1
|
Fonseca VC, Van V, Ip BC. Primary Human Cell-Derived Extracellular Matrix from Decellularized Fibroblast Microtissues with Tissue-Dependent Composition and Microstructure. Cell Mol Bioeng 2024; 17:189-201. [PMID: 39050510 PMCID: PMC11263529 DOI: 10.1007/s12195-024-00809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Human extracellular matrix (ECM) exhibits complex protein composition and architecture depending on tissue and disease state, which remains challenging to reverse engineer. One promising approach is based on cell-secreted ECM from primary human fibroblasts that can be decellularized into acellular biomaterials. However, fibroblasts cultured on rigid culture plastic or biomaterial scaffolds can experience aberrant mechanical cues that perturb the biochemical, mechanical, and the efficiency of ECM production. Methods Here, we demonstrate a method for preparing decellularized ECM using primary human fibroblasts with tissue and disease-specific features with two case studies: (1) cardiac fibroblasts; (2) lung fibroblasts from healthy or diseased donors. Cells aggregate into engineered microtissues in low adhesion microwells that deposited ECM and can be decellularized. We systematically investigate microtissue morphology, matrix architecture, and mechanical properties, along with transcriptomic and proteomic analysis. Results Microtissues exhibited tissue-specific gene expression and proteomics profiling, with ECM complexity similar to native tissues. Healthy lung microtissues exhibited web-like fibrillar collagen compared to dense patches in healthy heart microtissues. Diseased lung exhibited more disrupted collagen architecture than healthy. Decellularized microtissues had tissue-specific mechanical stiffness that was physiologically relevant. Importantly, decellularized microtissues supported viability and proliferation of human cells. Conclusions We show that engineered microtissues of primary human fibroblasts seeded in low-adhesion microwells can be decellularized to produce human, tissue and disease-specific ECM. This approach should be widely applicable for generating personalized matrix that recapitulate tissues and disease states, relevant for culturing patient cells ex vivo as well as implantation for therapeutic treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00809-y.
Collapse
Affiliation(s)
- Vera C. Fonseca
- Department of Pathology & Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912 USA
| | - Vivian Van
- Department of Pathology & Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912 USA
| | - Blanche C. Ip
- Department of Pathology & Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912 USA
- Present Address: The Broad Institute of MIT and Harvard, 75 Ames Street Cambridge, Cambridge, MA 02142 USA
| |
Collapse
|
2
|
Li X, Shan J, Chen X, Cui H, Wen G, Yu Y. Decellularized diseased tissues: current state-of-the-art and future directions. MedComm (Beijing) 2023; 4:e399. [PMID: 38020712 PMCID: PMC10661834 DOI: 10.1002/mco2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianyang Shan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Fonseca VC, Van V, Ip BC. Primary Human Cell-Derived Extracellular Matrix from Decellularized Fibroblast Microtissues with Tissue-Dependent Composition and Microstructure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553420. [PMID: 37645710 PMCID: PMC10462104 DOI: 10.1101/2023.08.15.553420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Human extracellular matrix (ECM) exhibits complex protein composition and architecture depending on tissue and disease state, which remains challenging to reverse engineer. One promising approach is based on cell-secreted ECM from human fibroblasts, which can then be decellularized into an acellular biomaterial. However, fibroblasts initially seeded on rigid tissue culture plastic or biomaterial scaffolds experience aberrant mechanical cues that influence ECM deposition. Here, we show that engineered microtissues of primary human fibroblasts seeded in low-adhesion microwells can be decellularized to produce human, tissue-specific ECM. We investigate: 1) cardiac fibroblasts, as well as 2) lung fibroblasts from healthy, idiopathic fibrosis and chronic obstructive pulmonary disease donors. We demonstrate optimized culture and decellularization conditions, then characterize gene expression and protein composition. We further characterize ECM microstructure and mechanical properties. We envision that this method could be utilized for biomanufacturing of patient and tissue-specific ECM for organoid drug screening as well as implantable scaffolds. Impact In this study, we demonstrate a method for preparing decellularized matrix using primary human fibroblasts with tissue and disease-specific features. We aggregate single cell dispersions into engineered tissues using low adhesion microwells and show culture conditions that promote ECM deposition. We demonstrate this approach for cardiac fibroblasts as well as lung fibroblasts (both normal and diseased). We systematically investigate tissue morphology, matrix architecture, and mechanical properties, along with transcriptomic and proteomic analysis. This approach should be widely applicable for generating personalized ECM with features of patient tissues and disease state, relevant for culturing patient cells ex vivo as well as implantation for therapeutic treatments.
Collapse
|
4
|
Schwarzenbach H, Gahan PB. Interplay between LncRNAs and microRNAs in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098095. [PMID: 37175800 PMCID: PMC10179369 DOI: 10.3390/ijms24098095] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Although long noncoding RNAs (lncRNAs) are known to be precursors of microRNAs (miRNAs), they frequently act as competing endogoneous RNAs (ceRNAs), yet still their interplay with miRNA is not well known. However, their interaction with miRNAs may result in the modulation of miRNA action. (2) To determine the contribution of these RNA molecules in tumor resistance to chemotherapeutic drugs, it is essential to consider not only the oncogenic and tumor suppressive function of miRNAs but also the impact of lncRNAs on miRNAs. Therefore, we performed an extensive search in different databases including PubMed. (3) The present study concerns the interplay between lncRNAs and miRNAs in the regulatory post-transcriptional network and their impact on drugs used in the treatment of breast cancer. (4) Consideration of this interplay may improve the search for new drugs to circumvent chemoresistance.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, 06126 Perugia, Italy
| |
Collapse
|
5
|
Marques-Magalhães Â, Cruz T, Costa ÂM, Estêvão D, Rios E, Canão PA, Velho S, Carneiro F, Oliveira MJ, Cardoso AP. Decellularized Colorectal Cancer Matrices as Bioactive Scaffolds for Studying Tumor-Stroma Interactions. Cancers (Basel) 2022; 14:cancers14020359. [PMID: 35053521 PMCID: PMC8773780 DOI: 10.3390/cancers14020359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
More than a physical structure providing support to tissues, the extracellular matrix (ECM) is a complex and dynamic network of macromolecules that modulates the behavior of both cancer cells and associated stromal cells of the tumor microenvironment (TME). Over the last few years, several efforts have been made to develop new models that accurately mimic the interconnections within the TME and specifically the biomechanical and biomolecular complexity of the tumor ECM. Particularly in colorectal cancer, the ECM is highly remodeled and disorganized and constitutes a key component that affects cancer hallmarks, such as cell differentiation, proliferation, angiogenesis, invasion and metastasis. Therefore, several scaffolds produced from natural and/or synthetic polymers and ceramics have been used in 3D biomimetic strategies for colorectal cancer research. Nevertheless, decellularized ECM from colorectal tumors is a unique model that offers the maintenance of native ECM architecture and molecular composition. This review will focus on innovative and advanced 3D-based models of decellularized ECM as high-throughput strategies in colorectal cancer research that potentially fill some of the gaps between in vitro 2D and in vivo models. Our aim is to highlight the need for strategies that accurately mimic the TME for precision medicine and for studying the pathophysiology of the disease.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Tânia Cruz
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Ângela Margarida Costa
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Diogo Estêvão
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Elisabete Rios
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Pedro Amoroso Canão
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Sérgia Velho
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Fátima Carneiro
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Maria José Oliveira
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Patrícia Cardoso
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| |
Collapse
|
6
|
Ferreira LP, Gaspar VM, Mano JF. Decellularized Extracellular Matrix for Bioengineering Physiomimetic 3D in Vitro Tumor Models. Trends Biotechnol 2020; 38:1397-1414. [PMID: 32416940 DOI: 10.1016/j.tibtech.2020.04.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Recent advances in the extraction and purification of decellularized extracellular matrix (dECM) obtained from healthy or malignant tissues open new avenues for engineering physiomimetic 3D in vitro tumor models, which closely recapitulate key biomolecular hallmarks and the dynamic cancer cell-ECM interactions in the tumor microenvironment. We review current and upcoming methodologies for chemical modification of dECM-based biomaterials and advanced bioprocessing into organotypic 3D solid tumor models. A comprehensive review of disruptive advances and shortcomings of exploring dECM-based biomaterials for recapitulating the native tumor-supporting matrix is also provided. We hope to drive the discussion on how 3D dECM testing platforms can be leveraged for generating microphysiological tumor surrogates that generate more robust and predictive data on therapeutic bioperformance.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Hoshiba T. Decellularized Extracellular Matrix for Cancer Research. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1311. [PMID: 31013621 PMCID: PMC6515435 DOI: 10.3390/ma12081311] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
Genetic mutation and alterations of intracellular signaling have been focused on to understand the mechanisms of oncogenesis and cancer progression. Currently, it is pointed out to consider cancer as tissues. The extracellular microenvironment, including the extracellular matrix (ECM), is important for the regulation of cancer cell behavior. To comprehensively investigate ECM roles in the regulation of cancer cell behavior, decellularized ECM (dECM) is now used as an in vitro ECM model. In this review, I classify dECM with respect to its sources and summarize the preparation and characterization methods for dECM. Additionally, the examples of cancer research using the dECM were introduced. Finally, future perspectives of cancer studies with dECM are described in the conclusions.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, Koto-ku, Tokyo 135-0064, Japan.
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Ibaraki, Japan.
| |
Collapse
|
8
|
Hoshiba T. An extracellular matrix (ECM) model at high malignant colorectal tumor increases chondroitin sulfate chains to promote epithelial-mesenchymal transition and chemoresistance acquisition. Exp Cell Res 2018; 370:571-578. [PMID: 30016638 DOI: 10.1016/j.yexcr.2018.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Chemoresistance is one of the major barriers for tumor chemotherapy. It is clinically known that chemoresistance increases during tumor progression. Additionally, the extracellular matrix (ECM) is also remodeled during tumor progression. However, it remains unclear how ECM remodeling contributes to chemoresistance acquisition. Recently, it has been reported that epithelial-mesenchymal transition (EMT) contributes to chemoresistance acquisition. Here, how ECM remodeling contributes to 5-fluorouracil (5-FU) resistance acquisition was investigated from the viewpoints of EMT using in vitro ECM models mimicking native ECM in colorectal tumor tissue at three different malignant levels. 5-FU partially induced EMT and increased ABCB1 in colorectal HT-29 cells via TGF-β signaling (an invasive tumor cell model). When HT-29 cells were cultured on an ECM model (high malignant matrices) mimicking native ECM in highly malignant tumor tissues, the cells facilitated TGF-β-induced EMT and increased ABCB1 upregulation compared with that of other ECM models mimicking the low malignant level and normal tissues. High malignant matrices contained more chondroitin sulfate (CS) chains than those of other ECM models. Finally, CS chain-reduced high malignant matrices could not facilitate ABCB1 upregulation and TGF-β-induced EMT. These results demonstrated that ECM remodeling during tumor progression increased CS chains to facilitate EMT and ABCB1 upregulation, contributing to chemoresistance acquisition.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Innovative Flex Course for Frontier Organic Material Systems, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
9
|
Hoshiba T. Cultured cell-derived decellularized matrices: a review towards the next decade. J Mater Chem B 2017; 5:4322-4331. [DOI: 10.1039/c7tb00074j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary of recent progress in cell-derived decellularized matrices preparation and application, with perspectives towards the next decade.
Collapse
Affiliation(s)
- T. Hoshiba
- Frontier Center for Organic Materials
- Yamagata University
- Yonezawa
- Japan
- Innovative Flex Course for Frontier Organic Materials Systems
| |
Collapse
|
10
|
Hoshiba T, Tanaka M. Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: Mechanism of 5-fluorouracil resistance in colorectal tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2749-2757. [PMID: 27558478 DOI: 10.1016/j.bbamcr.2016.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
Abstract
Chemoresistance is a major barrier for tumor chemotherapy. It is well-known that chemoresistance increases with tumor progression. Chemoresistance is altered by both genetic mutations and the alteration of extracellular microenvironment. Particularly, the extracellular matrix (ECM) is remodeled during tumor progression. Therefore, ECM remodeling is expected to cause the acquisition of chemoresistance in highly malignant tumor tissue. Here, we prepared cultured cell-derived decellularized matrices that mimic native ECM in tumor tissues at different stages of malignancy, and 5-fluorouracil (5-FU) resistance was compared among these matrices. 5-FU resistance of colorectal tumor cells increased on the matrices derived from highly malignant tumor HT-29 cells, although the resistance did not increase on the matrices derived from low malignant tumor SW480 cells and normal CCD-841-CoN cells. The resistance on HT-29 cell-derived matrices increased through the activation of Akt and the upregulation of ABCB1 and ABCC1 without cell growth promotion, suggesting that ECM remodeling plays important roles in the acquisition of chemoresistance during tumor progression. It is expected that our decellularized matrices, or "staged tumorigenesis-mimicking matrices", will become preferred cell culture substrates for in vitro analysis of comprehensive ECM roles in chemoresistance and the screening and pharmacokinetic analysis of anti-cancer drugs.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Kim N, Cho SB, Park YL, Park SY, Myung E, Kim SH, Yu HM, Son YA, Myung DS, Lee WS, Joo YE. Effect of Recepteur d'Origine Nantais expression on chemosensitivity and tumor cell behavior in colorectal cancer. Oncol Rep 2016; 35:3331-40. [PMID: 27035413 DOI: 10.3892/or.2016.4721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 11/05/2022] Open
Abstract
Recepteur d'Origine Nantais (RON) expression is known to induce oncogenic properties including tumor cell growth, survival, motility, angiogenesis and chemoresistance. In the present study, we evaluated whether RON affects chemosensitivity and oncogenic behavior of colorectal cancer cells and investigated its prognostic value in colorectal cancer. To evaluate the impact of RON on chemosensitivity and tumor cell behavior, we treated colorectal cancer cells with small interfering RNAs specific to RON. This was followed by flow cytometric analyses and migration, Matrigel invasion and endothelial tube formation assays. The expression of RON was investigated by immunohistochemistry in colorectal cancer tissues. TUNEL assay and immunohistochemical staining for CD34 and D2-40 were deployed to determine apoptosis, angiogenesis and lymphangiogenesis. RON knockdown enhanced 5-fluorouracil (FU)-induced apoptosis by upregulating the activities of caspases and expression of proapoptotic genes. Moreover, it enhanced 5-FU-induced cell cycle arrest by decreasing the expression of cyclins and cyclin‑dependent kinases and inducing that of p21. Furthermore, RON knockdown augmented the 5-FU-induced inhibition of invasion and migration of colorectal cancer cells. The β-catenin signaling cascade was blocked by RON knockdown upon 5-FU treatment. RON knockdown also decreased endothelial tube formation and expression of VEGF-A and HIF-1α and increased angiostatin expression. Furthermore, it inhibited lymphatic endothelial cell tube formation and the expression of VEGF-C and COX-2. RON expression was observed to be associated with age, tumor size, lymphovascular and perineural invasion, tumor stage, lymph node and distant metastasis, and poor survival rate. The mean microvessel density value of RON-positive tumors was significantly higher than that of RON-negative ones. These results indicate that RON is associated with tumor progression by inhibiting chemosensitivity and enhancing angiogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Nuri Kim
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Eun Myung
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Seung-Hun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Hyung-Min Yu
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Young-Ae Son
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Dong-ku, Gwangju 501-757, Republic of Korea
| |
Collapse
|
12
|
Hoshiba T, Nikaido M, Yagi S, Konno I, Yoshihiro A, Tanaka M. Blood-compatible poly (2-methoxyethyl acrylate) for the adhesion and proliferation of lung cancer cells toward the isolation and analysis of circulating tumor cells. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515618976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Circulating tumor cells have received attention for their role in cancer diagnosis and the decision on which chemotherapeutic course to take. For these purposes, the isolation of circulating tumor cells has been important. Previously, we reported that non-blood cells can adhere on blood-compatible polymer substrates, such as poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate). In this study, we examined whether blood-compatible poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) allow the adhesion and growth of A549 lung cancer cells for isolating circulating tumor cells by adhesion-mediated manner to diagnose metastatic cancer and to decide on the chemotherapeutic course. A549 cells can adhere on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates via an integrin-dependent mechanism after 1 h of incubation, suggesting that blood-compatible poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates possess the ability to capture circulating tumor cells selectively from peripheral blood. After 1 day of culture, A549 cells started to spread on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates. A549 can also grow on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates. Additionally, the chemoresistance of A549 cells against 5-fluorouracil on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates was similar to that on the conventional cell culture substrate, tissue culture polystyrene. These results indicate that circulating tumor cells can be cultured on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates after they are isolated from peripheral blood, and poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates can be used as circulating tumor cell culture substrates for screening anti-cancer drugs. Therefore, poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates might be able to be applied to the development of a new device for a circulating tumor cell–based diagnosis of metastatic cancer and a personalized medicine approach regarding the decision of which chemotherapeutic course should be taken.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, Yamagata, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Mayo Nikaido
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Satomi Yagi
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Iku Konno
- Department of Biochemical Engineering, Yamagata University, Yamagata, Japan
| | - Ayano Yoshihiro
- Department of Biochemical Engineering, Yamagata University, Yamagata, Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, Yamagata, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
HOSHIBA T, TANAKA M. Integrin-independent Cell Adhesion Substrates: Possibility of Applications for Mechanobiology Research. ANAL SCI 2016; 32:1151-1158. [DOI: 10.2116/analsci.32.1151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takashi HOSHIBA
- Frontier Center for Organic Materials, Yamagata University
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
| | - Masaru TANAKA
- Frontier Center for Organic Materials, Yamagata University
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
14
|
Hoshiba T, Chen G, Endo C, Maruyama H, Wakui M, Nemoto E, Kawazoe N, Tanaka M. Decellularized Extracellular Matrix as an In Vitro Model to Study the Comprehensive Roles of the ECM in Stem Cell Differentiation. Stem Cells Int 2015; 2016:6397820. [PMID: 26770210 PMCID: PMC4684892 DOI: 10.1155/2016/6397820] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022] Open
Abstract
Stem cells are a promising cell source for regenerative medicine. Stem cell differentiation must be regulated for applications in regenerative medicine. Stem cells are surrounded by extracellular matrix (ECM) in vivo. The ECM is composed of many types of proteins and glycosaminoglycans that assemble into a complex structure. The assembly of ECM molecules influences stem cell differentiation through orchestrated intracellular signaling activated by many ECM molecules. Therefore, it is important to understand the comprehensive role of the ECM in stem cell differentiation as well as the functions of the individual ECM molecules. Decellularized ECM is a useful in vitro model for studying the comprehensive roles of ECM because it retains a native-like structure and composition. Decellularized ECM can be obtained from in vivo tissue ECM or ECM fabricated by cells cultured in vitro. It is important to select the correct decellularized ECM because each type has different properties. In this review, tissue-derived and cell-derived decellularized ECMs are compared as in vitro ECM models to examine the comprehensive roles of the ECM in stem cell differentiation. We also summarize recent studies using decellularized ECM to determine the comprehensive roles of the ECM in stem cell differentiation.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Chiho Endo
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroka Maruyama
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Miyuki Wakui
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Eri Nemoto
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Naoki Kawazoe
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Abstract
The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies.
Collapse
|