1
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Morsczeck C. Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells. Int J Mol Sci 2022; 23:5945. [PMID: 35682637 PMCID: PMC9180518 DOI: 10.3390/ijms23115945] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Human dental follicle cells (DFCs) as periodontal progenitor cells are used for studies and research in regenerative medicine and not only in dentistry. Even if innovative regenerative therapies in medicine are often considered the main research area for dental stem cells, these cells are also very useful in basic research and here, for example, for the elucidation of molecular processes in the differentiation into mineralizing cells. This article summarizes the molecular mechanisms driving osteogenic differentiation of DFCs. The positive feedback loop of bone morphogenetic protein (BMP) 2 and homeobox protein DLX3 and a signaling pathway associated with protein kinase B (AKT) and protein kinase C (PKC) are presented and further insights related to other signaling pathways such as the WNT signaling pathway are explained. Subsequently, some works are presented that have investigated epigenetic modifications and non-coding ncRNAs and their connection with the osteogenic differentiation of DFCs. In addition, studies are presented that have shown the influence of extracellular matrix molecules or fundamental biological processes such as cellular senescence on osteogenic differentiation. The putative role of factors associated with inflammatory processes, such as interleukin 8, in osteogenic differentiation is also briefly discussed. This article summarizes the most important insights into the mechanisms of osteogenic differentiation in DFCs and is intended to be a small help in the direction of new research projects in this area.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Function of Dental Follicle Progenitor/Stem Cells and Their Potential in Regenerative Medicine: From Mechanisms to Applications. Biomolecules 2021; 11:biom11070997. [PMID: 34356621 PMCID: PMC8301812 DOI: 10.3390/biom11070997] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023] Open
Abstract
Dental follicle progenitor/stem cells (DFPCs) are a group of dental mesenchyme stem cells that lie in the dental follicle and play a critical role in tooth development and maintaining function. Originating from neural crest, DFPCs harbor a multipotential differentiation capacity. More importantly, they have superiorities, including the easy accessibility and abundant sources, active self-renewal ability and noncontroversial sources compared with other stem cells, making them an attractive candidate in the field of tissue engineering. Recent advances highlight the excellent properties of DFPCs in regeneration of orofacial tissues, including alveolar bone repair, periodontium regeneration and bio-root complex formation. Furthermore, they play a unique role in maintaining a favorable microenvironment for stem cells, immunomodulation and nervous related tissue regeneration. This review is intended to summarize the current knowledge of DFPCs, including their stem cell properties, physiological functions and clinical application potential. A deep understanding of DFPCs can thus inspire novel perspectives in regenerative medicine in the future.
Collapse
|
4
|
Morsczeck C. Effects of Cellular Senescence on Dental Follicle Cells. Pharmacology 2020; 106:137-142. [PMID: 32980839 PMCID: PMC8120660 DOI: 10.1159/000510014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
The dental follicle is part of the tooth germ, and isolated stem cells from this tissue (dental follicle cells; DFCs) are considered, for example, for regenerative medicine and immunotherapies. However somatic stem cells can also improve pharmaceutical research. Cell proliferation is limited by the induction of senescence, which, while reducing the therapeutic potential of DFCs for cell therapy, can also be used to study aging processes at the cellular level that can be used to test anti-aging pharmaceuticals. Unfortunately, very little is known about cellular senescence in DFCs. This review presents current knowledge about cellular senescence in DFCs.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany,
| |
Collapse
|
5
|
Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int 2019; 2019:9159605. [PMID: 31636679 PMCID: PMC6766151 DOI: 10.1155/2019/9159605] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Dental follicle cells (DFCs) are a group of mesenchymal progenitor cells surrounding the tooth germ, responsible for cementum, periodontal ligament, and alveolar bone formation in tooth development. Cascades of signaling pathways and transcriptional factors in DFCs are involved in directing tooth eruption and tooth root morphogenesis. Substantial researches have been made to decipher multiple aspects of DFCs, including multilineage differentiation, senescence, and immunomodulatory ability. DFCs were proved to be multipotent progenitors with decent amplification, immunosuppressed and acquisition ability. They are able to differentiate into osteoblasts/cementoblasts, adipocytes, neuron-like cells, and so forth. The excellent properties of DFCs facilitated clinical application, as exemplified by bone tissue engineering, tooth root regeneration, and periodontium regeneration. Except for the oral and maxillofacial regeneration, DFCs were also expected to be applied in other tissues such as spinal cord defects (SCD), cardiomyocyte destruction. This article reviewed roles of DFCs in tooth development, their properties, and clinical application potentials, thus providing a novel guidance for tissue engineering.
Collapse
|
6
|
Wu L, Deng L, Hong H, Peng C, Zhang X, Chen Z, Ling J. Comparison of long non‑coding RNA expression profiles in human dental follicle cells and human periodontal ligament cells. Mol Med Rep 2019; 20:939-950. [PMID: 31173189 PMCID: PMC6625187 DOI: 10.3892/mmr.2019.10308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/28/2019] [Indexed: 12/22/2022] Open
Abstract
The dental follicle develops into the periodontal ligament, cementum and alveolar bone. Human dental follicle cells (hDFCs) are the precursor cells of periodontal development. Long non-coding RNAs (lncRNAs) have been revealed to be crucial factors that regulate a variety of biological processes; however, whether lncRNAs serve a role in human periodontal development remains unknown. Therefore, the present study used microarrays to detect the differentially expressed lncRNAs and mRNAs between hDFCs and human periodontal ligament cells (hPDLCs). A total of 845 lncRNAs and 1,012 mRNAs were identified to be differentially expressed in hDFCs and hPDLCs (fold change >2.0 or <-2.0; P<0.05). Microarray data were validated by reverse transcription-quantitative polymerase chain reaction. Bioinformatics analyses, including gene ontology, pathway analysis and coding-non-coding gene co-expression network analysis, were performed to determine the functions of the differentially expressed lncRNAs and mRNAs. Bioinformatics analysis identified that a number of pathways may be associated with periodontal development, including the p53 and calcium signaling pathways. This analysis also revealed a number of lncRNAs, including NR_033932, T152410, ENST00000512129, ENST00000540293, uc021sxs.1 and ENST00000609146, which may serve important roles in the biological process of hDFCs. In addition, the lncRNA termed maternally expressed 3 (MEG3) was identified to be differentially expressed in hDFCs by reverse transcription-quantitative polymerase chain reaction. The knockdown of MEG3 was associated with a reduction of pluripotency makers in hDFCs. In conclusion, for the first time, to the best of our knowledge, the current study determined the different expression profiles of lncRNAs and mRNAs between hDFCs and hPDLCs. The observations made may provide a solid foundation for further research into the molecular mechanisms of lncRNAs in human periodontal development.
Collapse
Affiliation(s)
- Liping Wu
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lidi Deng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hong Hong
- Zhujiang New Town Dental Clinic, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Caixia Peng
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xueqin Zhang
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zhengyuan Chen
- Department of Orthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
7
|
Lin L, Huang M, Shi X, Mayakonda A, Hu K, Jiang YY, Guo X, Chen L, Pang B, Doan N, Said JW, Xie J, Gery S, Cheng X, Lin Z, Li J, Berman BP, Yin D, Lin DC, Koeffler H. Super-enhancer-associated MEIS1 promotes transcriptional dysregulation in Ewing sarcoma in co-operation with EWS-FLI1. Nucleic Acids Res 2019; 47:1255-1267. [PMID: 30496486 PMCID: PMC6379679 DOI: 10.1093/nar/gky1207] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
As the second most common malignant bone tumor in children and adolescents, Ewing sarcoma is initiated and exacerbated by a chimeric oncoprotein, most commonly, EWS-FLI1. In this study, we apply epigenomic analysis to characterize the transcription dysregulation in this cancer, focusing on the investigation of super-enhancer and its associated transcriptional regulatory mechanisms. We demonstrate that super-enhancer-associated transcripts are significantly enriched in EWS-FLI1 target genes, contribute to the aberrant transcriptional network of the disease, and mediate the exceptional sensitivity of Ewing sarcoma to transcriptional inhibition. Through integrative analysis, we identify MEIS1 as a super-enhancer-driven oncogene, which co-operates with EWS-FLI1 in transcriptional regulation, and plays a key pro-survival role in Ewing sarcoma. Moreover, APCDD1, another super-enhancer-associated gene, acting as a downstream target of both MEIS1 and EWS-FLI1, is also characterized as a novel tumor-promoting factor in this malignancy. These data delineate super-enhancer-mediated transcriptional deregulation in Ewing sarcoma, and uncover numerous candidate oncogenes which can be exploited for further understanding of the molecular pathogenesis for this disease.
Collapse
Affiliation(s)
- Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Xianping Shi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Xiao Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Li Chen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Brendan Pang
- Department of Pathology, National University Hospital Singapore, 119074, Singapore
| | - Ngan Doan
- Department of Pathology and Laboratory Medicine, University of California Los Angeles and David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, University of California Los Angeles and David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jianjun Xie
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Sigal Gery
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xu Cheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Zhaoyu Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Oral & Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Jinsong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Oral & Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Benjamin P Berman
- Department of Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- National University Cancer Institute, National University Hospital Singapore, 119074, Singapore
| |
Collapse
|
8
|
Chen C, Zhang J, Ling J, Du Y, Hou Y. Nkd2 promotes the differentiation of dental follicle stem/progenitor cells into osteoblasts. Int J Mol Med 2018; 42:2403-2414. [PMID: 30106129 PMCID: PMC6192769 DOI: 10.3892/ijmm.2018.3822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/10/2018] [Indexed: 12/05/2022] Open
Abstract
Dental follicle stem/progenitor cells have the potential to undergo osteogenesis. naked cuticle homolog 2 (Nkd2) is a signal-inducible feedback antagonist of the canonical Wnt signaling pathway. The purpose of the present study was to investigate the function of Nkd2 in the differentiation of dental follicle stem/progenitor cells (DFSCs) into osteoblasts. Immunohistochemistry, reverse transcription-quantitative polymerase chain reaction and western blotting were employed to detect Nkd2 expression in rat DFSCs. In addition, rat DFSCs (rDFSCs) were transfected with small interfering RNAs to examine the effect of Nkd2 on the differentiation of these cells into osteoblasts. Furthermore, the function of Nkd2 in the Wnt/β-catenin pathway in rDFSCs was investigated using β-catenin/T-cell factor luciferase activity assays and western blotting. It was revealed that the expression of Nkd2 was upregulated during the differentiation of rDFSCs into osteoblasts. Furthermore, osteoblast differentiation ability and Wnt/β-catenin pathway activity were significantly decreased in Nkd2-silenced rDFSCs compared with the si-NC group (P<0.05 and P<0.001, respectively). The results suggest that Nkd2 promotes the differentiation of rDFSCs into osteoblasts through Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Chanchan Chen
- Department of Stomatology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Jianying Zhang
- Department of Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hu'nan 410083, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Research Institute of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yu Du
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Research Institute of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yuluan Hou
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Research Institute of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
9
|
Bok JS, Byun SH, Park BW, Kang YH, Lee SL, Rho GJ, Hwang SC, Woo DK, Lee HJ, Byun JH. The Role of Human Umbilical Vein Endothelial Cells in Osteogenic Differentiation of Dental Follicle-Derived Stem Cells in In Vitro Co-cultures. Int J Med Sci 2018; 15:1160-1170. [PMID: 30123053 PMCID: PMC6097253 DOI: 10.7150/ijms.27318] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/30/2018] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis and vascularization are essential for the growth and survival of most tissues. Engineered bone tissue requires an active blood vessel network for survival and integration with mature host tissue. Angiogenesis also has an effect on cell growth and differentiation in vitro. However, the effect of angiogenic factors on osteoprogenitor cell differentiation remains unclear. We studied the effects of human umbilical vein endothelial cells (HUVECs) on osteogenic differentiation of dental follicle-derived stem cells (DFSCs) in vitro by co-culturing DFSCs and HUVECs. Cell viability, based on metabolic activity and DNA content, was highest for co-cultures with a DFSC/HUVEC ratio of 50:50 in a 1:1 mixture of mesenchymal stem cell growth medium and endothelial cell growth medium. Osteoblastic and angiogenic phenotypes were enhanced in co-cultures with a DFSC/HUVEC ratio of 50:50 compared with DFSC monocultures. Increased expression of angiogenic phenotypes and vascular endothelial growth factor (VEGF) levels were observed over time in both 50:50 DFSC/HUVEC co-cultures and DFSC monocultures during culture period. Our results showed that increased angiogenic activity in DFSC/HUVEC co-cultures may stimulate osteoblast maturation of DFSCs. Therefore, the secretion of angiogenic factors from HUVECs may play a role in the osteogenic differentiation of DFSCs.
Collapse
Affiliation(s)
- Jung-Suk Bok
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Hoon Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
10
|
Belair DG, Wolf CJ, Wood C, Ren H, Grindstaff R, Padgett W, Swank A, MacMillan D, Fisher A, Winnik W, Abbott BD. Engineering human cell spheroids to model embryonic tissue fusion in vitro. PLoS One 2017; 12:e0184155. [PMID: 28898253 PMCID: PMC5595299 DOI: 10.1371/journal.pone.0184155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/19/2017] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal interactions drive embryonic fusion events during development, and perturbations of these interactions can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known about the effect of chemical exposures on fusion events during human development because of a lack of relevant and robust human in vitro assays of developmental fusion behavior. Given the etiology and prevalence of cleft palate and the relatively simple architecture and composition of the embryonic palate, we sought to develop a three-dimensional culture system that mimics the embryonic palate and could be used to study fusion behavior in vitro using human cells. We engineered size-controlled human Wharton’s Jelly stromal cell (HWJSC) spheroids and established that 7 days of culture in osteogenesis differentiation medium was sufficient to promote an osteogenic phenotype consistent with embryonic palatal mesenchyme. HWJSC spheroids supported the attachment of human epidermal keratinocyte progenitor cells (HPEKp) on the outer spheroid surface likely through deposition of collagens I and IV, fibronectin, and laminin by mesenchymal spheroids. HWJSC spheroids coated in HPEKp cells exhibited fusion behavior in culture, as indicated by the removal of epithelial cells from the seams between spheroids, that was dependent on epidermal growth factor signaling and fibroblast growth factor signaling in agreement with palate fusion literature. The method described here may broadly apply to the generation of three-dimensional epithelial-mesenchymal co-cultures to study developmental fusion events in a format that is amenable to predictive toxicology applications.
Collapse
Affiliation(s)
- David G. Belair
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Cynthia J. Wolf
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Carmen Wood
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Hongzu Ren
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Rachel Grindstaff
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - William Padgett
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Adam Swank
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Denise MacMillan
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Anna Fisher
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Witold Winnik
- Research Cores Unit, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
| | - Barbara D. Abbott
- Toxicity Assessment Division, US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Epigenetic silencing of the Wnt antagonist APCDD1 by promoter DNA hyper-methylation contributes to osteosarcoma cell invasion and metastasis. Biochem Biophys Res Commun 2017; 491:91-97. [PMID: 28698141 DOI: 10.1016/j.bbrc.2017.07.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/08/2017] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) is the most common type of bone tumor in children and adults. However, the molecular mechanism underlying OS tumorigenesis remains unclear. Here, we report that the expression of APCDD1, a Wnt antagonist, was reduced in OS tissues and cells compared to adjacent normal tissue and osteoblast cells, respectively. Mechanistically, this was due to increased levels of methylation in the promoter region of the APCDD1 gene. Consistently, the DNA methyltransferase inhibitor 5-AZA-dC, reduced DNA methylation in the APCDD1 promoter, and restored APCDD1 expression in OS tissue and cells. Moreover, DNMT3a, but not DNMT1 or DNMT3b, was the major DNA methyltransferase that facilitated hyper-methylation of DNA in the APCDD1 promoter, thus reducing APCDD1 mRNA levels in OS tissues. Importantly, ectopic expression of APCDD1 suppressed activity of the Wnt/β-Catenin signaling pathway in OS cells and inhibited their invasion and reversed their EMT-like properties, while depletion of APCDD1 promoted invasion and metastasis of osteosarcoma cells in vitro and in vivo. Thus, we have provided the first evidence that APCDD1 expression is epigenetically silenced in OS, which may facilitate invasion and metastasis of OS cells.
Collapse
|
12
|
Sun Y, Franklin AM, Mauerhan DR, Hanley EN. Biological Effects of Phosphocitrate on Osteoarthritic Articular Chondrocytes. Open Rheumatol J 2017; 11:62-74. [PMID: 28659999 PMCID: PMC5470061 DOI: 10.2174/1874312901711010062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/06/2017] [Accepted: 04/08/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Phosphocitrate (PC) inhibits osteoarthritis (OA) in Hartley guinea pigs. However, the underlying molecular mechanisms remain poorly understood. OBJECTIVE This study sought to examine the biological effect of PC on OA chondrocytes and test the hypothesis that PC may exert its OA disease modifying effect, in part, by inhibiting the expression of genes implicated in OA disease process and stimulating the production of extracellular matrices. METHOD OA chondrocytes were cultured in the absence or presence of PC. Total RNA was extracted and subjected to microarray analyses. The effect of PC on proliferation and chondrocyte-mediated calcification were examined in monolayer culture. The effect of PC on the production of extracellular matrices was examined in micromass culture. RESULTS PC downregulated the expression of numerous genes classified in proliferation and apoptosis while upregulating the expression of many genes classified in transforming growth factor-β (TGF-β) receptor signaling pathway and ossification. PC also downregulated the expressions of many genes classified in inflammatory response and Wnt receptor signaling pathways. Consistent with its effect on the expression of genes classified in proliferation, ossification, and skeletal development, PC inhibited the proliferation of OA chondrocytes and chondrocyte-mediated calcification while stimulating the production of extracellular matrices. CONCLUSION PC may exert its OA disease modifying effect, in part, through a crystal-independent mechanism or by inhibiting the expressions of many genes implicated in OA disease process, and at the same time, stimulating the expression of genes implicated in chondroprotection and production of extracellular matrices.
Collapse
Affiliation(s)
- Yubo Sun
- Department of Orthopedic Surgery, Cannon Research, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Atiya M Franklin
- Department of Orthopedic Surgery, Cannon Research, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - David R Mauerhan
- Department of Orthopedic Surgery, Cannon Research, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| | - Edward N Hanley
- Department of Orthopedic Surgery, Cannon Research, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA
| |
Collapse
|
13
|
Yiew NKH, Chatterjee TK, Tang YL, Pellenberg R, Stansfield BK, Bagi Z, Fulton DJ, Stepp DW, Chen W, Patel V, Kamath VM, Litwin SE, Hui DY, Rudich SM, Kim HW, Weintraub NL. A novel role for the Wnt inhibitor APCDD1 in adipocyte differentiation: Implications for diet-induced obesity. J Biol Chem 2017; 292:6312-6324. [PMID: 28242765 PMCID: PMC5391760 DOI: 10.1074/jbc.m116.758078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/15/2017] [Indexed: 01/03/2023] Open
Abstract
Impaired adipogenic differentiation during diet-induced obesity (DIO) promotes adipocyte hypertrophy and inflammation, thereby contributing to metabolic disease. Adenomatosis polyposis coli down-regulated 1 (APCDD1) has recently been identified as an inhibitor of Wnt signaling, a key regulator of adipogenic differentiation. Here we report a novel role for APCDD1 in adipogenic differentiation via repression of Wnt signaling and an epigenetic linkage between miR-130 and APCDD1 in DIO. APCDD1 expression was significantly up-regulated in mature adipocytes compared with undifferentiated preadipocytes in both human and mouse subcutaneous adipose tissues. siRNA-based silencing of APCDD1 in 3T3-L1 preadipocytes markedly increased the expression of Wnt signaling proteins (Wnt3a, Wnt5a, Wnt10b, LRP5, and β-catenin) and inhibited the expression of adipocyte differentiation markers (CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ)) and lipid droplet accumulation, whereas adenovirus-mediated overexpression of APCDD1 enhanced adipogenic differentiation. Notably, DIO mice exhibited reduced APCDD1 expression and increased Wnt expression in both subcutaneous and visceral adipose tissues and impaired adipogenic differentiation in vitro Mechanistically, we found that miR-130, whose expression is up-regulated in adipose tissues of DIO mice, could directly target the 3'-untranslated region of the APCDD1 gene. Furthermore, transfection of an miR-130 inhibitor in preadipocytes enhanced, whereas an miR-130 mimic blunted, adipogenic differentiation, suggesting that miR-130 contributes to impaired adipogenic differentiation during DIO by repressing APCDD1 expression. Finally, human subcutaneous adipose tissues isolated from obese individuals exhibited reduced expression of APCDD1, C/EBPα, and PPARγ compared with those from non-obese subjects. Taken together, these novel findings suggest that APCDD1 positively regulates adipogenic differentiation and that its down-regulation by miR-130 during DIO may contribute to impaired adipogenic differentiation and obesity-related metabolic disease.
Collapse
Affiliation(s)
- Nicole K H Yiew
- From the Departments of Pharmacology and Toxicology
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Tapan K Chatterjee
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
- Medicine, Division of Cardiology
| | - Yao Liang Tang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
- Medicine, Division of Cardiology
| | | | - Brian K Stansfield
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
- Pediatrics
| | - Zsolt Bagi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
- Medicine, Division of Cardiology
| | - David J Fulton
- From the Departments of Pharmacology and Toxicology
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - David W Stepp
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
- Physiology
| | | | | | | | - Sheldon E Litwin
- the Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - David Y Hui
- the Department of Pathology and Lab Medicine, University of Cincinnati, Cincinnati, Ohio 45219, and
| | | | - Ha Won Kim
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912,
- Medicine, Division of Cardiology
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912,
- Medicine, Division of Cardiology
| |
Collapse
|
14
|
Zhou ZC, Che L, Kong L, Lei DL, Liu R, Yang XJ. CKIP-1 silencing promotes new bone formation in rat mandibular distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 123:e1-e9. [PMID: 27727105 DOI: 10.1016/j.oooo.2016.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/24/2016] [Accepted: 07/22/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This study investigated the effects and possible molecular mechanism of casein kinase-2 interacting protein-1 (CKIP-1) silencing on bone regeneration during rat mandibular distraction osteogenesis (DO). STUDY DESIGN CKIP-1 silencing by chitosan/si-CKIP-1 was employed and analyzed both in rat mandibular DO models in vivo and in cultured rat mandible bone marrow stromal cells (BMSCs) in vitro. RESULTS Gross observation, micro-computed tomography analysis, and hematoxylin and eosin (H&E) staining revealed that new bone formation in the distraction gap of the chitosan/si-CKIP-treated group was better compared with the chitosan/si-NC and phosphate buffered saline-treated groups in both quantity and quality. Proliferation assay, flow cytometry, and alizarin red staining indicated that CKIP-1 silencing significantly inhibited apoptosis, but promoted osteogenic differentiation of cultured BMSCs. Additionally, CKIP-1 silencing significantly promoted the expression of Wnt3 a, β-catenin, and osteocalcin both in new bone formation of DO models in vivo and in the osteogenic differentiation process of BMSCs in vitro. CONCLUSIONS Promotion of bone formation after CKIP-1 silencing in rat mandibular distraction osteogenesis appears to be mediated through the Wnt3 a/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zi-Chao Zhou
- First Cadet Brigade, Fourth Military Medical University, Xi'an, China
| | - Lei Che
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China; Department of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - De-Lin Lei
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Rui Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Nursing Department, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xin-Jie Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|