2
|
Hagihara K, Kinoshita K, Ishida K, Hojo S, Kameoka Y, Satoh R, Takasaki T, Sugiura R. A genome-wide screen for FTY720-sensitive mutants reveals genes required for ROS homeostasis. MICROBIAL CELL 2017; 4:390-401. [PMID: 29234668 PMCID: PMC5722642 DOI: 10.15698/mic2017.12.601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fingolimod hydrochloride (FTY720), a sphingosine-1-phosphate (S1P) analogue, is an approved immune modulator for the treatment of multiple sclerosis (MS). Notably, in addition to its well-known mode of action as an S1P modulator, accumulating evidence suggests that FTY720 induces apoptosis in various cancer cells via reactive oxygen species (ROS) generation. Although the involvement of multiple signaling molecules, such as JNK (Jun N-terminal kinase), Akt (alpha serine/threonine-protein kinase) and Sphk has been reported, the exact mechanisms how FTY720 induces cell growth inhibition and the functional relationship between FTY720 and these signaling pathways remain elusive. Our previous reports using the fission yeast Schizosaccharomyces pombe as a model system to elucidate FTY720-mediated signaling pathways revealed that FTY720 induces an increase in intracellular Ca2+ concentrations and ROS generation, which resulted in the activation of the transcriptional responses downstream of Ca2+/calcineurin signaling and stress-activated MAPK signaling, respectively. Here, we performed a genome-wide screening for genes whose deletion induces FTY720-sensitive growth in S. pombe and identified 49 genes. These gene products are related to the biological processes involved in metabolic processes, transport, transcription, translation, chromatin organization, cytoskeleton organization and intracellular signal transduction. Notably, most of the FTY720-sensitive deletion cells exhibited NAC-remedial FTY720 sensitivities and dysregulated ROS homeostasis. Our results revealed a novel gene network involving ROS homeostasis and the possible mechanisms of the FTY720 toxicity.
Collapse
Affiliation(s)
- Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Kanako Kinoshita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Kouki Ishida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Shihomi Hojo
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Yoshinori Kameoka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| |
Collapse
|
3
|
Martin A, Xiong J, Koromila T, Ji JS, Chang S, Song YS, Miller JL, Han CY, Kostenuik P, Krum SA, Chimge NO, Gabet Y, Frenkel B. Estrogens antagonize RUNX2-mediated osteoblast-driven osteoclastogenesis through regulating RANKL membrane association. Bone 2015; 75:96-104. [PMID: 25701138 PMCID: PMC4387095 DOI: 10.1016/j.bone.2015.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 01/17/2023]
Abstract
In addition to its thoroughly investigated role in bone formation, the osteoblast master transcription factor RUNX2 also promotes osteoclastogenesis and bone resorption. Here we demonstrate that 17β-estradiol (E2), strongly inhibits RUNX2-mediated osteoblast-driven osteoclastogenesis in co-cultures. Towards deciphering the underlying mechanism, we induced premature expression of RUNX2 in primary murine pre-osteoblasts, which resulted in robust differentiation of co-cultured splenocytes into mature osteoclasts. This was attributable to RUNX2-mediated increase in RANKL secretion, determined by ELISA, as well as to RUNX2-mediated increase in RANKL association with the osteoblast membrane, demonstrated using confocal fluorescence microscopy. The increased association with the osteoblast membrane was recapitulated by transiently expressed GFP-RANKL. E2 abolished the RUNX2-mediated increase in membrane-associated RANKL and GFP-RANKL, as well as the concomitant osteoclastogenesis. RUNX2-mediated RANKL cellular redistribution was attributable in part to a decrease in Opg expression, but E2 did not influence Opg expression either in the presence or absence of RUNX2. Diminution of RUNX2-mediated osteoclastogenesis by E2 occurred regardless of whether the pre-osteoclasts were derived from wild type or estrogen receptor alpha (ERα)-knockout mice, suggesting that activated ERα inhibited osteoblast-driven osteoclastogenesis by acting in osteoblasts, possibly targeting RUNX2. Indeed, microarray analysis demonstrated global attenuation of the RUNX2 response by E2, including abrogation of Pstpip2 expression, which likely plays a critical role in membrane trafficking. Finally, the selective ER modulators (SERMs) tamoxifen and raloxifene mimicked E2 in abrogating the stimulatory effect of osteoblastic RUNX2 on osteoclast differentiation in the co-culture assay. Thus, E2 antagonizes RUNX2-mediated RANKL trafficking and subsequent osteoclastogenesis. Targeting RUNX2 and/or downstream mechanisms that regulate RANKL trafficking may lead to the development of improved SERMs and possibly non-hormonal therapeutic approaches to high turnover bone disease.
Collapse
Affiliation(s)
- Anthony Martin
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jian Xiong
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Theodora Koromila
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jie S. Ji
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Stephanie Chang
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Yae S. Song
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jonathan L. Miller
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Chun-Ya Han
- Metabolic Disorders Research, Amgen Inc., 1 Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Paul Kostenuik
- Metabolic Disorders Research, Amgen Inc., 1 Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Susan A. Krum
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave, Los Angeles, CA, 90095 USA
| | - Nyam-Osor Chimge
- Department of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv, 69978 Israel
| | - Baruch Frenkel
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Department of Orthopaedic Surgery, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| |
Collapse
|