1
|
Li J, Liu Y, Zheng R, Qu C, Li J. Molecular mechanisms of TACE refractoriness: Directions for improvement of the TACE procedure. Life Sci 2024; 342:122540. [PMID: 38428568 DOI: 10.1016/j.lfs.2024.122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Transcatheter arterial chemoembolisation (TACE) is the standard of care for intermediate-stage hepatocellular carcinoma and selected patients with advanced hepatocellular carcinoma. However, TACE does not achieve a satisfactory objective response rate, and the concept of TACE refractoriness has been proposed to identify patients who do not fully benefit from TACE. Moreover, repeated TACE is necessary to obtain an optimal and sustained anti-tumour response, which may damage the patient's liver function. Therefore, studies have recently been performed to improve the effectiveness of TACE. In this review, we summarise the detailed molecular mechanisms associated with TACE responsiveness and relapse after this treatment to provide more effective targets for adjuvant therapy while helping to improve TACE regimens.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China; The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yingnan Liu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Chao Qu
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China; The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiarui Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
2
|
McLeod MJ, Holyoak T. Biochemical, structural, and kinetic characterization of PP i -dependent phosphoenolpyruvate carboxykinase from Propionibacterium freudenreichii. Proteins 2023; 91:1261-1275. [PMID: 37226637 DOI: 10.1002/prot.26513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Phosphoenolpyruvate carboxykinases (PEPCK) are a well-studied family of enzymes responsible for the regulation of TCA cycle flux, where they catalyze the interconversion of oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) using a phosphoryl donor/acceptor. These enzymes have typically been divided into two nucleotide-dependent classes, those that use ATP and those that use GTP. In the 1960's and early 1970's, a group of papers detailed biochemical properties of an enzyme named phosphoenolpyruvate carboxytransphosphorylase (later identified as a third PEPCK) from Propionibacterium freudenreichii (PPi -PfPEPCK), which instead of using a nucleotide, utilized PPi to catalyze the same interconversion of OAA and PEP. The presented work expands upon the initial biochemical experiments for PPi -PfPEPCK and interprets these data considering both the current understanding of nucleotide-dependent PEPCKs and is supplemented with a new crystal structure of PPi -PfPEPCK in complex with malate at a putative allosteric site. Most interesting, the data are consistent with PPi -PfPEPCK being a Fe2+ activated enzyme in contrast with the Mn2+ activated nucleotide-dependent enzymes which in part results in some unique kinetic properties for the enzyme when compared to the more widely distributed GTP- and ATP-dependent enzymes.
Collapse
Affiliation(s)
- Matthew J McLeod
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Tumor Cell Glycolysis—At the Crossroad of Epithelial–Mesenchymal Transition and Autophagy. Cells 2022; 11:cells11061041. [PMID: 35326492 PMCID: PMC8947107 DOI: 10.3390/cells11061041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Upregulation of glycolysis, induction of epithelial–mesenchymal transition (EMT) and macroautophagy (hereafter autophagy), are phenotypic changes that occur in tumor cells, in response to similar stimuli, either tumor cell-autonomous or from the tumor microenvironment. Available evidence, herein reviewed, suggests that glycolysis can play a causative role in the induction of EMT and autophagy in tumor cells. Thus, glycolysis has been shown to induce EMT and either induce or inhibit autophagy. Glycolysis-induced autophagy occurs both in the presence (glucose starvation) or absence (glucose sufficiency) of metabolic stress. In order to explain these, in part, contradictory experimental observations, we propose that in the presence of stimuli, tumor cells respond by upregulating glycolysis, which will then induce EMT and inhibit autophagy. In the presence of stimuli and glucose starvation, upregulated glycolysis leads to adenosine monophosphate-activated protein kinase (AMPK) activation and autophagy induction. In the presence of stimuli and glucose sufficiency, upregulated glycolytic enzymes (e.g., aldolase or glyceraldehyde 3-phosphate dehydrogenase) or decreased levels of glycolytic metabolites (e.g., dihydroxyacetone phosphate) may mimic a situation of metabolic stress (herein referred to as “pseudostarvation”), leading, directly or indirectly, to AMPK activation and autophagy induction. We also discuss possible mechanisms, whereby glycolysis can induce a mixed mesenchymal/autophagic phenotype in tumor cells. Subsequently, we address unresolved problems in this field and possible therapeutic consequences.
Collapse
|
4
|
Kim Y, Lee SW, Wang H, Kim RH, Park HK, Lee H, Kang ES. DA-1241, a Novel GPR119 Agonist, Improves Hyperglycaemia by Inhibiting Hepatic Gluconeogenesis and Enhancing Insulin Secretion in Diabetic Mice. Diabetes Metab J 2022; 46:337-348. [PMID: 35052026 PMCID: PMC8987681 DOI: 10.4093/dmj.2021.0056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND We investigated the antidiabetic effects of DA-1241, a novel G protein-coupled receptor (GPR) 119 agonist, in vitro and in vivo. METHODS DA-1241 was administrated to high-fat diet (HFD)-fed C57BL/6J mice for 12 weeks after hyperglycaemia developed. Oral/intraperitoneal glucose tolerance test and insulin tolerance test were performed. Serum insulin and glucagon-like peptide-1 (GLP-1) levels were measured during oral glucose tolerance test. Insulinoma cell line (INS-1E) cells and mouse islets were used to find whether DA-1241 directly stimulate insulin secretion in beta cell. HepG2 cells were used to evaluate the gluconeogenesis and autophagic process. Autophagic flux was evaluated by transfecting microtubule-associated protein 1 light chain 3-fused to green fluorescent protein and monomeric red fluorescent (mRFP-GFP-LC3) expression vector to HepG2 cells. RESULTS Although DA-1241 treatment did not affect body weight gain and amount of food intake, fasting blood glucose level decreased along with increase in GLP-1 level. DA-1241 improved only oral glucose tolerance test and showed no effect in intraperitoneal glucose tolerance test. No significant effect was observed in insulin tolerance test. DA-1241 did not increase insulin secretion in INS-1E cell and mouse islets. DA-1241 reduced triglyceride content in the liver thereby improved fatty liver. Additionally, DA-1241 reduced gluconeogenic enzyme expression in HepG2 cells and mouse liver. DA-1241 reduced autophagic flow in HepG2 cells. CONCLUSION These findings suggested that DA-1241 augmented glucose-dependent insulin release via stimulation of GLP-1 secretion, and reduced hepatic gluconeogenesis, which might be associated with autophagic blockage, leading to improved glycaemic control.
Collapse
Affiliation(s)
- Youjin Kim
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Si Woo Lee
- Graduate School of Medicine, Yonsei University, Seoul, Korea
| | - Hyejin Wang
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Ryeong-Hyeon Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ki Park
- Department of Clinical Nursing Science, Yonsei University College of Nursing, Seoul, Korea
| | - Hangkyu Lee
- Department of Clinical Nursing Science, Yonsei University College of Nursing, Seoul, Korea
| | - Eun Seok Kang
- Graduate School of Medicine, Yonsei University, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Yang J, Sun Y, Xu F, Liu W, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Autophagy and glycolysis independently attenuate silibinin-induced apoptosis in human hepatocarcinoma HepG2 and Hep3B cells. Hum Exp Toxicol 2021; 40:2048-2062. [PMID: 34053323 DOI: 10.1177/09603271211017609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE The mechanism of cytotoxicity of silibinin on two human hepatocellular carcinoma (HCC) cell lines, HepG2 (p53 wild-type) and Hep3B cells (p53 null), is examined in relation with the induction of autophagy and phosphorylation of AMP-activated protein kinase (p-AMPK). MATERIALS AND METHODS Levels of apoptosis in relation to the levels of autophagy and those of glycolysis-related proteins, glucose transporter 1/4 (Glut1/4) and hexokinase-II (HK2), in HepG2 and Hep3B cells were examined. RESULTS Silibinin-induced apoptosis was incomplete for HCC cell death in that up-regulated autophagy and/or reduced level of glycolysis, which are induced by silibinin treatment, antagonized silibinin-induced apoptosis. Inhibition of autophagy with 3-methyl adenine (3MA) or blocking of AMP-activated protein kinase (AMPK) activation with Compound C (CC) enhanced silibinin-induced apoptosis. The results confirm that AMPK involved in autophagy as well as in glycolysis remaining with silibinin is responsible for attenuation of silibinin-induced apoptosis. Blocking of AMPK or autophagy contributes to the enhancement of silibinin's cytotoxicity to HepG2 and Hep3B cells. CONCLUSION This study shows that incomplete apoptosis of HCC by silibinin treatment becomes complete by repression of autophagy and/or glycolysis.
Collapse
Affiliation(s)
- J Yang
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, Chengdu, Sichuan, People's Republic of China.,Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - Y Sun
- Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - F Xu
- Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - W Liu
- Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| | - T Hayashi
- Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China.,Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Hachioji, Tokyo, Japan.,Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - K Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - S Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - H Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - T Ikejima
- Wuya College of Innovation, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China.,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, 58575Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
6
|
Abstract
Diabetes is on the rise across the globe affecting more than 463 million people and crucially increasing morbidities of diabetes-associated diseases. Urgent and immense actions are needed to improve diabetes prevention and treatment. Regarding the correlation of diabetes with many associated diseases, inhibition of the disease progression is more crucial than controlling symptoms. Currently, anti-diabetic drugs are accompanied by undesirable side-effects and target confined types of biomolecules. Thus, extensive research is demanding to identify novel disease mechanisms and molecular targets as probable candidates for effective treatment of diabetes. This review discusses the conventional molecule targets that have been applied for their therapeutic rationale in treatment of diabetes. Further, the emerging and prospective molecular targets for the future focus of library screenings are presented.
Collapse
Affiliation(s)
- Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Song H, Ding N, Li S, Liao J, Xie A, Yu Y, Zhang C, Ni C. Identification of Hub Genes Associated With Hepatocellular Carcinoma Using Robust Rank Aggregation Combined With Weighted Gene Co-expression Network Analysis. Front Genet 2020; 11:895. [PMID: 33133125 PMCID: PMC7561391 DOI: 10.3389/fgene.2020.00895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background Bioinformatics provides a valuable tool to explore the molecular mechanisms underlying pathogenesis of hepatocellular carcinoma (HCC). To improve prognosis of patients, identification of robust biomarkers associated with the pathogenic pathways of HCC remains an urgent research priority. Methods We employed the Robust Rank Aggregation method to integrate nine qualified HCC datasets from the Gene Expression Omnibus. A robust set of differentially expressed genes (DEGs) between tumor and normal tissue samples were screened. Weighted gene co-expression network analysis was applied to cluster DEGs and the key modules related to clinical traits identified. Based on network topology analysis, novel risk genes derived from key modules were mined and biological verification performed. The potential functions of these risk genes were further explored with the aid of miRNA–mRNA regulatory networks. Finally, the prognostic ability of these genes was assessed by constructing a clinical prediction model. Results Two key modules showed significant association with clinical traits. In combination with protein–protein interaction analysis, 29 hub genes were identified. Among these genes, 19 from one module showed a pattern of upregulation in HCC and were associated with the tumor node metastasis stage, and 10 from the other module displayed the opposite trend. Survival analyses indicated that all these genes were significantly related to patient prognosis. Based on the miRNA-mRNA regulatory network, 29 genes strongly linked to tumor activity were identified. Notably, five of the novel risk genes, ABAT, DAO, PCK2, SLC27A2, and HAO1, have rarely been reported in previous studies. Gene set enrichment analysis for each gene revealed regulatory roles in proliferation and prognosis of HCC. Least absolute shrinkage and selection operator regression analysis further validated DAO, PCK2, and HAO1 as prognostic factors in an external HCC dataset. Conclusion Analysis of multiple datasets combined with global network information presents a successful approach to uncover the complex biological mechanisms of HCC. More importantly, this novel integrated strategy facilitates identification of risk hub genes as candidate biomarkers for HCC, which could effectively guide clinical treatments.
Collapse
Affiliation(s)
- Hao Song
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Na Ding
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shang Li
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianlong Liao
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Aimin Xie
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Youtao Yu
- Department of Intervention Therapy, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Chunlong Zhang
- Department of Computational Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Chen XB, Wei YH, Chen XK, Zhong J, Zou YB, Nie JY. Manganese levels and hepatocellular carcinoma: A systematic review and meta-analysis based on Asian cohort. Medicine (Baltimore) 2019; 98:e16748. [PMID: 31393389 PMCID: PMC6709027 DOI: 10.1097/md.0000000000016748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Several studies have investigated the relationship between Manganese (Mn) levels and hepatocellular carcinoma (HCC), but the results were inconsistent. Thus, we conducted a systematic review and meta-analysis to evaluate the association between Mn levels and HCC. Nine studies focusing on hair Mn levels, 6 studies on serum Mn levels and 6 studies on tissue Mn levels were identified in a systematic search of PubMed, CNKI, Wanfang and SinoMed databases. Standard mean differences (SMD) with the corresponding 95% confidence intervals (CI) were pooled to compare the Mn levels between HCC and controls. In serum, the Mn levels in HCC were significantly lower than in healthy controls (SMD (95% CI): -0.941 (-1.559, -0.323)). In hair, the Mn levels in HCC were slightly lower than in healthy controls, but not significant (SMD (95% CI): -0.168 (-0.766, 0.430)). In tissue, the Mn levels in tumors were significantly lower than in adjacent normal tissues (SMD (95% CI): -4.867 (-7.143, -2.592)). Subgroup analysis showed consistent results. In conclusion, this meta-analysis suggested an inverse association between Mn levels and HCC.
Collapse
Affiliation(s)
- Xiu-Bing Chen
- Department of Gastroenterology, The First People's Hospital of Qinzhou
| | - Yue-Hui Wei
- Quality Control Office, The Second People's Hospital of Qinzhou
| | - Xiu-Ke Chen
- Department of Cardiothoracic Surgery, The First People's Hospital of Qinzhou, Qinzhou, Guangxi
| | - Jian Zhong
- Department of Gastroenterology, The First People's Hospital of Qinzhou
| | - You-Bao Zou
- Department of Gastroenterology, The First People's Hospital of Qinzhou
| | - Jia-Yan Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Guo H, Xu G, Wang B, Xia F, Sun Q, Wang Y, Xie E, Lu Z, Jiang L, Xia Q. Phosphoenolpyruvate carboxykinase is involved in antiviral immunity against Bombyx mori nucleopolyhedrovirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:193-198. [PMID: 30471302 DOI: 10.1016/j.dci.2018.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) has cytoplasmic isoform (PEPCK-C) and a mitochondrial isoform (PEPCK-M). PEPCK-C plays an important role in gluconeogenesis, but the function of PEPCK-M is largely unknown. In this study, we cloned two isoforms of PEPCK (BmPEPCK-1 and BmPEPCK-2; both of PEPCK-M) from the lepidopteran model Bombyx mori. BmPEPCK-1 and BmPEPCK-2 were adjacently located in the silkworm genome, and both contained 13 exons. The main difference in the sequences was the 13th exon and 3'UTR. The expression of BmPEPCK-1 was higher than that of BmPEPCK-2, the overexpression of which did not affect BmNPV proliferation. The expression levels of BmPEPCK-2 and ATG6/7/8/13 decreased after BmNPV infection. Overexpression of BmPEPCK-2 increased the expression of ATG6/7/8 and significantly decreased viral fluorescence and content, suggesting that BmPEPCK-2 suppressed the multiplication of BmNPV by increasing ATGs expression. These results revealed that PEPCK-M has an important function in antiviral immunity.
Collapse
Affiliation(s)
- Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Guowen Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Bingbing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Fei Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Qiang Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Yumei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Enyu Xie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Zhongyan Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Mandl J, Bánhegyi G. The ER - Glycogen Particle - Phagophore Triangle: A Hub Connecting Glycogenolysis and Glycophagy? Pathol Oncol Res 2018; 24:821-826. [PMID: 29981013 DOI: 10.1007/s12253-018-0446-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022]
Abstract
Glycogen particle is an intracellular organelle, which serves as a carbohydrate reserve in various cells. The function of glycogen is not entirely known in several cell types. Glycogen can be mobilized for different purposes, which can be related to cellular metabolic needs, intracellular redox state, metabolic state of the whole organism depending on regulatory aspects and also on cell functions. Essentially there are two different ways of glycogen degradation localized in different cellular organelles: glycogenolysis or lysosomal breakdown by acid alpha-glucosidase. While glycogenolysis occurs in glycogen particles connected to endoplasmic reticulum membrane, glycogen particles can be also combined with phagophores forming autophagosomes. A subdomain of the endoplasmic reticulum membrane - omegasomes - are the sites for phagophore formation. Thus, three organelles, the endoplasmic reticulum, the phagophore and the glycogen particle forms a triangle in which glycogen degradation occurs. The physiological significance, molecular logic and regulation of the two different catabolic paths are summarized and discussed with special aspect on the role of glycogen particles in intracellular organelle homeostasis and on molecular pathology of the cell. Pathological aspects and some diseases connected to the two different degradation pathways of glycogen particles are also detailed.
Collapse
Affiliation(s)
- József Mandl
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary.
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Yip J, Geng X, Shen J, Ding Y. Cerebral Gluconeogenesis and Diseases. Front Pharmacol 2017; 7:521. [PMID: 28101056 PMCID: PMC5209353 DOI: 10.3389/fphar.2016.00521] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023] Open
Abstract
The gluconeogenesis pathway, which has been known to normally present in the liver, kidney, intestine, or muscle, has four irreversible steps catalyzed by the enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and glucose 6-phosphatase. Studies have also demonstrated evidence that gluconeogenesis exists in brain astrocytes but no convincing data have yet been found in neurons. Astrocytes exhibit significant 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity, a key mechanism for regulating glycolysis and gluconeogenesis. Astrocytes are unique in that they use glycolysis to produce lactate, which is then shuttled into neurons and used as gluconeogenic precursors for reduction. This gluconeogenesis pathway found in astrocytes is becoming more recognized as an important alternative glucose source for neurons, specifically in ischemic stroke and brain tumor. Further studies are needed to discover how the gluconeogenesis pathway is controlled in the brain, which may lead to the development of therapeutic targets to control energy levels and cellular survival in ischemic stroke patients, or inhibit gluconeogenesis in brain tumors to promote malignant cell death and tumor regression. While there are extensive studies on the mechanisms of cerebral glycolysis in ischemic stroke and brain tumors, studies on cerebral gluconeogenesis are limited. Here, we review studies done to date regarding gluconeogenesis to evaluate whether this metabolic pathway is beneficial or detrimental to the brain under these pathological conditions.
Collapse
Affiliation(s)
- James Yip
- Department of Neurosurgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Jiamei Shen
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
12
|
Saini S, Kumar Ghosh A, Singh R, Das S, Abhishek K, Kumar A, Verma S, Mandal A, Hasan Sardar A, Purkait B, Kumar A, Kumar Sinha K, Das P. Glucose deprivation induced upregulation of phosphoenolpyruvate carboxykinase modulates virulence in Leishmania donovani. Mol Microbiol 2016; 102:1020-1042. [PMID: 27664030 DOI: 10.1111/mmi.13534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2016] [Indexed: 01/20/2023]
Abstract
Various physiological stimuli trigger the conversion of noninfective Leishmania donovani promastigotes to the infective form. Here, we present the first evidence of the effect of glucose starvation, on virulence and survival of these parasites. Glucose starvation resulted in a decrease in metabolically active parasites and their proliferation. However, this was reversed by supplementation of gluconeogenic amino acids. Glucose starvation induced metacyclogenesis and enhanced virulence through protein kinase A regulatory subunit (LdPKAR1) mediated autophagy. Glucose starvation driven oxidative stress upregulated the antioxidant machinery, culminating in increased infectivity and greater parasitic load in primary macrophages. Interestingly, phosphoenolpyruvate carboxykinase (LdPEPCK), a gluconeogenic enzyme, exhibited the highest activity under glucose starvation to regulate growth of L. donovani by alternatively utilising amino acids. Deletion of LdPEPCK (Δpepck) decreased virulent traits and parasitic load in primary macrophages but increased autophagosome formation in the mutant parasites. Furthermore, Δpepck parasites failed to activate the Pentose Phosphate Pathway shunt, abrogating NADPH/NADP+ homoeostasis, conferring increased susceptibility towards oxidants following glucose starvation. In conclusion, this study showed that L. donovani undertakes metabolic rearrangements via gluconeogenesis under glucose starvation for acquiring virulence and its survival in the hostile environment.
Collapse
Affiliation(s)
- Savita Saini
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India.,Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Ayan Kumar Ghosh
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Ruby Singh
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Kumar Abhishek
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Ajay Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Sudha Verma
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Abhishek Mandal
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Abul Hasan Sardar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Bidyut Purkait
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Ashish Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| | - Kislay Kumar Sinha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Pradeep Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India.,Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India
| |
Collapse
|
13
|
Moreno-Sánchez R, Marín-Hernández Á, Del Mazo-Monsalvo I, Saavedra E, Rodríguez-Enríquez S. Assessment of the low inhibitory specificity of oxamate, aminooxyacetate and dichloroacetate on cancer energy metabolism. Biochim Biophys Acta Gen Subj 2016; 1861:3221-3236. [PMID: 27538376 DOI: 10.1016/j.bbagen.2016.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/08/2016] [Accepted: 08/12/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Exceedingly high therapeutic/experimental doses of metabolic drugs such as oxamate, aminooxyacetate (AOA) and dichloroacetate (DCA) are required to diminish growth, glycolysis and oxidative phosphorylation (OxPhos) of different cancer cells. To identify the mechanisms of action of these drugs on cancer energy metabolism, a systematic analysis of their specificities was undertaken. METHODS Hepatocarcinoma AS-30D cells were treated with the inhibitors and glycolysis and OxPhos enzyme activities, metabolites and fluxes were analyzed. Kinetic modeling of glycolysis was used to identify the regulatory mechanisms. RESULTS Oxamate (i) not only inhibited LDH, but also PYK and ENO activities inducing an increase in the cytosolic NAD(P)H, Fru1,6BP and DHAP levels in AS-30D cells; (ii) it slightly inhibited HPI, ALD and Glc6PDH; and (iii) it inhibited pyruvate-driven OxPhos in isolated heart mitochondria. AOA (i) strongly inhibited both AAT and AlaT, and 2-OGDH and glutamate-driven OxPhos; and (ii) moderately affected GAPDH and TPI. DCA slightly affected pyruvate-driven OxPhos and Glc6PDH. Kinetic modeling of cancer glycolysis revealed that oxamate inhibition of LDH, PYK and ENO was insufficient to achieve glycolysis flux inhibition. To do so, HK, HPI, TPI and GAPDH have to be also inhibited by the accumulated Fru1,6BP and DHAP induced by oxamate. CONCLUSION Oxamate, AOA, and DCA are not specific drugs since they inhibit several enzymes/transporters of the glycolytic and OxPhos pathways through direct interaction or indirect mechanisms. GENERAL SIGNIFICANCE These data explain why oxamate or AOA, through their multisite inhibitory actions on glycolysis or OxPhos, may be able to decrease the proliferation of cancer cells.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan D.F. 14080, Mexico.
| | - Álvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan D.F. 14080, Mexico
| | - Isis Del Mazo-Monsalvo
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan D.F. 14080, Mexico
| | - Emma Saavedra
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan D.F. 14080, Mexico
| | | |
Collapse
|
14
|
Lu J, Xia Q, Long XD. Glycogen metabolic reprogramming in hepatocellular carcinoma: An update. Shijie Huaren Xiaohua Zazhi 2016; 24:3391-3397. [DOI: 10.11569/wcjd.v24.i22.3391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent malignant tumor. Abnormal glycogen metabolism, an important metabolism process in HCC, mainly results from the variant structure, function, and expression levels of the corresponding enzymes and proteins. This variation, also called metabolic reprogramming, can regulate glycogen metabolic pathway to promote HCC tumorigenesis. This review aims to summarize glycogen metabolism-regulated factors (including glucose transporters, glycogen synthase kinase 3β, and glycogen phosphorylase) involved in glycogen metabolic reprogramming in HCC
Collapse
|
15
|
Seenappa V, Das B, Joshi MB, Satyamoorthy K. Context Dependent Regulation of Human Phosphoenolpyruvate Carboxykinase Isoforms by DNA Promoter Methylation and RNA Stability. J Cell Biochem 2016; 117:2506-20. [DOI: 10.1002/jcb.25543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/15/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Venu Seenappa
- Department of Biotechnology; School of Life Sciences; Manipal University; Manipal India
| | - Bidyadhar Das
- Department of Zoology; Northeast Hill University; Shillong India
| | - Manjunath B. Joshi
- Department of Biotechnology; School of Life Sciences; Manipal University; Manipal India
| | - Kapaettu Satyamoorthy
- Department of Biotechnology; School of Life Sciences; Manipal University; Manipal India
| |
Collapse
|