of 3 months. The area under the operating characteristic curve (AUC) for TIPE2 mRNA was 0.810 (95% CI 0.733-0.886) for mortality and 0.740 (95% CI 0.662-0.818) for unfavorable outcome. The model incorporating National Institutes of Health Stroke Scale (NIHSS) plus TIPE2 showed significantly (P = 0.04) increased discrimination power (AUC = 0.925, 95% CI 0.874-0.976) for mortality than NIHSS (AUC = 0.882, 95% CI 0.833-0.932). Furthermore, NIHSS plus TIPE2 showed a significant improvement of both integrated discrimination index (IDI) and net reclassification index (NRI) as compared with NIHSS (IDI = 0.224, 95% CI 0.150-0.299, P < 0.001; NRI = 1.119, 95% CI 0.810-1.429, P < 0.001). The pruned time-dependent tree analysis showed that patients with NIHSS ≥ 5.5 and TIPE2 mRNA < 5.2 had rather high 3-month mortality. In conclusion, TIPE2 mRNA improved the diagnostic value of NIHSS score, and patients with NIHSS ≥ 5.5 and TIPE2 mRNA < 5.2 had high 3-month mortality.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jiefang Road 105#, Jinan, 250013, China
| | - Na-Na Huang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jiefang Road 105#, Jinan, 250013, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yan-Shuang Li
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jiefang Road 105#, Jinan, 250013, China
| | - Jing Zhao
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jiefang Road 105#, Jinan, 250013, China
| | - Dong Wang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jiefang Road 105#, Jinan, 250013, China
| | - Feng Zhang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jiefang Road 105#, Jinan, 250013, China
| | - Xiao-Hong Li
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jiefang Road 105#, Jinan, 250013, China.
| |
Collapse
|
15
|
Padmavathi G, Banik K, Monisha J, Bordoloi D, Shabnam B, Arfuso F, Sethi G, Fan L, Kunnumakkara AB. Novel tumor necrosis factor-α induced protein eight (TNFAIP8/TIPE) family: Functions and downstream targets involved in cancer progression. Cancer Lett 2018; 432:260-271. [DOI: 10.1016/j.canlet.2018.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
|
16
|
Li Z, Guo C, Liu X, Zhou C, Zhu F, Wang X, Wang Q, Shi Y, Wang J, Zhao W, Zhang L. TIPE2 suppresses angiogenesis and non-small cell lung cancer (NSCLC) invasiveness via inhibiting Rac1 activation and VEGF expression. Oncotarget 2018; 7:62224-62239. [PMID: 27556698 PMCID: PMC5308722 DOI: 10.18632/oncotarget.11406] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 08/08/2016] [Indexed: 12/02/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of all cancer-related deaths worldwide. Despite extensive efforts to improve the diagnosis and treatment of this neoplasm, limited progress has been made. Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a newly introduced negative immune regulator, which also controls tumorigenesis. However, the role of TIPE2 in angiogenesis is unknown. In the present study, we investigated the expression and roles of TIPE2 in NSCLC. TIPE2 upregulation in human NSCLC tissues was negatively associated with the primary tumor size, lymph node metastasis, and advanced clinical stage, which can be used to predict lymph node metastasis. Moreover, overexpression of TIPE2 not only inhibited the colony formation, migration, and invasion of NSCLC cells but also indirectly suppressed the proliferation, migration, and tube formation of vascular endothelial cells. Furthermore, TIPE2 suppressed tumor invasiveness and angiogenesis via inhibiting the activation of Rac1 and subsequently weakening its downstream effects, including F-actin polymerization and VEGF expression. Collectively, these results indicate that TIPE2 plays a key role in NSCLC metastasis, suggesting that forced TIPE2 expression might be a novel strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zequn Li
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Chun Guo
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Xianglan Liu
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Xiaoyan Wang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Qun Wang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Yongyu Shi
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Jianing Wang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Wei Zhao
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Lining Zhang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
17
|
Zhu L, Zhang X, Fu X, Li Z, Sun Z, Wu J, Wang X, Wang F, Li X, Niu S, Ding M, Yang Z, Yang W, Yin M, Zhang L, Zhang M. TIPE2 suppresses progression and tumorigenesis of esophageal carcinoma via inhibition of the Wnt/β-catenin pathway. J Transl Med 2018; 16:7. [PMID: 29343267 PMCID: PMC5773041 DOI: 10.1186/s12967-018-1383-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Esophageal carcinoma is the eighth prevalent malignancy and ranks the sixth in carcinoma-related death worldwide. Tumor necrosis factor-α-induced protein-8 like-2 (TIPE2) has been identified as a tumor suppressor in multiple carcinomas. However, its roles and molecular mechanisms underlying esophageal carcinoma progression are still undefined till now. METHODS RT-qPCR assay was employed to detect the expression of TIPE2 mRNA. TIPE2 protein expression was measured by using western blot assay. Ad-V and Ad-TIPE2 adenoviruses were constructed to overexpress TIPE2. The effects of TIPE2 overexpression on cell proliferation, invasion and apoptosis were assessed by MTT and Edu incorporation assays, transwell invasion assay and flow cytometry analysis, respectively. The effect of TIPE2 overexpression on xenograft tumor growth was determined by measuring tumor volume and weight, together with immunohistochemistry assay. The effect of TIPE2 overexpression on the Wnt/β-catenin signaling pathway was evaluated by detecting the protein levels of β-catenin, c-Myc and cyclinD1 in EC9076 cells and xenograft tumors of esophageal carcinoma. RESULTS TIPE2 expression was downregulated in esophageal carcinoma tissues and cells. Adenovirus-mediated TIPE2 overexpression suppressed cell proliferation and invasion, and induced apoptosis in esophageal carcinoma cells. Enforced expression of TIPE2 inhibited tumor growth in vivo, as evidenced by the reduced tumor volume, tumor weight and proliferating cell nuclear antigen expression. Overexpression of TIPE2 inhibited the Wnt/β-catenin signaling pathway in esophageal carcinoma in vitro and in vivo. CONCLUSIONS These results suggest that TIPE2 suppressed progression and tumorigenesis of esophageal carcinoma via inhibition of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Linan Zhu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Jingjing Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Xiangke Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Songtao Niu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Mengjie Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Zhenzhen Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Wanqiu Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Meifeng Yin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, Zhengzhou, 450052 Henan People’s Republic of China
| |
Collapse
|
18
|
Sun Y, Wang X, Li Y, Sun H, Wan L, Wang X, Zhang L, Fang Z, Wei Z. The decreased expression of TIPE2 protein in the decidua of patients with missed abortion and possible significance. Reprod Biol Endocrinol 2017; 15:68. [PMID: 28851386 PMCID: PMC5576376 DOI: 10.1186/s12958-017-0285-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Missed abortion is a common occurrence for otherwise healthy women. Immunological factor is one of the most important reasons. Tumor necrosis factor-α-induced protein-8 like-2 (TIPE2) is a novel negative immune regulator related to several human diseases. However, the expression level and clinical significance of TIPE2 in missed abortion remain unclear. METHODS The expression of TIPE2 mRNA and protein in decidua and chorion from 36 missed abortion patients and 36 healthy controls was detected using quantitative real-time PCR, western blot and immunohistochemistry. In addition, serum TNF-ɑ and IL-10 levels were measured using flow cytometry. Serum estradiol and progesterone levels were measured by radioimmunoassay test. The correlations of TIPE2 protein levels with TNF-ɑ, IL-10, estradiol and progesterone were further analyzed. RESULTS TIPE2 protein levels were significantly lower in decidual tissues of missed abortion patients than those in healthy controls. The patients with missed abortion had significantly higher levels of serum TNF-ɑ, and lower levels of serum IL-10, estradiol and progesterone compared with healthy controls. The TIPE2 protein levels were positively related to serum IL-10 levels. CONCLUSION Our data indicate TIPE2 could play important roles in maintaining the maternal-fetal tolerance and decreased TIPE2 expression in the decidua may be related to the development of missed abortion.
Collapse
Affiliation(s)
- Yingshuo Sun
- 0000 0004 1761 1174grid.27255.37Department of Gynecology and Obstetrics, Clinical Medical School, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong 250012 People’s Republic of China
- 0000 0004 1761 1174grid.27255.37Department of Immunology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong People’s Republic of China
| | - Xiaoyan Wang
- 0000 0004 1761 1174grid.27255.37Department of Immunology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong People’s Republic of China
| | - Yue Li
- 0000 0004 1761 1174grid.27255.37Department of Immunology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong People’s Republic of China
| | - Han Sun
- 0000 0004 1761 1174grid.27255.37Department of Immunology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong People’s Republic of China
- grid.415946.bDepartment of Clinical Laboratory Services, Linyi People’s Hospital, Linyi, Shandong People’s Republic of China
| | - Lu Wan
- 0000 0004 1761 1174grid.27255.37Department of Immunology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong People’s Republic of China
| | - Xishuang Wang
- 0000 0004 1761 1174grid.27255.37Department of Immunology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong People’s Republic of China
| | - Lining Zhang
- 0000 0004 1761 1174grid.27255.37Department of Immunology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong People’s Republic of China
| | - Zhenghui Fang
- grid.452222.1Department of Gynecology and Obstetrics, Jinan Central Hospital affiliated to Shandong University, 105# Jiefang Road, Jinan, Shandong 250013 People’s Republic of China
| | - Zengtao Wei
- 0000 0004 1761 1174grid.27255.37Department of Gynecology and Obstetrics, Clinical Medical School, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong 250012 People’s Republic of China
- 0000 0004 1761 1174grid.27255.37Department of Immunology, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, Shandong People’s Republic of China
- grid.452222.1Department of Gynecology and Obstetrics, Jinan Central Hospital affiliated to Shandong University, 105# Jiefang Road, Jinan, Shandong 250013 People’s Republic of China
| |
Collapse
|
19
|
Jiang J, Wang S, Fang J, Xu Y, Tong L, Ye X, Zhou W. Stable silencing of TIPE2 reduced the Poly I:C‑induced apoptosis in THP‑1 cells. Mol Med Rep 2017; 16:6313-6319. [PMID: 28849057 DOI: 10.3892/mmr.2017.7364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 07/05/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the underlying mechanism of toll‑like receptor (TLR) agonist polyinosinic:polycytidylic acid (Poly I:C)‑induced apoptosis in THP‑1 cells following silencing the expression of tumor necrosis factor α‑induced protein 8‑like 2 (TIPE2). THP‑1 cells were incubated with different concentrations of the TLR agonist. Following incubation, reverse transcription‑quantitative polymerase chain reaction was performed to quantify the mRNA expression of TIPE2. Lentiviral technology was used to silence the expression of TIPE2. MTT assay was performed to assess cell proliferation, Annexin V/PI double staining was used to evaluate the apoptosis and western blotting was used to determine the expression levels of caspase‑8 following TIPE2 silencing. The TLRs agonist Poly I:C increased the expression level of TIPE2. During the incubation, Poly I:C also inhibited the proliferation of THP‑1 cells and induced apoptosis. Following silencing of TIPE2 in THP‑1 cells, the Poly I:C‑induced TIPE2 expression was significantly downregulated. Additionally, the Poly I:C‑induced proliferation inhibition and apoptosis in THP‑1 cells were significantly reduced following silencing of TIPE2. The findings of the western blot analysis indicated that the active form of caspase‑8, p18, was downregulated following silencing of TIPE2. In conclusion, the expression of TIPE2 in THP‑1 cells may be upregulated by Poly I:C, which may also inhibit cell proliferation and induce apoptosis. Following the downregulation of TIPE2 the aforementioned effect of Poly I:C treatment was reversed and may be associated with the reduced activity of caspase‑8 that was observed in the TIPE2 silenced group.
Collapse
Affiliation(s)
- Jieshu Jiang
- Department of ICU, Affiliated Hospital of Medical College of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Shanshan Wang
- Department of ICU, Affiliated Hospital of Medical College of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Jingjing Fang
- Department of ICU, Affiliated Hospital of Medical College of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yi Xu
- Department of Emergency, Affiliated Hospital of Medical College of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Li Tong
- Department of Pharmacology, Ningbo Institute of Medical Sciences, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xiaolei Ye
- Department of Pharmacology, Ningbo Institute of Medical Sciences, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Wu Zhou
- Department of Medicine, College of Medicine and Health, Lishui University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
20
|
Sullivan C, Lage CR, Yoder JA, Postlethwait JH, Kim CH. Evolutionary divergence of the vertebrate TNFAIP8 gene family: Applying the spotted gar orthology bridge to understand ohnolog loss in teleosts. PLoS One 2017; 12:e0179517. [PMID: 28658311 PMCID: PMC5489176 DOI: 10.1371/journal.pone.0179517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023] Open
Abstract
Comparative functional genomic studies require the proper identification of gene orthologs to properly exploit animal biomedical research models. To identify gene orthologs, comprehensive, conserved gene synteny analyses are necessary to unwind gene histories that are convoluted by two rounds of early vertebrate genome duplication, and in the case of the teleosts, a third round, the teleost genome duplication (TGD). Recently, the genome of the spotted gar, a holostean outgroup to the teleosts that did not undergo this third genome duplication, was sequenced and applied as an orthology bridge to facilitate the identification of teleost orthologs to human genes and to enhance the power of teleosts as biomedical models. In this study, we apply the spotted gar orthology bridge to help describe the gene history of the vertebrate TNFAIP8 family. Members of the TNFAIP8 gene family have been linked to regulation of immune function and homeostasis and the development of multiple cancer types. Through a conserved gene synteny analysis, we identified zebrafish orthologs to human TNFAIP8L1 and TNFAIP8L3 genes and two co-orthologs to human TNFAIP8L2, but failed to identify an ortholog to human TNFAIP8. Through the application of the orthology bridge, we determined that teleost orthologs to human TNFAIP8 genes were likely lost in a genome inversion event after their divergence from their common ancestor with spotted gar. These findings demonstrate the value of this enhanced approach to gene history analysis and support the development of teleost models to study complex questions related to an array of biomedical issues, including immunity and cancer.
Collapse
Affiliation(s)
- Con Sullivan
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| | - Christopher R. Lage
- Program in Biology, University of Maine - Augusta, Augusta, Maine, United States of America
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Carol H. Kim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| |
Collapse
|
21
|
Lu Q, Liu Z, Li Z, Chen J, Liao Z, Wu WR, Li YW. TIPE2 Overexpression Suppresses the Proliferation, Migration, and Invasion in Prostate Cancer Cells by Inhibiting PI3K/Akt Signaling Pathway. Oncol Res 2017; 24:305-313. [PMID: 27712587 PMCID: PMC7838667 DOI: 10.3727/096504016x14666990347437] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (TNFAIP8L2, TIPE2) is involved in the invasion and metastasis of human tumors. However, the functional role of TIPE2 in prostate cancer remains unclear. In the present study, we explored the role of TIPE2 in prostate cancer and cancer progression including the molecular mechanism that drives TIPE2-mediated oncogenesis. Our results showed that TIPE2 was lowly expressed in human prostate cancer tissues and cell lines. In addition, restored TIPE2 obviously inhibits proliferation in prostate cancer cells. TIPE2 overexpression also suppresses the epithelial–mesenchymal transition (EMT) process and migration/invasion in prostate cancer cells. Mechanistically, TIPE2 overexpression obviously inhibits the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K) and Akt in prostate cancer cells. In conclusion, for the first time we demonstrated that TIPE2 overexpression may suppress proliferation, migration, and invasion in prostate cancer cells by inhibiting the PI3K/Akt signaling pathway. Therefore, TIPE2 might serve as a potential therapeutic target for human prostate cancer.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Urology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Z, Liu L, Cao S, Zhu Y, Mei Q. Gene delivery of TIPE2 inhibits breast cancer development and metastasis via CD8 + T and NK cell-mediated antitumor responses. Mol Immunol 2017; 85:230-237. [PMID: 28314212 DOI: 10.1016/j.molimm.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
Breast cancer is the second leading cause of cancer-related deaths in the female patients which was mainly caused by metastasis. Development of target gene therapy for breast cancer to suppress tumor progress and metastasis will improve the therapeutic options and be of great benefit to the patients. Tumor necrosis factor-alpha-induced protein 8-like 2 is a novel molecule for maintaining immune homeostasis and is involved in cancer development. In the present study, we overexpressed TIPE2 in breast cancer cells to investigate the role of TIPE2 in the development of breast cancer. Our results showed that overexpression of TIPE2 significantly inhibited the proliferation of 4T1 cells in vitro and in vivo. We constructed a non-viral targeted gene therapeutic system by using the minicircle plasmids expressing TIPE2. We found that the growth and metastasis of breast cancer was significantly inhibited by hydrodynamic gene delivery of TIPE2 plasmids in vivo. Mechanistically, TIPE2 increased T and NK cells, and decreased MDSCs. Gene delivery of TIPE2 up-regulated the production of IFN-γ and TNF-α by CD8+ T and NK cells in spleens and tumor microenvironment, and enhanced the cytotoxic activity of CD8+ T and NK cells. Taken together, TIPE2 inhibited breast cancer development and metastasis possibly via promoting CD8+ T and NK cell-mediated antitumor immune responses. Thus, the results indicate that TIPE2 may be a potential therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Zhenhua Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China; State Institute of Pharmaceutical Industry, Shanghai 201203, People's Republic of China
| | - Li Liu
- State Institute of Pharmaceutical Industry, Shanghai 201203, People's Republic of China
| | - Shousong Cao
- State Institute of Pharmaceutical Industry, Shanghai 201203, People's Republic of China
| | - Yizhun Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China.
| | - Qibing Mei
- State Institute of Pharmaceutical Industry, Shanghai 201203, People's Republic of China.
| |
Collapse
|
23
|
Liu ZJ, Liu HL, Zhou HC, Wang GC. TIPE2 Inhibits Hypoxia-Induced Wnt/β-Catenin Pathway Activation and EMT in Glioma Cells. Oncol Res 2017; 24:255-61. [PMID: 27656836 PMCID: PMC7838627 DOI: 10.3727/096504016x14666990347356] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hypoxia-induced epithelial-to-mesenchymal transition (EMT) could facilitate tumor progression. TIPE2, the tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (also known as TNFAIP8L2), is a member of the TNF-α-induced protein 8 (TNFAIP8, TIPE) family and has been involved in the development and progression of several tumors. However, the effects of TIPE2 on the EMT process in glioma cells and the underlying mechanisms of these effects have not been previously reported. In our study, we assessed the roles of TIPE2 in the EMT process in glioma cells in response to hypoxia. Our results indicated that TIPE2 expression was significantly decreased in human glioma cell lines. TIPE2 overexpression significantly inhibited hypoxia-induced migration and invasion, as well as suppressed the EMT process in glioma cells. Furthermore, TIPE2 overexpression prevented hypoxia-induced expression of β-catenin, cyclin D1, and c-myc in human glioma cells. In summary, these data suggest that TIPE2 overexpression inhibited hypoxia-induced Wnt/β-catenin pathway activation and EMT in glioma cells.
Collapse
Affiliation(s)
- Zhi-Jun Liu
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, China
| | | | | | | |
Collapse
|
24
|
Wang K, Ren Y, Liu Y, Zhang J, He JJ. Tumor Necrosis Factor (TNF)-α-Induced Protein 8-like-2 (TIPE2) Inhibits Proliferation and Tumorigenesis in Breast Cancer Cells. Oncol Res 2017; 25:55-63. [PMID: 28081733 PMCID: PMC7840691 DOI: 10.3727/096504016x14719078133320] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α)-induced protein 8-like-2 (TNFAIP8L2 or TIPE2), a member of the tumor necrosis TNFAIP8 family, was found to be involved in the development and progression of several tumors. However, to date, the role of TIPE2 in breast cancer is still unclear. Thus, the aim of this study is to explore the role of TIPE2 in breast cancer. Our results indicated that TIPE2 expression was significantly decreased in human breast cancer tissue and cell lines. Overexpression of TIPE2 inhibited the proliferation in vitro and tumor xenograft growth in vivo. TIPE2 also inhibited the migration/invasion of breast cancer cells through preventing the epithelial-to-mesenchymal transition (EMT) phenotype. Mechanically, TIPE2 inhibited the expression of β-catenin, cyclin D1, and c-Myc in breast cancer cells. In conclusion, our findings show that TIPE2 may play an important role in breast cancer cell proliferation, invasion, and tumorigenesis in vivo. Therefore, TIPE2 may be a potential molecular target for the treatment of breast cancer.
Collapse
|
25
|
Goldsmith JR, Fayngerts S, Chen YH. Regulation of inflammation and tumorigenesis by the TIPE family of phospholipid transfer proteins. Cell Mol Immunol 2017; 14:482-487. [PMID: 28287114 DOI: 10.1038/cmi.2017.4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
The TIPE (tumor necrosis factor-α-induced protein 8-like) family are newly described regulators of immunity and tumorigenesis consisting of four highly homologous mammalian proteins: TNFAIP8 (tumor necrosis factor-α-induced protein 8), TIPE1 (TNFAIP8-like 1, or TNFAIP8L1), TIPE2 (TNFAIP8L2) and TIPE3 (TNFAIP8L3). They are the only known transfer proteins of the lipid secondary messengers PIP2 (phosphatidylinositol 4,5-bisphosphate) and PIP3 (phosphatidylinositol 3,4,5-trisphosphate). Cell-surface receptors, such as G-protein-coupled receptors and receptor tyrosine kinases, regulate inflammation and cancer via several signaling pathways, including the nuclear factor (NF)-κB and phosphoinositide-3 kinase (PI3K) pathways, the latter of which is upstream of both Akt and STAT3 activation. An expression analysis in humans demonstrated that the TIPE family is dysregulated in cancer and inflammation, and studies both in mice and in vitro have demonstrated that this family of proteins plays a critical role in tumorigenesis and inflammatory responses. In this review, we summarize the current literature for all four family members, with a special focus on the phenotypic manifestations present in the various knockout murine strains, as well as the related cell signaling that has been elucidated to date.
Collapse
Affiliation(s)
- Jason R Goldsmith
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Adenovirus-mediated TIPE2 overexpression inhibits gastric cancer metastasis via reversal of epithelial-mesenchymal transition. Cancer Gene Ther 2017; 24:180-188. [PMID: 28186089 DOI: 10.1038/cgt.2017.3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TNFAIP8L2; also termed TIPE2) has been shown to be involved in both the immune-negative modulation and cancer. We previously found that TIPE2 is lost in human gastric cancer, and TIPE2 restoration suppresses gastric cancer growth by induction of apoptosis and impairment of protein kinase B (PKB/AKT) and extracellular signal-regulated kinase-1/2 (ERK1/2) signaling. However, its correlation with epithelial-mesenchymal transition (EMT) in gastric cancer is largely elusive. In the present report, we carried out a gain-of-function study in AGS and HGC-27 human gastric cancer cells by adenovirus-mediated human TIPE2 gene transfer (AdVTIPE2). We then examined the effects of AdVTIPE2 on in vitro migration and invasion of AGS and HGC-27 tumor cells by wound-healing assay and Transwell invasion assay, respectively. We also investigated the effects of AdVTIPE2 on in vivo lung metastasis of AGS and HGC-27 tumor cells by intravenous (i.v.) injection in athymic BALB/c nude mice. We demonstrated that AdVTIPE2 remarkably suppressed the migratory, invasive and metastatic potential of AGS and HGC-27 tumor cells in vitro and in vivo in BALB/c nude mouse model. Mechanistically, AdVTIPE2 obviously upregulated E-cadherin epithelial marker in AGS and HGC-27 tumor cells, whereas it downregulated N-cadherin and Vimentin mesenchymal markers, Snail1, Snail2/Slug and Zeb1 EMT-inducing transcription factors (EMT-TFs), and tripartite motif-containing 29 (TRIM29) and phosphatase regenerating liver 3 (PRL-3) gastric cancer-specific metastasis markers. Importantly, glycogen synthase kinase-3β (GSK-3β) inhibitor VIII and 26S proteasome inhibitor MG132 assays revealed that TIPE2 downregulated Snail1 and Snail2/Slug in a GSK-3β- and proteasome-dependent manner possibly by impairing AKT signaling. Our data provided the first evidence that TIPE2 inhibits gastric cancer cell migration, invasion and metastasis very probably via reversal of EMT, revealing that TIPE2 may be a novel therapeutic target for human gastric cancer EMT and metastasis.
Collapse
|
27
|
Zhao P, Wang L, Xiang X, Zhang X, Zhai Q, Wu X, Li T. Increased expression of TIPE2 mRNA in PBMCs of patients with ankylosing spondylitis is negatively associated with the disease severity. Hum Immunol 2017; 78:232-237. [PMID: 27816498 DOI: 10.1016/j.humimm.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/19/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022]
|
28
|
Zhang Z, Liu L, Liu C, Cao S, Zhu Y, Mei Q. TIPE2 suppresses the tumorigenesis, growth and metastasis of breast cancer via inhibition of the AKT and p38 signaling pathways. Oncol Rep 2016; 36:3311-3316. [PMID: 27779698 DOI: 10.3892/or.2016.5192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/21/2016] [Indexed: 11/06/2022] Open
|
29
|
Wang Y, Jiang Y, Zhou J, Song W, Li J, Wang M, Chen J, Xu R, Zhang J, Ma F, Chen YH, Ma Y. Hepatitis C virus promotes hepatocellular carcinogenesis by targeting TIPE2, a new regulator of DNA damage response. Tumour Biol 2016; 37:15265-15274. [PMID: 27696294 PMCID: PMC5126206 DOI: 10.1007/s13277-016-5409-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
Infection of hepatitis C virus (HCV) is associated with primary hepatocellular carcinoma (HCC). However, its underlying molecular mechanisms remain enigmatic. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a new negative regulator of immunity, plays significant roles in modulating inflammation and tumorigenesis. We hypothesized that TIPE2 might be involved in the development of HCV-induced HCC. To test this hypothesis, the expression of TIPE2 was determined by Western blot in the tumor and pericarcinomatous tissues collected from ten HCV-positive HCC patients; the interaction between TIPE2 and HCV-encoded non-structural proteins was analyzed by immunoprecipitation and immunofluorescence assays, and tumorigenesis and its mechanisms were studied in cell models and nude mice. Our results demonstrated that the expression of TIPE2 was significantly reduced in HCC tissues compared to that in the paracarcinoma tissues. HCV-encoded non-structural protein NS5A could specifically interact with TIPE2 and induce its degradation. Downregulation of TIPE2 by shRNA in cell lines increased genomic DNA damage and promoted cell colony formation in vitro and tumorigenesis in nude mice. In contrast, overexpression of TIPE2 had an opposite effect. Downregulation of TIPE2 by NS5A is associated with genomic DNA instability and HCV-induced HCC development. Thus, TIPE2 may be a new therapeutic target for the treatment of HCV-associated HCC.
Collapse
Affiliation(s)
- Yaohui Wang
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Yinan Jiang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinxue Zhou
- Zhengzhou University Affiliated Tumor Hospital, Zhengzhou, Henan, 450001, China
| | - Wuhui Song
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Mingli Wang
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Jiuge Chen
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Rui Xu
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Jingjing Zhang
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Fanni Ma
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yuanfang Ma
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
30
|
Qin B, Wei T, Wang L, Ma N, Tang Q, Liang Y, Yang Z, Zhou L, Zhong R. Decreased expression of TIPE2 contributes to the hyperreactivity of monocyte to Toll-like receptor ligands in primary biliary cirrhosis. J Gastroenterol Hepatol 2016; 31:1177-83. [PMID: 26644386 DOI: 10.1111/jgh.13251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/03/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Previous studies have shown differential TIPE2 expression in several autoimmune diseases. However, the expression levels of TIPE2 in primary biliary cirrhosis (PBC) remained unclear. The purposes of this study were to evaluate TIPE2 expression levels in patients with PBC and further investigate its role in PBC pathogenesis. METHODS A total of 40 PBC patients and 44 healthy controls were included in the present study. Quantitative reverse-transcription polymerase chain reaction and western blotting were used to determine the differences in mRNA and protein expression levels of TIPE2. The correlations of TIPE2 expression levels and clinical characteristics, inflammatory cytokines, and ursodeoxycholic acid treatment were also assessed. Besides, the influence of TIPE2 on the reactivity of monocyte to Toll-like receptor ligands was further analyzed. RESULTS The expression levels of TIPE2 were significantly decreased in PBC patients compared with normal controls (P < 0.01). The expression levels of TIPE2 were negatively correlated with alanine aminotransferase (r = -0.40, P = 0.01), alkaline phosphatase (r = -0.36, P = 0.02), gamma glutamyl transpeptidase (r = -0.53, P < 0.01), tumor necrosis factor (TNF)-α (r = -0.332, P = 0.03), interleukin (IL)-1β (r = -0.386, P = 0.01), and IL-8 (r = -0.366, P = 0.02) levels in sera from PBC patients. TIPE2 expression level could be significantly increased after ursodeoxycholic acid treatment (P < 0.01). The production of TNF-α, IL-1β, and IL-8 by monocytes from PBC patients after stimulation with lipopolysaccharide and lipoteichoic acid was significantly increased when TIPE2 was knocked down. Furthermore, TIPE2 knockdown could promote activation of nuclear factor-κB pathways through increasing phosphorylation and degradation of IκB in peripheral blood monocytes from PBC patients. CONCLUSION The present study reported that insufficient expression of TIPE2 might be involved in the hyperreactivity of monocyte to Toll-like receptor ligands in PBC.
Collapse
Affiliation(s)
- Baodong Qin
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tingting Wei
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lili Wang
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ning Ma
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qingqin Tang
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Liang
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zaixing Yang
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lin Zhou
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Renqian Zhong
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
31
|
Adenovirus-directed expression of TIPE2 suppresses gastric cancer growth via induction of apoptosis and inhibition of AKT and ERK1/2 signaling. Cancer Gene Ther 2016; 23:98-106. [PMID: 26987289 DOI: 10.1038/cgt.2016.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 01/03/2023]
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TNFAIP8L2/TIPE2) as a novel anti-inflammatory factor plays an important role in maintaining immune homeostasis. Recently, TIPE2 has been shown to inhibit hepatocarcinoma growth and metastasis through targeting Ras and Rac1. However, its effects in human cancers are poorly understood. In the present study, we analyzed TIPE2 mRNA expression in a panel of human gastric cancer cells (AGS, HGC-27 and SGC-7901) and then examined the cell-autonomous effects of adenovirus-mediated human TIPE2 gene transfer (AdVTIPE2) on AGS and HGC-27 human gastric cancer cells. We found that compared with the GES-1 normal human gastric mucous epithelial cells, human TIPE2 was lost in the AGS, HGC-27 and SGC-7901 gastric cancer cells. Adenovirus-mediated human TIPE2 overexpression significantly inhibited AGS and HGC-27 gastric cancer cell growth and induced AGS and HGC-27 tumor cell apoptosis in vitro. Furthermore, AdVTIPE2 treatment obviously suppressed the growth of AGS gastric cancer subcutaneously xenografted tumors implanted in athymic BALB/c nude mice in vivo. Mechanistically, AdVTIPE2 exhibited marked effects on the upregulation of Bax, cleaved Caspase-9, cleaved Caspase-3, cleaved poly ADP ribose polymerase as well as the downregulation of B-cell lymphoma (Bcl)-XL, phosphorylated-protein kinase B (p-PKB/AKT), phosphorylated-extracellular signal-regulated kinase 1/2 (p-ERK1/2) in AGS gastric cancer cells in vitro and in vivo. Collectively, AdVTIPE2 suppressed gastric cancer growth very possibly by the activation of intrinsic apoptotic pathway and the attenuation of AKT and ERK1/2 signaling. Thus, our data indicated that TIPE2 may be a novel potential therapeutic target for human gastric cancer.
Collapse
|
32
|
Shi C, Zhang S, Hong S, Pang J, Yesibulati Y, Yin P, Zhuang G. The pro-apoptotic effects of TIPE2 on AA rat fibroblast-like synoviocytes via regulation of the DR5-caspase-NF-κB pathway in vitro. Onco Targets Ther 2016; 9:993-1000. [PMID: 27013892 PMCID: PMC4778775 DOI: 10.2147/ott.s92907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
TIPE2, also known as TNFAIP8L2, a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, is known as an inhibitor in inflammation and cancer, and its overexpression induces cell death. We examined the role of TIPE2 with respect to adjuvant arthritis (AA)-associated pathogenesis by analyzing the TIPE2 regulation of death receptor (DR5)-mediated apoptosis in vitro. The results showed that TIPE2 was detected in normal fibroblast-like synoviocytes (FLSs), but scarcely observed in AA-FLSs. Therefore, recombinant MIGR1/TIPE2+/+ and control MIGR1 lentivirus vectors were transfected to AA-FLSs, which were denoted as TIPE2+/+-FLSs and MIGR1-FLSs, respectively. Our results showed that TIPE2+/+-FLSs were highly susceptible to ZF1-mediated apoptosis, and ZF1 was our own purification of an anti-DR5 single chain variable fragment antibody. Under the presence of TIPE2, the expression of DR5 was significantly increased compared with that of the MIGR1-FLS group. In contrast, the level of phosphorylated nuclear factor-kappa B (pNF-κB) was lower in the TIPE2+/+-FLS group treated with ZF1, whereas the activity of caspase was higher. Moreover, the rate of apoptosis in the TIPE2+/+-FLS group, which was pretreated with caspase inhibitor Z-VAD-FMK, was significantly decreased. In contrast, the apoptosis occurrence in the MIGR1-FLS group increased significantly with the pretreatment of the NF-κB inhibitor Bay. These results indicated that TIPE2 increased the apoptosis of AA-FLSs by enhancing DR5 expression levels, thereby promoting the activation of caspase and inhibiting the activation of NF-κB in AA-FLSs. TIPE2 might potentially act as a therapeutic target for rheumatoid arthritis.
Collapse
Affiliation(s)
- Chunyan Shi
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China; The Department of Oncology, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi City, People's Republic of China
| | - Shifeng Zhang
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China; Division of Gastroenterology Surgery, Zhongshan Hospital, Gastroenterology Institute of Xiamen University, Gastroenterology Center of Xiamen, Xiamen, Fujian, People's Republic of China
| | - Shifu Hong
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jinglong Pang
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yeletai Yesibulati
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Ping Yin
- The Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Guohong Zhuang
- Organ Transplantation Institute, Anti-Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
33
|
Wu J, Zhang H, Xu C, Xu H, Zhou X, Xie Y, Tao M. TIPE2 functions as a metastasis suppressor via negatively regulating β-catenin through activating GSK3β in gastric cancer. Int J Oncol 2015; 48:199-206. [PMID: 26530498 DOI: 10.3892/ijo.2015.3224] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/12/2015] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TNFAIP8L2, TIPE2) is a novel anti-inflammatory factor involved in maintaining immune homeostasis. Accumulating evidence has also shown that TIPE2 displays tumor-suppressive effects in several tumor types. Previous studies revealed that TIPE2 inhibits hepatocellular carcinoma metastasis by repressing Ral and Rac1 GTPases. However, its antimetastatic activity and underlying mechanism in other human cancers is largely unknown. We investigated TIPE2 in AGS, HGC-27 and SGC-7901 human gastric cancer cells compared with GES-1 normal human gastric mucous epithelial cells. We demonstrated that TIPE2 was expressed in GES-1 gastric mucous epithelial cells but lost in all three types of gastric cancer cells. We then performed a gain-of-function study by adenovirus-mediated TIPE2 overexpression (AdVTIPE2) and investigated the effects of TIPE2 on migration and invasion of AGS human gastric cancer cells. Wound healing and Transwell invasion assays showed that forced expression of TIPE2 markedly suppressed the gastric cancer cell migration and invasion in vitro. Mechanistically, TIPE2 remarkably reduced the total levels of pAKT, pGSK3β and β-catenin as well as the nuclear level of β-catenin in gastric cancer cells. The TIPE2-elicited antimetastatic effect in gastric cancer was closely associated with the inhibition of AKT signaling and enhancement of GSK3β activity followed by the degradation and decreased translocation to nucleus of β-catenin. These results provide the first compelling evidence that TIPE2 suppresses gastric cancer metastasis via downregulating β-catenin signaling through inhibiting AKT and activating GSK3β, indicating that TIPE2 is a promising therapeutic target for human gastric cancer metastasis.
Collapse
Affiliation(s)
- Jie Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haitao Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chun Xu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hong Xu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiumin Zhou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yufeng Xie
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
34
|
Melnik BC. MiR-21: an environmental driver of malignant melanoma? J Transl Med 2015; 13:202. [PMID: 26116372 PMCID: PMC4482047 DOI: 10.1186/s12967-015-0570-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/10/2015] [Indexed: 01/04/2023] Open
Abstract
Since the mid-1950’s, melanoma incidence has been rising steadily in industrialized Caucasian populations, thereby pointing to the pivotal involvement of environmental factors in melanomagenesis. Recent evidence underlines the crucial role of microRNA (miR) signaling in cancer initiation and progression. Increased miR-21 expression has been observed during the transition from a benign melanocytic lesion to malignant melanoma, exhibiting highest expression of miR-21. Notably, common BRAF and NRAS mutations in cutaneous melanoma are associated with increased miR-21 expression. MiR-21 is an oncomiR that affects critical target genes of malignant melanoma, resulting in sustained proliferation (PTEN, PI3K, Sprouty, PDCD4, FOXO1, TIPE2, p53, cyclin D1), evasion from apoptosis (FOXO1, FBXO11, APAF1, TIMP3, TIPE2), genetic instability (MSH2, FBXO11, hTERT), increased oxidative stress (FOXO1), angiogenesis (PTEN, HIF1α, TIMP3), invasion and metastasis (APAF1, PTEN, PDCD4, TIMP3). The purpose of this review is to provide translational evidence for major environmental and individual factors that increase the risk of melanoma, such as UV irradiation, chemical noxes, air pollution, smoking, chronic inflammation, Western nutrition, obesity, sedentary lifestyle and higher age, which are associated with increased miR-21 signaling. Exosomal miR-21 induced by extrinsic and intrinsic stimuli may be superimposed on mutation-induced miR-21 pathways of melanoma cells. Thus, oncogenic miR-21 signaling may be the converging point of intrinsic and extrinsic stimuli driving melanomagenesis. Future strategies of melanoma treatment and prevention should thus aim at reducing the burden of miR-21 signal transduction.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|