1
|
Lee SY, Hwang G, Choi M, Jo CH, Oh SJ, Jin YB, Lee WJ, Rho GJ, Lee HC, Lee SL, Hwang TS. Histological and Molecular Biological Changes in Canine Skin Following Acute Radiation Therapy-Induced Skin Injury. Animals (Basel) 2024; 14:2505. [PMID: 39272290 PMCID: PMC11394491 DOI: 10.3390/ani14172505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Radiation therapy is a crucial cancer treatment, but it can damage healthy tissues, leading to side effects like skin injuries and molecular alterations. This study aimed to elucidate histological and molecular changes in canine skin post-radiation therapy (post-RT) over nine weeks, focusing on inflammation, stem cell activity, angiogenesis, keratinocyte regeneration, and apoptosis. Four male beagles received a cumulative radiation dose of 48 Gy, followed by clinical observations, histological examinations, and an RT-qPCR analysis of skin biopsies. Histological changes correlated with clinical recovery from inflammation. A post-RT analysis revealed a notable decrease in the mRNA levels of Oct4, Sox2, and Nanog from weeks 1 to 9. VEGF 188 levels initially saw a slight increase at week 1, but they had significantly declined by week 9. Both mRNA and protein levels of COX-2 and Keratin 10 significantly decreased over the 9 weeks following RT, although COX-2 expression surged in the first 2 weeks, and Keratin 10 levels increased at weeks 4 to 5 compared to normal skin. Apoptosis peaked at 2 weeks and diminished, nearing normal by 9 weeks. These findings offer insights into the mechanisms of radiation-induced skin injury and provide guidance for managing side effects in canine radiation therapy.
Collapse
Affiliation(s)
- Sang-Yun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gunha Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonyeong Choi
- Yangsan S Animal Cancer Center, Yangsan 50638, Republic of Korea
| | - Chan-Hee Jo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seong-Ju Oh
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Chun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Sung Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Fang L, Wang H. Reverse Turnover Pedicled Latissimus Dorsi Muscle Flap for the Repair of Radiation Ulcer in the Back: A Case Report. World J Plast Surg 2024; 13:87-91. [PMID: 39193239 PMCID: PMC11346688 DOI: 10.61186/wjps.13.2.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/02/2024] [Indexed: 08/29/2024] Open
Abstract
Cases of radioactive back ulcers caused by radiation therapy have not been reported. This paper reports a matter of a 55-year-old male patient suffering from chronic back radiation ulcer after coronary stent implantation. Through the repeated and complete expansion of the rear radiation ulcer wound, the back radiation ulcer wound was successfully repaired with the reverse turnover pedicled latissimus dorsi muscle flap, and the clinical effect was satisfactory.
Collapse
Affiliation(s)
- Lu Fang
- Day Surgery center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huaisheng Wang
- Department of Plastic and Burn Surgery, West China School of Medicine, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
3
|
Woo SH, Mo YJ, Lee YI, Park JH, Hwang D, Park TJ, Kang HY, Park SC, Lee YS. ANT2 Accelerates Cutaneous Wound Healing in Aged Skin by Regulating Energy Homeostasis and Inflammation. J Invest Dermatol 2023; 143:2295-2310.e17. [PMID: 37211200 DOI: 10.1016/j.jid.2023.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
An effective healing response is critical to healthy aging. In particular, energy homeostasis has become increasingly recognized as a factor in effective skin regeneration. ANT2 is a mediator of adenosine triphosphate import into mitochondria for energy homeostasis. Although energy homeostasis and mitochondrial integrity are critical for wound healing, the role played by ANT2 in the repair process had not been elucidated to date. In our study, we found that ANT2 expression decreased in aged skin and cellular senescence. Interestingly, overexpression of ANT2 in aged mouse skin accelerated the healing of full-thickness cutaneous wounds. In addition, upregulation of ANT2 in replicative senescent human diploid dermal fibroblasts induced their proliferation and migration, which are critical processes in wound healing. Regarding energy homeostasis, ANT2 overexpression increased the adenosine triphosphate production rate by activating glycolysis and induced mitophagy. Notably, ANT2-mediated upregulation of HSPA6 in aged human diploid dermal fibroblasts downregulated proinflammatory genes that mediate cellular senescence and mitochondrial damage. This study shows a previously uncharacterized physiological role of ANT2 in skin wound healing by regulating cell proliferation, energy homeostasis, and inflammation. Thus, our study links energy metabolism to skin homeostasis and reports, to the best of our knowledge, a previously unreported genetic factor that enhances wound healing in an aging model.
Collapse
Affiliation(s)
- Seung-Hwa Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yun Jeong Mo
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea; Institution of Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hee Young Kang
- Institution of Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Dermatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea; Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
4
|
Liu S, Wang YL, Shi ST, Zeng GD, Song YW, Zhang XD, Zheng J, Fan XJ, Liu YP. The effect of recombinant human epidermal growth factor on radiation dermatitis in rectal and anal cancer patients: a self-controlled study. BMC Cancer 2022; 22:1140. [PMID: 36335306 PMCID: PMC9637292 DOI: 10.1186/s12885-022-10226-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background Our previous study reported that recombinant human epidermal growth factor (rhEGF)-triggered EGFR internalization promoted radioresistance. Here, we aimed to evaluate the effect of rhEGF on the skin protection of rectal and anal cancer patients receiving radiotherapy. Methods One hundred and ninety-three rectal and anal cancer patients who received radiotherapy were prospectively enrolled from January 2019 to December 2020. To perform self-controlled study, the left and right pelvic skin area (separated by midline) were randomly assigned to the rhEGF and control side. The association between radiation dermatitis and factors including rhEGF, the dose of radiotherapy and tumor distance from anal edge were analyzed. Results Among 193 enrolled patients, 41 patients (21.2%) did not develop radiation dermatitis, and 152 patients (78.8%) suffered radiation dermatitis on at least one side of pelvic skin at the end of radiotherapy. For the effect on radiation dermatitis grade, rhEGF had improved effect on 6 (4.0%) patients, detrimental effect on 2 (1.3%) patients, and no effect on 144 (94.7%) patients. Whereas for the effect on radiation dermatitis area, rhEGF showed improved effect on the radiation dermatitis area of 46 (30.2%) patients, detrimental effect on 15 (9.9%) patients, and no effect on 91 (59.9%) patients. The radiation dermatitis area of rhEGF side was significantly smaller than that of control side (P = 0.0007). Conclusions rhEGF is a skin protective reagent for rectal and anal cancer patients receiving radiotherapy. Trial registration Chinese Clinical Trial Registry identifier: ChiCTR1900020842; Date of registration: 20/01/2019.
Collapse
|
5
|
Mukaneza Y, Cohen A, Rivard MÈ, Tardif J, Deschênes S, Ruiz M, Laprise C, Des Rosiers C, Coderre L. mTORC1 is required for expression of LRPPRC and cytochrome- c oxidase but not HIF-1α in Leigh syndrome French Canadian type patient fibroblasts. Am J Physiol Cell Physiol 2019; 317:C58-C67. [PMID: 30995105 DOI: 10.1152/ajpcell.00160.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leigh syndrome French Canadian type (LSFC) is a mitochondrial disease caused by mutations in the leucine-rich pentatricopeptide repeat-containing (LRPPRC) gene leading to a reduction of cytochrome-c oxidase (COX) expression reaching 50% in skin fibroblasts. We have shown that under basal conditions, LSFC and control cells display similar ATP levels. We hypothesized that this occurs through upregulation of mechanistic target of rapamycin (mTOR)-mediated metabolic reprogramming. Our results showed that compared with controls, LSFC cells exhibited an upregulation of the mTOR complex 1 (mTORC1)/p70 ribosomal S6 kinase pathway and higher levels of hypoxia-inducible factor 1α (HIF-1α) and its downstream target pyruvate dehydrogenase kinase 1 (PDHK1), a regulator of mitochondrial pyruvate dehydrogenase 1 (PDH1). Consistent with these signaling alterations, LSFC cells displayed a 40-61% increase in [U-13C6]glucose contribution to pyruvate, lactate, and alanine formation, as well as higher levels of the phosphorylated and inactive form of PDH1-α. Interestingly, inhibition of mTOR with rapamycin did not alter HIF-1α or PDHK1 protein levels in LSFC fibroblasts. However, this treatment increased PDH1-α phosphorylation in control and LSFC cells and reduced ATP levels in control cells. Rapamycin also decreased LRPPRC expression by 41 and 11% in LSFC and control cells, respectively, and selectively reduced COX subunit IV expression in LSFC fibroblasts. Taken together, our data demonstrate the importance of mTORC1, independent of the HIF-1α/PDHK1 axis, in maintaining LRPPRC and COX expression in LSFC cells.
Collapse
Affiliation(s)
- Yvette Mukaneza
- Department of Nutrition, Université de Montréal , Montreal, Quebec , Canada.,Research Centre, Montreal Heart Institute , Montreal, Quebec , Canada
| | - Aaron Cohen
- Research Centre, Montreal Heart Institute , Montreal, Quebec , Canada
| | - Marie-Ève Rivard
- Research Centre, Montreal Heart Institute , Montreal, Quebec , Canada
| | - Jessica Tardif
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec , Canada
| | - Sonia Deschênes
- Research Centre, Montreal Heart Institute , Montreal, Quebec , Canada
| | - Matthieu Ruiz
- Department of Medicine, Université de Montréal , Montreal, Quebec , Canada.,Research Centre, Montreal Heart Institute , Montreal, Quebec , Canada
| | | | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec , Canada
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal , Montreal, Quebec , Canada.,Research Centre, Montreal Heart Institute , Montreal, Quebec , Canada
| | - Lise Coderre
- Department of Medicine, Université de Montréal , Montreal, Quebec , Canada.,Research Centre, Montreal Heart Institute , Montreal, Quebec , Canada
| |
Collapse
|
6
|
Liu Z, Yu D, Xu J, Li X, Wang X, He Z, Zhao T. Human umbilical cord mesenchymal stem cells improve irradiation-induced skin ulcers healing of rat models. Biomed Pharmacother 2018. [PMID: 29524881 DOI: 10.1016/j.biopha.2018.02.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Irradiation-induced skin ulcers can be resultant from nuclear accident or reaction to radiation therapy of tumor and is intractable for healing. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have been considered to be the potential therapeutic tools for tissue regeneration. However, the underlying mechanisms are still not well understood. This study aims to investigate the effects of hUC-MSCs on irradiation-induced skin ulcers healing and the related mechanisms. The ulcers were induced by irradiating the skin of adult SD rats. The ulcers of SD rats were treated with vehicle or hUC-MSCs donated from mother giving birth. The ulcer healing was measured by imaging the healing rate and the H&E staining. CD31 and VEGF expression was measured with immunohistochemistry assay. iTRAQ proteomics analysis was used to analyze the signaling pathway. The results showed that hUC-MSCs improved healing of irradiation-induced skin ulcers in vivo using a rat model of skin ulcer. Transplantation of hUC-MSCs promoted keratin generation and keratinocytes proliferation of ulcer areas. Furthermore, the results demonstrated that hUC-MSCs increased expression of CD31 and VEGF in ulcers and promoted neovascularization. iTRAQ proteomics analysis results indicated that PI3K/Akt signaling pathway involved in hUC-MSCs-mediated repairing of irradiation-induced skin ulcer. In conclusion, human umbilical cord mesenchymal stem cells promoted neovascularization and re-epithelization, and improved healing of irradiation-induced skin ulcers. This healing improvement may be conducted through activating the PI3K/Akt signaling pathway, however, which needs to be proven by the further investigations.
Collapse
Affiliation(s)
- Zhongshan Liu
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China; Department of the Burns and Plastic, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daojiang Yu
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianwei Xu
- The Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, China
| | - Xiujie Li
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianyao Wang
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Suzhou, China
| | - Zhixu He
- The Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, China.
| | - Tianlan Zhao
- Department of Plastic, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Li J, Diao B, Guo S, Huang X, Yang C, Feng Z, Yan W, Ning Q, Zheng L, Chen Y, Wu Y. VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. Nat Commun 2017; 8:1322. [PMID: 29109438 PMCID: PMC5673889 DOI: 10.1038/s41467-017-01327-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/11/2017] [Indexed: 01/24/2023] Open
Abstract
Exacerbation of macrophage-mediated inflammation contributes to pathogenesis of various inflammatory diseases, but the immunometabolic programs underlying regulation of macrophage activation are unclear. Here we show that V-set immunoglobulin-domain-containing 4 (VSIG4), a B7 family-related protein that is expressed by resting macrophages, inhibits macrophage activation in response to lipopolysaccharide. Vsig4 -/- mice are susceptible to high-fat diet-caused obesity and murine hepatitis virus strain-3 (MHV-3)-induced fulminant hepatitis due to excessive macrophage-dependent inflammation. VSIG4 activates the PI3K/Akt-STAT3 pathway, leading to pyruvate dehydrogenase kinase-2 (PDK2) upregulation and subsequent phosphorylation of pyruvate dehydrogenase, which results in reduction in pyruvate/acetyl-CoA conversion, mitochondrial reactive oxygen species secretion, and macrophage inhibition. Conversely, interruption of Vsig4 or Pdk2 promotes inflammation. Forced expression of Vsig4 in mice ameliorates MHV-3-induced viral fulminant hepatitis. These data show that VSIG4 negatively regulates macrophage activation by reprogramming mitochondrial pyruvate metabolism.
Collapse
Affiliation(s)
- Jialin Li
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Bo Diao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Sheng Guo
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Chengying Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Yan
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Ning
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lixin Zheng
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, MD, 20892, USA
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
8
|
Shahmohammadi Beni M, Krstic D, Nikezic D, Yu KN. Realistic dosimetry for studies on biological responses to X-rays and γ-rays. JOURNAL OF RADIATION RESEARCH 2017; 58:729-736. [PMID: 28444359 PMCID: PMC5737577 DOI: 10.1093/jrr/rrx019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/20/2016] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
A calibration coefficient R (= DA/DE) for photons was employed to characterize the photon dose in radiobiological experiments, where DA was the actual dose delivered to cells and DE was the dose recorded by an ionization chamber. R was determined using the Monte Carlo N-Particle version 5 (MCNP-5) code. Photons with (i) discrete energies, and (ii) continuous-energy distributions under different beam conditioning were considered. The four studied monoenergetic photons had energies E = 0.01, 0.1, 1 and 2 MeV. Photons with E = 0.01 MeV gave R values significantly different from unity, while those with E > 0.1 MeV gave R ≈ 1. Moreover, R decreased monotonically with increasing thickness of water medium above the cells for E = 0.01, 1 or 2 MeV due to energy loss of photons in the medium. For E = 0.1 MeV, the monotonic pattern no longer existed due to the dose delivered to the cells by electrons created through the photoelectric effect close to the medium-cell boundary. The continuous-energy distributions from the X-Rad 320 Biological Irradiator (voltage = 150 kV) were also studied under three different beam conditions: (a) F0: no filter used, (b) F1: using a 2 mm-thick Al filter, and (c) F2: using a filter made of (1.5 mm Al + 0.25 mm Cu + 0.75 mm Sn), giving mean output photon energies of 47.4, 57.3 and 102 keV, respectively. R varied from ~1.04 to ~1.28 for F0, from ~1.13 to ~1.21 for F1, and was very close to unity for F2.
Collapse
Affiliation(s)
- Mehrdad Shahmohammadi Beni
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | | | - Dragoslav Nikezic
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- Faculty of Science, University of Kragujevac, Serbia
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| |
Collapse
|
9
|
DNA methylation profiling reveals the presence of population-specific signatures correlating with phenotypic characteristics. Mol Genet Genomics 2017; 292:655-662. [PMID: 28271161 DOI: 10.1007/s00438-017-1298-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022]
Abstract
Phenotypic characteristics are known to vary substantially among different ethnicities around the globe. These variations are mediated by number of stochastic events and cannot be attributed to genetic architecture alone. DNA methylation is a well-established mechanism that sculpts our epigenome influencing phenotypic variation including disease manifestation. Since DNA methylation is an important determinant for health issues of a population, it demands a thorough investigation of the natural differences in genome wide DNA methylation patterns across different ethnic groups. This study is based on comparative analyses of methylome from five different ethnicities with major focus on Indian subjects. The current study uses hierarchical clustering approaches, principal component analysis and locus specific differential methylation analysis on Illumina 450K methylation data to compare methylome of different ethnic subjects. Our data indicates that the variations in DNA methylation patterns of Indians are less among themselves compared to other global population. It empirically correlated with dietary, cultural and demographical divergences across different ethnic groups. Our work further suggests that Indians included in this study, despite their genetic similarity with the Caucasian population, are in close proximity with Japanese in terms of their methylation signatures.
Collapse
|
10
|
Kong EY, Cheng SH, Yu KN. Biphasic and triphasic dose responses in zebrafish embryos to low-dose 150 kV X-rays with different levels of hardness. JOURNAL OF RADIATION RESEARCH 2016; 57:363-9. [PMID: 26951078 PMCID: PMC4973647 DOI: 10.1093/jrr/rrw026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/26/2016] [Accepted: 02/09/2016] [Indexed: 05/22/2023]
Abstract
The in vivo low-dose responses of zebrafish (Danio rerio) embryos to 150 kV X-rays with different levels of hardness were examined through the number of apoptotic events revealed at 24 h post fertilization by vital dye acridine orange staining. Our results suggested that a triphasic dose response was likely a common phenomenon in living organisms irradiated by X-rays, which comprised an ultra-low-dose inhibition, low-dose stimulation and high-dose inhibition. Our results also suggested that the hormetic zone (or the stimulation zone) was shifted towards lower doses with application of filters. The non-detection of a triphasic dose response in previous experiments could likely be attributed to the use of hard X-rays, which shifted the hormetic zone into an unmonitored ultra-low-dose region. In such cases where the subhormetic zone was missed, a biphasic dose response would be reported instead.
Collapse
Affiliation(s)
- Eva Yi Kong
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong
| |
Collapse
|
11
|
Lee EJ, Kim JW, Yoo H, Kwak W, Choi WH, Cho S, Choi YJ, Lee YJ, Cho J. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation. Biochem Biophys Res Commun 2015; 464:20-26. [PMID: 26047701 DOI: 10.1016/j.bbrc.2015.05.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 12/14/2022]
Abstract
We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm(2) fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C-C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Jun Won Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Hyun Yoo
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Woori Kwak
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-747, South Korea.
| | - Won Hoon Choi
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Seoae Cho
- C&K Genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919, South Korea.
| | - Yu Jeong Choi
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Yoon-Jin Lee
- Division of Radiation Effects, Research Center for Radiotherapy, Korea Institute of Radiological & Medical Sciences, Seoul 139-760, South Korea.
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|