1
|
Li Y, Pan AP, Ye Y, Shao X, Tu R, Liu Y, Yu AY. FoxO1 promotes high glucose-induced inflammation and cataract formation via JAK1/STAT1. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06744-6. [PMID: 39878886 DOI: 10.1007/s00417-025-06744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
PURPOSE To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation. METHODS Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191. 5.5 mM glucose concentration group (NG) was used as a control. Real-time PCR, Western blots, and immunofluorescent staining evaluated the mRNA and protein levels of FoxO1, NLRC4, and IL-6. Apoptosis, cell viability, and EDU Staining were also assessed. RESULTS HG stimulation induced elevated FoxO1 expression and caused NLRC4/IL-6 activation in a concentration-dependent manner. Whereas knockdown of FoxO1 inhibited the high expression of NLRC4/IL-6 inflammatory mediators in response to HG stimulation. The growth of SRA01/04 was inhibited under HG condition, and the cell proliferation ability was restored and even promoted by knocking out FoxO1. HG incubation of rat lens resulted in lens clouding and cataract formation, which was prevented by AS1842856 treatment and reversed by RO8191. CONCLUSION FoxO1 positively regulates HG-induced SRA01/04 inflammatory activation through the JAK1/STAT1 pathway and promotes DC. This provides a feasible strategy for the treatment of diabetic cataract.
Collapse
Affiliation(s)
- Yike Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - An-Peng Pan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yishan Ye
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xu Shao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruixue Tu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yang Liu
- Department of Ophthalmology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - A-Yong Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
3
|
Udeshi ND, Hart GW, Slawson C. From Fringe to the Mainstream: How ETD MS Brought O-GlcNAc to the Masses. Mol Cell Proteomics 2024; 23:100859. [PMID: 39414231 DOI: 10.1016/j.mcpro.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
O-GlcNAcylation was identified in the 1980s by Torres and Hart and modifies thousands of cellular proteins, yet the regulatory role of O-GlcNAc is still poorly understood compared to the abundance of mechanistic information known for other cycling post-translational modifications like phosphorylation. Many challenges are associated with studying O-GlcNAcylation and are tied to the technical hurdles with analysis by mass spectrometry. Over the years, many research groups have developed important methods to study O-GlcNAcylation revealing its role in the cell, and this perspective aims to review the challenges and innovations around O-GlcNAc research and chronicle the work by Donald F. Hunt and his laboratory, particularly in development of ETD and its application to this field of research.
Collapse
Affiliation(s)
- Namrata D Udeshi
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.
| | - Gerald W Hart
- Department of Biochemistry and Molecular Biology, CCRC, University of Georgia, Athens, Georgia, USA
| | - Chad Slawson
- Department Biochemistry, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
4
|
Hu D, Kobayashi N, Ohki R. FUCA1: An Underexplored p53 Target Gene Linking Glycosylation and Cancer Progression. Cancers (Basel) 2024; 16:2753. [PMID: 39123480 PMCID: PMC11311387 DOI: 10.3390/cancers16152753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large part due to drug resistance and disease relapse. Glycosylation, which is a common modification of cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation types and structures regulate the function of biomolecules and are potential targets for investigating and treating cancer. The link between glycosylation and carcinogenesis has been more recently revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase 1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of glycan structures and glycosylation-related enzymes to cancer development. The interplay between glycosylation and tumor microenvironmental factors is also discussed, together with involvement of glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated pathways. Glycan structures also modulate cell-matrix interactions, cell-cell adhesion as well as cell migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation of the mechanistic relationships among glycosylation, related enzymes and cancer progression may provide insights into potential novel cancer treatments.
Collapse
Affiliation(s)
- Die Hu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Naoya Kobayashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
- Department of NCC Cancer Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
5
|
Sha X, Zou X, Liu S, Guan C, Shi W, Gao J, Zhong X, Jiang X. Forkhead box O1 in metabolic dysfunction-associated fatty liver disease: molecular mechanisms and drug research. Front Nutr 2024; 11:1426780. [PMID: 39021599 PMCID: PMC11253077 DOI: 10.3389/fnut.2024.1426780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic liver disease that progresses from hepatic steatosis to non-alcoholic steatohepatitis, cirrhosis, and liver cancer, posing a huge burden on human health. Existing research has confirmed that forkhead box O1 (FOXO1), as a member of the FOXO transcription factor family, is upregulated in MAFLD. Its activity is closely related to nuclear-cytoplasmic shuttling and various post-translational modifications including phosphorylation, acetylation, and methylation. FOXO1 mediates the progression of MAFLD by regulating glucose metabolism, lipid metabolism, insulin resistance, oxidative stress, hepatic fibrosis, hepatocyte autophagy, apoptosis, and immune inflammation. This article elaborates on the regulatory role of FOXO1 in MAFLD, providing a summary and new insights for the current status of drug research and targeted therapies for MAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyu Zhong
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingming Jiang
- General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Kufleitner M, Haiber LM, Li S, Surendran H, Mayer TU, Zumbusch A, Wittmann V. Next-Generation Metabolic Glycosylation Reporters Enable Detection of Protein O-GlcNAcylation in Living Cells without S-Glyco Modification. Angew Chem Int Ed Engl 2024; 63:e202320247. [PMID: 38501674 DOI: 10.1002/anie.202320247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Protein O-GlcNAcylation is a ubiquitous posttranslational modification of cytosolic and nuclear proteins involved in numerous fundamental regulation processes. Investigation of O-GlcNAcylation by metabolic glycoengineering (MGE) has been carried out for two decades with peracetylated N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine derivatives modified with varying reporter groups. Recently, it has been shown that these derivatives can result in non-specific protein labeling termed S-glyco modification. Here, we report norbornene-modified GlcNAc derivatives with a protected phosphate at the anomeric position and their application in MGE. These derivatives overcome two limitations of previously used O-GlcNAc reporters. They do not lead to detectable S-glyco modification, and they efficiently react in the inverse-electron-demand Diels-Alder (IEDDA) reaction, which can be carried out even within living cells. Using a derivative with an S-acetyl-2-thioethyl-protected phosphate, we demonstrate the protein-specific detection of O-GlcNAcylation of several proteins and the protein-specific imaging of O-GlcNAcylation inside living cells by Förster resonance energy transfer (FRET) visualized by confocal fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Markus Kufleitner
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Lisa Maria Haiber
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Shuang Li
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Harsha Surendran
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Valentin Wittmann
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
7
|
Nelson ZM, Leonard GD, Fehl C. Tools for investigating O-GlcNAc in signaling and other fundamental biological pathways. J Biol Chem 2024; 300:105615. [PMID: 38159850 PMCID: PMC10831167 DOI: 10.1016/j.jbc.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cells continuously fine-tune signaling pathway proteins to match nutrient and stress levels in their local environment by modifying intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) sugars, an essential process for cell survival and growth. The small size of these monosaccharide modifications poses a challenge for functional determination, but the chemistry and biology communities have together created a collection of precision tools to study these dynamic sugars. This review presents the major themes by which O-GlcNAc influences signaling pathway proteins, including G-protein coupled receptors, growth factor signaling, mitogen-activated protein kinase (MAPK) pathways, lipid sensing, and cytokine signaling pathways. Along the way, we describe in detail key chemical biology tools that have been developed and applied to determine specific O-GlcNAc roles in these pathways. These tools include metabolic labeling, O-GlcNAc-enhancing RNA aptamers, fluorescent biosensors, proximity labeling tools, nanobody targeting tools, O-GlcNAc cycling inhibitors, light-activated systems, chemoenzymatic labeling, and nutrient reporter assays. An emergent feature of this signaling pathway meta-analysis is the intricate interplay between O-GlcNAc modifications across different signaling systems, underscoring the importance of O-GlcNAc in regulating cellular processes. We highlight the significance of O-GlcNAc in signaling and the role of chemical and biochemical tools in unraveling distinct glycobiological regulatory mechanisms. Collectively, our field has determined effective strategies to probe O-GlcNAc roles in biology. At the same time, this survey of what we do not yet know presents a clear roadmap for the field to use these powerful chemical tools to explore cross-pathway O-GlcNAc interactions in signaling and other major biological pathways.
Collapse
Affiliation(s)
- Zachary M Nelson
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Garry D Leonard
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
8
|
Gui T, Burgering BMT. FOXOs: masters of the equilibrium. FEBS J 2022; 289:7918-7939. [PMID: 34610198 PMCID: PMC10078705 DOI: 10.1111/febs.16221] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
Forkhead box O (FOXO) transcription factors (TFs) are a subclass of the larger family of forkhead TFs. Mammalians express four members FOXO1, FOXO3, FOXO4, and FOXO6. The interest in FOXO function stems mostly from their observed role in determining lifespan, where in model organisms, increased FOXO activity results in extended lifespan. FOXOs act as downstream of several signaling pathway and are extensively regulated through post-translational modifications. The transcriptional program activated by FOXOs in various cell types, organisms, and under various conditions has been described and has shed some light on what the critical transcriptional targets are in mediating FOXO function. At the cellular level, these studies have revealed a role for FOXOs in cell metabolism, cellular redox, cell proliferation, DNA repair, autophagy, and many more. The general picture that emerges hereof is that FOXOs act to preserve equilibrium, and they are important for cellular homeostasis. Here, we will first briefly summarize the general knowledge of FOXO regulation and possible functions. We will use genomic stability to illustrate how FOXOs ensure homeostasis. Genomic stability is critical for maintaining genetic integrity, and therefore preventing disease. However, genomic mutations need to occur during lifetime to enable evolution, yet their accumulation is believed to be causative to aging. Therefore, the role of FOXO in genomic stability may underlie its role in lifespan and aging. Finally, we will come up with questions on some of the unknowns in FOXO function, the answer(s) to which we believe will further our understanding of FOXO function and ultimately may help to understand lifespan and its consequences.
Collapse
Affiliation(s)
- Tianshu Gui
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| |
Collapse
|
9
|
Slawson C. A sugary addition to the urea cycle. J Mol Cell Biol 2022; 14:6572841. [PMID: 35460248 PMCID: PMC9326184 DOI: 10.1093/jmcb/mjac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
11
|
Zhang X, Jiang L, Liu H. Forkhead Box Protein O1: Functional Diversity and Post-Translational Modification, a New Therapeutic Target? DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1851-1860. [PMID: 33976536 PMCID: PMC8106445 DOI: 10.2147/dddt.s305016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
Forkhead box protein O1 (FoXO1) is a transcription factor involved in the regulation of a wide variety of physiological process including glucose metabolism, lipogenesis, bone mass, apoptosis, and autophagy. FoXO1 dysfunction is involved in the pathophysiology of various diseases including metabolic diseases, atherosclerosis, and tumors. FoXO1 activity is regulated in response to different physiological or pathogenic conditions by changes in protein expression and post-translational modifications. Various modifications cooperate to regulate FoXO1 activity and FoXO1 target gene transcription. In this review, we summarize how different post-translational modifications regulate FoXO1 physiological function, which may provide new insights for drug design and development.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Cardiology, Shandong Rongjun General Hospital, Jinan, 250013, People's Republic of China
| | - Lusheng Jiang
- Department of Emergency, Shandong Rongjun General Hospital, Jinan, 250013, People's Republic of China
| | - Huimin Liu
- Blood Purification Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| |
Collapse
|
12
|
Behl T, Kaur I, Sehgal A, Singh S, Zengin G, Negrut N, Nistor-Cseppento DC, Pavel FM, Corb Aron RA, Bungau S. Exploring the Genetic Conception of Obesity via the Dual Role of FoxO. Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22063179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity or overweight are not superficial problems, constituting a pressing issue. The obesity index has almost tripled since 1975, which is an alarming state. Most of the individuals are currently becoming overweight or have inappropriate body mass index (BMI) conditions. Obesity is characterized by increased fat accumulation and thus poses a higher health risk. There is increased size and volume of fat cells in the body, which usually accounts for obesity. Many investigations have been carried out in this area, such as behavioral improvements, dietary changes, chemical involvements, etc., but presently no such goals are established to manage these health concerns. Based on previous literature reports and our interpretation, the current review indicates the involvement of various transcriptional and transporter functions in modifying the above-mentioned health conditions. Various transcriptional factors such as Forkhead box O1 (FoxO1) impart a significant effect on the physiology and pathology of metabolic dysfunction such as obesity. FoxO1 plays a dual role whether in the progression or suppression of metabolic processes depending on its targets. Thus, in the current study, will be discussed the dual role of FoxO1 in metabolic conditions (such as obesity), also summarizing the role of various other transcriptional factors involved in obesity.
Collapse
|
13
|
Behl T, Kaur I, Sehgal A, Singh S, Zengin G, Negrut N, Nistor-Cseppento DC, Pavel FM, Corb Aron RA, Bungau S. Exploring the Genetic Conception of Obesity via the Dual Role of FoxO. Int J Mol Sci 2021; 22:ijms22063179. [PMID: 33804729 PMCID: PMC8003860 DOI: 10.3390/ijms22063179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity or overweight are not superficial problems, constituting a pressing issue. The obesity index has almost tripled since 1975, which is an alarming state. Most of the individuals are currently becoming overweight or have inappropriate body mass index (BMI) conditions. Obesity is characterized by increased fat accumulation and thus poses a higher health risk. There is increased size and volume of fat cells in the body, which usually accounts for obesity. Many investigations have been carried out in this area, such as behavioral improvements, dietary changes, chemical involvements, etc., but presently no such goals are established to manage these health concerns. Based on previous literature reports and our interpretation, the current review indicates the involvement of various transcriptional and transporter functions in modifying the above-mentioned health conditions. Various transcriptional factors such as Forkhead box O1 (FoxO1) impart a significant effect on the physiology and pathology of metabolic dysfunction such as obesity. FoxO1 plays a dual role whether in the progression or suppression of metabolic processes depending on its targets. Thus, in the current study, will be discussed the dual role of FoxO1 in metabolic conditions (such as obesity), also summarizing the role of various other transcriptional factors involved in obesity.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Nicoleta Negrut
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (N.N.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (N.N.); (D.C.N.-C.)
| | - Flavia Maria Pavel
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (R.A.C.A.)
| | - Raluca Anca Corb Aron
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (R.A.C.A.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
14
|
Myoepithelioma-like Hyalinizing Epithelioid Tumor of the Foot Harboring an OGT-FOXO1 Fusion. Am J Surg Pathol 2021; 45:287-290. [PMID: 32649321 DOI: 10.1097/pas.0000000000001539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Xu Y, Sheng X, Zhao T, Zhang L, Ruan Y, Lu H. O-GlcNAcylation of MEK2 promotes the proliferation and migration of breast cancer cells. Glycobiology 2020; 31:571-581. [PMID: 33226073 DOI: 10.1093/glycob/cwaa103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022] Open
Abstract
Mitogen-activated protein kinase kinases are an important part of evolutionary conserved signaling modules that are involved in a variety of cellular processes in response to environmental stimuli. Among them, mitogen-activated protein kinase kinase 2 (MEK2) is the most crucial upstream signaling pathway of ERK1/2 cascade as a therapeutic target for overcoming Ras-driven cancers. However, the mechanisms of MEK2 regulation during tumor progression remain not fully elucidated. Herein, we identified that MEK2 was post-translationally regulated by O-GlcNAcylation. We found that MEK2 associated with OGT and was modified by O-GlcNAc. Mass spectrometry analysis further verified that O-GlcNAcylation of MEK2 occurred at Thr13, which was in the docking domain for specifically identifying its target proteins. While total O-GlcNAcylation stimulated the protein stability and phosphorylation of MEK2, Thr13 O-GlcNAcylation of MEK2 specifically enhanced its Thr394 phosphorylation as well as downstream ERK1/2 activation. Genetic ablation of MEK2 O-GlcNAcylation at Thr13 abrogated its ability to promote the proliferation and migration of breast cancer cells. Together, our data demonstrate that O-GlcNAcylation of MEK2 might be a key regulatory mechanism during tumorigenesis and is a potential therapeutic target for tumor treatment.
Collapse
Affiliation(s)
- Yaoyao Xu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiangying Sheng
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Ting Zhao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanyuan Ruan
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Chemistry, Fudan University, Shanghai 200433, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Kim HY, Park M, Kang C, Heo W, Yoon SM, Lee J, Kim JY. O-GlcNAcylation of light chain serine 12 mediates rituximab production doubled by thiamet G. Bioprocess Biosyst Eng 2020; 43:863-875. [PMID: 31980903 DOI: 10.1007/s00449-020-02282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
O-Glycosylation occurs in recombinant proteins produced by CHO cells, but this phenomenon has not been studied extensively. Here, we report that rituximab is an O-linked N-acetyl-glucosaminylated (O-GlcNAcylated) protein and the production of rituximab is increased by thiamet G, an inhibitor of O-GlcNAcase. The production of rituximab doubled with OGA inhibition and decreased with O-GlcNAc transferase inhibition. O-GlcNAc-specific antibody and metabolic labelling with azidO-GlcNAc confirmed the increased O-GlcNAcylation with thiamet G. Protein mass analysis revealed that serine 7, 12, and 14 of the rituximab light chain were O-GlcNAcylated. S12A mutation of the light chain decreased rituximab stability and failed to increase the production with thiamet G without any significant changes of mRNA level. Cytotoxicity and thermal stability assays confirmed that there were no differences in the biological and physical properties of rituximab produced by thiamet G treatment. Therefore, thiamet G treatment improves the production of rituximab without significantly altering its function.
Collapse
Affiliation(s)
- Hye-Yeon Kim
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03080, Korea
| | - Minseong Park
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03080, Korea
| | - Choeun Kang
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03080, Korea
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03080, Korea
| | - Sei Mee Yoon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
17
|
Chen J, Lu Y, Tian M, Huang Q. Molecular mechanisms of FOXO1 in adipocyte differentiation. J Mol Endocrinol 2019; 62:R239-R253. [PMID: 30780132 DOI: 10.1530/jme-18-0178] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
Forkhead box-O1 (FOXO1) is a downstream target of AKT and plays crucial roles in cell cycle control, apoptosis, metabolism and adipocyte differentiation. It is thought that FOXO1 affects adipocyte differentiation by regulating lipogenesis and cell cycle. With the deepening in the understanding of this field, it is currently believed that FOXO1 translocation between nuclei and cytoplasm is involved in the regulation of FOXO1 activity, thus affecting adipocyte differentiation. Translocation of FOXO1 depends on its post-translational modifications and interactions with 14-3-3. Based on these modifications and interactions, FOXO1 could regulate lipogenesis through PPARγ and the adipocyte cell cycle through p21 and p27. In this review, we aim to provide a comprehensive FOXO1 regulation network in adipocyte differentiation by linking together distinct functions mentioned above to explain their effects on adipocyte differentiation and to emphasize the regulatory role of FOXO1. In addition, we also focus on the novel findings such as the use of miRNAs in FOXO1 regulation and highlight the improvable issues, such as RNA modifications, for future research in the field.
Collapse
Affiliation(s)
- Junye Chen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Nanchang Joint Programme, Queen Mary, University of London, London, UK
| | - Yi Lu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Mengyuan Tian
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Nanchang Joint Programme, Queen Mary, University of London, London, UK
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
18
|
Deracinois B, Camoin L, Lambert M, Boyer JB, Dupont E, Bastide B, Cieniewski-Bernard C. O-GlcNAcylation site mapping by (azide-alkyne) click chemistry and mass spectrometry following intensive fractionation of skeletal muscle cells proteins. J Proteomics 2018; 186:83-97. [DOI: 10.1016/j.jprot.2018.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/13/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
|
19
|
Liu C, Li J. O-GlcNAc: A Sweetheart of the Cell Cycle and DNA Damage Response. Front Endocrinol (Lausanne) 2018; 9:415. [PMID: 30105004 PMCID: PMC6077185 DOI: 10.3389/fendo.2018.00415] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/02/2018] [Indexed: 01/22/2023] Open
Abstract
The addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) to and from the Ser and Thr residues of proteins is an emerging post-translational modification. Unlike phosphorylation, which requires a legion of kinases and phosphatases, O-GlcNAc is catalyzed by the sole enzyme in mammals, O-GlcNAc transferase (OGT), and reversed by the sole enzyme, O-GlcNAcase (OGA). With the advent of new technologies, identification of O-GlcNAcylated proteins, followed by pinpointing the modified residues and understanding the underlying molecular function of the modification has become the very heart of the O-GlcNAc biology. O-GlcNAc plays a multifaceted role during the unperturbed cell cycle, including regulating DNA replication, mitosis, and cytokinesis. When the cell cycle is challenged by DNA damage stresses, O-GlcNAc also protects genome integrity via modifying an array of histones, kinases as well as scaffold proteins. Here we will focus on both cell cycle progression and the DNA damage response, summarize what we have learned about the role of O-GlcNAc in these processes and envision a sweeter research future.
Collapse
Affiliation(s)
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
20
|
The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring. Cells 2018; 7:cells7060053. [PMID: 29865240 PMCID: PMC6025041 DOI: 10.3390/cells7060053] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Alterations in glucose and glutamine utilizing pathways and in fatty acid metabolism are currently considered the most significant and prevalent metabolic changes observed in almost all types of tumors. Glucose, glutamine and fatty acids are the substrates for the hexosamine biosynthetic pathway (HBP). This metabolic pathway generates the “sensing molecule” UDP-N-Acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the substrate for the enzymes involved in protein N- and O-glycosylation, two important post-translational modifications (PTMs) identified in several proteins localized in the extracellular space, on the cell membrane and in the cytoplasm, nucleus and mitochondria. Since protein glycosylation controls several key aspects of cell physiology, aberrant protein glycosylation has been associated with different human diseases, including cancer. Here we review recent evidence indicating the tight association between the HBP flux and cell metabolism, with particular emphasis on the post-transcriptional and transcriptional mechanisms regulated by the HBP that may cause the metabolic rewiring observed in cancer. We describe the implications of both protein O- and N-glycosylation in cancer cell metabolism and bioenergetics; focusing our attention on the effect of these PTMs on nutrient transport and on the transcriptional regulation and function of cancer-specific metabolic pathways.
Collapse
|
21
|
Laarse SAM, Leney AC, Heck AJR. Crosstalk between phosphorylation and O‐Glc
NA
cylation: friend or foe. FEBS J 2018; 285:3152-3167. [DOI: 10.1111/febs.14491] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Saar A. M. Laarse
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| | - Aneika C. Leney
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| |
Collapse
|
22
|
O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 2018; 50:155-173. [PMID: 29594839 DOI: 10.1007/s10863-018-9751-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.
Collapse
|
23
|
The regulation of FOXO1 and its role in disease progression. Life Sci 2017; 193:124-131. [PMID: 29158051 DOI: 10.1016/j.lfs.2017.11.030] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/14/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022]
Abstract
Cell proliferation, apoptosis, autophagy, oxidative stress and metabolic dysregulation are the basis of many diseases. Forkhead box transcription factor O1 (FOXO1) changes in response to cellular stimulation and maintains tissue homeostasis during the above-mentioned physiological and pathological processes. Substantial evidences indicate that FOXO1's function depends on the modulation of downstream targets such as apoptosis- and autophagy-associated genes, anti-oxidative stress enzymes, cell cycle arrest genes, and metabolic and immune regulators. In addition, oxidative stress, high glucose and other stimulations induce the regulation of FOXO1 activity via PI3k-Akt, JNK, CBP, Sirtuins, ubiquitin E3 ligases, etc., which mediate multiple signalling pathways. Subsequent post-transcriptional modifications, including phosphorylation, ubiquitination, acetylation, deacetylation, arginine methylation and O-GlcNAcylation, activate or inhibit FOXO1. The regulation of FOXO1 and its role might provide a significant avenue for the prevention and treatment of diseases. However, the subtle mechanisms of the post-transcriptional modifications and the effect of FOXO1 remain elusive and even conflicting in the development of many diseases. The determination of these questions potentially has implications for further research regarding FOXO1 signalling and the identification of targeted drugs.
Collapse
|
24
|
Chistiakov DA, Orekhov AN, Bobryshev YV. The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities. Int J Cardiol 2017; 245:236-244. [PMID: 28781146 DOI: 10.1016/j.ijcard.2017.07.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/27/2022]
Abstract
Diabetic heart pathology has a serious social impact due to high prevalence worldwide and significant mortality/invalidation of diabetic patients suffered from cardiomyopathy. The pathogenesis of diabetic and diabetes-related cardiomyopathy is associated with progressive loss and impairment of cardiac function due to adverse effects of metabolic, prooxidant, proinflammatory, and pro-apoptotic stress factors. In the adult heart, the transcriptional factor forkhead box-1 (FOXO-1) is involved in maintaining cardiomyocytes in the homeostatic state and induction of their adaptation to metabolic and pro-oxidant stress stimuli. Insulin inhibits cardiac FOXO-1 expression/activity through the IRS1/Akt signaling in order to prevent gluconeogenesis. In diabetes and insulin resistance, both insulin production and insulin-dependent signaling is weakened or absent. Indeed, FOXO-1 becomes overproduced/overactivated in response to stress stimuli. In diabetic cardiac tissue, FOXO-1 overactivity induces the metabolic switch from the glucose uptake to the predominant lipid uptake. FOXO-1 limits mitochondrial glucose oxidation by stimulation of pyruvate dehydrogenase kinase 4 (PDK4) and increases the lipid uptake through up-regulation of surface expression of CD36. In cardiac muscle cells, lipid accumulation leads to lipotoxicity via increased lipid oxidation, oxidative stress, and cardiomyocyte apoptosis. Indeed, cardiac FOXO-1 levels and activity should be strictly regulated. FOXO-1 deregulation (that is observed in the diabetic heart) causes detrimental effects that finally lead to heart failure.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V Bobryshev
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
25
|
Abstract
O-GlcNAcylation - the attachment of O-linked N-acetylglucosamine (O-GlcNAc) moieties to cytoplasmic, nuclear and mitochondrial proteins - is a post-translational modification that regulates fundamental cellular processes in metazoans. A single pair of enzymes - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) - controls the dynamic cycling of this protein modification in a nutrient- and stress-responsive manner. Recent years have seen remarkable advances in our understanding of O-GlcNAcylation at levels that range from structural and molecular biology to cell signalling and gene regulation to physiology and disease. New mechanisms and functions of O-GlcNAcylation that are emerging from these recent developments enable us to begin constructing a unified conceptual framework through which the significance of this modification in cellular and organismal physiology can be understood.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Kevin Qian
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
26
|
Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 2017. [PMID: 28488703 DOI: 10.1038/nrm.2017.22,+10.1038/nrn.2017.89,+10.1038/nrn.2017.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
O-GlcNAcylation - the attachment of O-linked N-acetylglucosamine (O-GlcNAc) moieties to cytoplasmic, nuclear and mitochondrial proteins - is a post-translational modification that regulates fundamental cellular processes in metazoans. A single pair of enzymes - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) - controls the dynamic cycling of this protein modification in a nutrient- and stress-responsive manner. Recent years have seen remarkable advances in our understanding of O-GlcNAcylation at levels that range from structural and molecular biology to cell signalling and gene regulation to physiology and disease. New mechanisms and functions of O-GlcNAcylation that are emerging from these recent developments enable us to begin constructing a unified conceptual framework through which the significance of this modification in cellular and organismal physiology can be understood.
Collapse
|
27
|
Abstract
O-GlcNAcylation - the attachment of O-linked N-acetylglucosamine (O-GlcNAc) moieties to cytoplasmic, nuclear and mitochondrial proteins - is a post-translational modification that regulates fundamental cellular processes in metazoans. A single pair of enzymes - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) - controls the dynamic cycling of this protein modification in a nutrient- and stress-responsive manner. Recent years have seen remarkable advances in our understanding of O-GlcNAcylation at levels that range from structural and molecular biology to cell signalling and gene regulation to physiology and disease. New mechanisms and functions of O-GlcNAcylation that are emerging from these recent developments enable us to begin constructing a unified conceptual framework through which the significance of this modification in cellular and organismal physiology can be understood.
Collapse
|
28
|
Mailleux F, Gélinas R, Beauloye C, Horman S, Bertrand L. O-GlcNAcylation, enemy or ally during cardiac hypertrophy development? Biochim Biophys Acta Mol Basis Dis 2016; 1862:2232-2243. [PMID: 27544701 DOI: 10.1016/j.bbadis.2016.08.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 12/11/2022]
Abstract
O-linked attachment of the monosaccharide β-N-acetyl-glucosamine (O-GlcNAcylation) is a post-translational modification occurring on serine and threonine residues, which is evolving as an important mechanism for the regulation of various cellular processes. The present review will, first, provide a general background on the molecular regulation of protein O-GlcNAcylation and will summarize the role of this post-translational modification in various acute cardiac pathologies including ischemia-reperfusion. Then, we will focus on research studies examining protein O-GlcNAcylation in the context of cardiac hypertrophy. A particular emphasis will be laid on the convergent but also divergent actions of O-GlcNAcylation according to the type of hypertrophy investigated, including physiological, pressure overload-induced and diabetes-linked cardiac hypertrophy. In an attempt to distinguish whether O-GlcNAcylation is detrimental or beneficial, this review will present the different O-GlcNAcylated targets involved in hypertrophy development. We will finally argue on potential interest to target O-GlcNAc processes to treat cardiac hypertrophy. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Florence Mailleux
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Roselle Gélinas
- Montreal Heart Institute, Montreal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada
| | - Christophe Beauloye
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium; Cliniques Universitaires Saint-Luc, Division of Cardiology, Brussels, Belgium
| | - Sandrine Horman
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.
| |
Collapse
|
29
|
Tian J, Geng Q, Ding Y, Liao J, Dong MQ, Xu X, Li J. O-GlcNAcylation Antagonizes Phosphorylation of CDH1 (CDC20 Homologue 1). J Biol Chem 2016; 291:12136-44. [PMID: 27080259 DOI: 10.1074/jbc.m116.717850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 11/06/2022] Open
Abstract
The anaphase promoting complex/cyclosome (APC/C) orchestrates various aspects of the eukaryotic cell cycle. One of its co-activators, Cdh1, is subject to myriad post-translational modifications, such as phosphorylation and ubiquitination. Herein we identify the O-linked N-acetylglucosamine (O-GlcNAc) modification that occurs on Cdh1. Cdh1 is O-GlcNAcylated in cultured cells and mouse brain extracts. Mass spectrometry identifies an O-GlcNAcylated peptide that neighbors a known phosphorylation site. Cell synchronization and mutation studies reveal that O-GlcNAcylation of Cdh1 may antagonize its phosphorylation. Our results thus reveal a pivotal role of O-GlcNAcylation in regulating APC/C activity.
Collapse
Affiliation(s)
- Jie Tian
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and
| | - Qizhi Geng
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ji Liao
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xingzhi Xu
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and
| | - Jing Li
- From the Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China and
| |
Collapse
|