1
|
Das B, Chokkalingam P, Shareef MA, Shukla S, Das S, Saito M, Weiss LM. Methionine aminopeptidases: Potential therapeutic target for microsporidia and other microbes. J Eukaryot Microbiol 2024; 71:e13036. [PMID: 39036929 PMCID: PMC11576263 DOI: 10.1111/jeu.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024]
Abstract
Methionine aminopeptidases (MetAPs) have emerged as a target for medicinal chemists in the quest for novel therapeutic agents for treating cancer, obesity, and other disorders. Methionine aminopeptidase is a metalloenzyme with two structurally distinct forms in humans, MetAP-1 and MetAP-2. The MetAP2 inhibitor fumagillin, which was used as an amebicide in the 1950s, has been used for the successful treatment of microsporidiosis in humans; however, it is no longer commercially available. Despite significant efforts and investments by many pharmaceutical companies, no new MetAP inhibitors have been approved for the clinic. Several lead compounds have been designed and synthesized by researchers as potential inhibitors of MetAP and evaluated for their potential activity in a wide range of diseases. MetAP inhibitors such as fumagillin, TNP-470, beloranib, and reversible inhibitors and their analogs guide new prospects for MetAP inhibitor development in the ongoing quest for new pharmacological indications. This perspective provides insights into recent advances related to MetAP, as a potential therapeutic target in drug discovery, bioactive small molecule MetAP2 inhibitors, and data on the role of MetAP-2 as a therapeutic target for microsporidiosis.
Collapse
Affiliation(s)
- Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
- Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Parthiban Chokkalingam
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Mohammed Adil Shareef
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Srushti Shukla
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Louis M. Weiss
- Department of Pathology and Medicine (Infectious Diseases) Albert Einstein College of Medicine, Bronx, NY-10461, USA
| |
Collapse
|
2
|
Alonso VA, Velasco Manini MA, Pena GA, Cavaglieri LR. Fist report on fumagillin production by Aspergillus fumigatus sensu stricto gliotoxigenic strains recovered from raw cow milk and clinical samples in Argentina. Rev Argent Microbiol 2022; 54:243-246. [PMID: 35654655 DOI: 10.1016/j.ram.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/07/2021] [Accepted: 03/04/2022] [Indexed: 10/18/2022] Open
Abstract
In Argentina there are no reports on Aspergillus fumigatus fumagillin-producing strains. In this study we describe the isolation and mycotoxin production capacity of ten A. fumigatus strains isolated from farm and clinical samples. Farm strains were isolated from milk samples taken from dairy cows in Córdoba province, some of which were associated with subclinical mastitis. A culture medium was defined to optimize fumagillin production and a detection method was developed by HPLC chromatography. It is known that in addition to the host immune status, strain virulence is a fundamental characteristic that will determine its pathogenicity and, in this sense, fumagillin is considered to be among the virulence factors. In the present work, all the strains tested for the production of fumagillin were able to synthesize it, highlighting that the strain A. fumigatus RC2243, from a milk sample from a cow with clinical mastitis, was the most productive. The existence of fumagillin-producing strains represents a potential risk of mycotoxins being transferred to raw milk, constituting a public health risk.
Collapse
Affiliation(s)
- Verónica A Alonso
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | - Gabriela A Pena
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Lilia R Cavaglieri
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
3
|
Suberoyl bis-hydroxamic acid reactivates Kaposi's sarcoma-associated herpesvirus through histone acetylation and induces apoptosis in lymphoma cells. J Virol 2021; 95:JVI.01785-20. [PMID: 33328303 PMCID: PMC8092814 DOI: 10.1128/jvi.01785-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an etiologic agent of Kaposi's sarcoma as well as primary effusion lymphoma (PEL), an aggressive B-cell neoplasm which mostly arises in immunocompromised individuals. Lytic replication of KSHV is also associated with a subset of multicentric Castleman diseases. At present, there is no specific treatment available for PEL and its prognosis is poor. In this study, we found that the histone deacetylase inhibitor suberoyl bis-hydroxamic acid (SBHA) induced KSHV reactivation in PEL cells in a dose-dependent manner. Next-generation sequencing analysis showed that more than 40% of all transcripts expressed in SBHA-treated PEL cells originated from the KSHV genome compared with less than 1% in untreated cells. Chromatin immunoprecipitation assays demonstrated that SBHA induced histone acetylation targeting the promoter region of the KSHV replication and transcription activator gene. However, there was no significant change in methylation status of the promoter region of this gene. In addition to its effect of KSHV reactivation, this study revealed that SBHA induces apoptosis in PEL cells in a dose-dependent manner, inducing acetylation and phosphorylation of p53, cleavage of caspases, and expression of pro-apoptotic factors such as Bim and Bax. These findings suggest that SBHA reactivates KSHV from latency and induces apoptosis through the mitochondrial pathway in PEL cells. Therefore, SBHA can be considered a new tool for induction of KSHV reactivation, and could provide a novel therapeutic strategy against PEL.IMPORTANCE Kaposi's sarcoma and primary effusion lymphoma cells are latently infected with Kaposi's sarcoma-associated herpesvirus (KSHV), whereas KSHV replication is frequently observed in multicentric Castleman disease. Although KSHV replication can be induced by some chemical reagents (e.g. 12-O-tetradecanoylphorbol-13-acetate), the mechanism of KSHV replication is not fully understood. We found that the histone deacetylase inhibitor suberoyl bis-hydroxamic acid (SBHA) induced KSHV reactivation with high efficiency, through histone acetylation in the promoter of the replication and transcription activator gene, compared with 12-O-tetradecanoylphorbol-13-acetate. SBHA also induced apoptosis through the mitochondrial pathway in KSHV-infected cells, with a lower EC50 than measured for viral reactivation. SBHA could be used in a highly efficient replication system for KSHV in vitro, and as a tool to reveal the mechanism of replication and pathogenesis of KSHV. The ability of SBHA to induce apoptosis at lower levels than needed to stimulate KSHV reactivation, indicates its therapeutic potential.
Collapse
|
4
|
Ding L, Zhu Q, Zhou F, Tan H, Xu W, Pan C, Zhu C, Wang Y, Zhang H, Fu W, Qian Z, Yuan Z, Xu H, Wei F, Cai Q. Identification of viral SIM-SUMO2-interaction inhibitors for treating primary effusion lymphoma. PLoS Pathog 2019; 15:e1008174. [PMID: 31830143 PMCID: PMC6932820 DOI: 10.1371/journal.ppat.1008174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/26/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
Primary effusion lymphoma (PEL) is an aggressive B-cell malignancy without effective treatment, and caused by the infection of Kaposi's sarcoma-associated herpesvirus (KSHV), predominantly in its latent form. Previously we showed that the SUMO2-interacting motif within the viral latency-associated nuclear antigen (LANASIM) is essential for establishment and maintenance of KSHV latency. Here, we developed a luciferase based live-cell reporter system to screen inhibitors selectively targeting the interaction between LANASIM and SUMO2. Cambogin, a bioactive natural product isolated from the Garcinia genus (a traditional herbal medicine used for cancer treatment), was obtained from the reporter system screening to efficiently inhibit the association of SUMO2 with LANASIM, in turn reducing the viral episome DNA copy number for establishment and maintenance of KSHV latent infection at a low concentration (nM). Importantly, Cambogin treatments not only specifically inhibited proliferation of KSHV-latently infected cells in vitro, but also induced regression of PEL tumors in a xenograft mouse model. This study has identified Cambogin as a novel therapeutic agent for treating PEL as well as eliminating persistent infection of oncogenic herpesvirus.
Collapse
Affiliation(s)
- Ling Ding
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Qing Zhu
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Feng Zhou
- Baoji Affiliated Hospital of Xi’an Medical University, Baoji & MOE Key Laboratory of Western Resources and Modern Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wenjia Xu
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Chengling Pan
- Beijing Computing Center, Beijing Academy of Science and Technology & Beijing Beike Deyuan Bio-Pharm Technology Company, Beijing, P. R. China
| | - Caixia Zhu
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yuyan Wang
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhenghong Yuan
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qiliang Cai
- MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- Expert Workstation, Baoji Central Hospital, Baoji, P. R. China
| |
Collapse
|
5
|
Aşula MF, Onur IU, Yigit FU. Efficacy of fumagillin bicyclohexylamine on experimental corneal neovascularization in rat model. Int Ophthalmol 2019; 39:1553-1558. [PMID: 30006905 DOI: 10.1007/s10792-018-0964-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/16/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE Fumagillin has been previously used to treat corneal microsporidial keratitis and also identified as an angiogenesis inhibitor. This study aimed to evaluate efficacy of fumagillin bicyclohexylamine on the rat model of corneal neovascularization induced by silver nitrate cauterization. METHODS Twenty-four Albino Wistar rats (n = 24) were divided into three groups. Following silver nitrate-induced corneal injury, eyes in Group 1 received one drop of 5 mg/mL topical fumagillin bicyclohexylamine four times daily for 10 days. Group 2 received subconjunctival injection of 0.1 mL fumagillin bicyclohexylamine (2.5 mg/mL) on day 1 and day 5. Group 3 received artificial tears and lubricants four times daily for 10 days as control. On day 10, animals were sacrificed. Corneal specimens were obtained and prepared to assess vascular endothelial growth factor (VEGF-C) levels and corneal angiogenic microvessel density. RESULTS There was no significant difference in VEGF-C levels between the groups (P = 0.994). Assessment of angiogenic microvessel density for peripheral corneal zone also did not reveal significant difference between the groups (P = 0.113). However, mean vascular density in Group 1 and Group 2 was significantly higher for both midperipheral and central corneal zones in comparison with Group 3 (P = 0.003, P = 0.015). CONCLUSIONS Previously proved to be effective for treatment of microsporidial keratitis in humans, topical and subconjunctival concentration or dosing of fumagillin bicyclohexylamine failed to reduce corneal neovascularization induced by silver nitrate in this study. Further studies comparing different concentrations and dosing may detect inhibitory effects of fumagillin on corneal neovascularization without inducing toxicity.
Collapse
Affiliation(s)
- M Fatih Aşula
- Department of Ophthalmology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Tevfik Saglam Caddesi No: 11 Zuhuratbaba, 34147, Istanbul, Turkey
| | - I Umut Onur
- Department of Ophthalmology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Tevfik Saglam Caddesi No: 11 Zuhuratbaba, 34147, Istanbul, Turkey.
| | - F Ulviye Yigit
- Department of Ophthalmology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Tevfik Saglam Caddesi No: 11 Zuhuratbaba, 34147, Istanbul, Turkey
| |
Collapse
|
6
|
Guruceaga X, Ezpeleta G, Mayayo E, Sueiro-Olivares M, Abad-Diaz-De-Cerio A, Aguirre Urízar JM, Liu HG, Wiemann P, Bok JW, Filler SG, Keller NP, Hernando FL, Ramirez-Garcia A, Rementeria A. A possible role for fumagillin in cellular damage during host infection by Aspergillus fumigatus. Virulence 2018; 9:1548-1561. [PMID: 30251593 PMCID: PMC6177242 DOI: 10.1080/21505594.2018.1526528] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/10/2018] [Indexed: 01/31/2023] Open
Abstract
Virulence mechanisms of the pathogenic fungus Aspergillus fumigatus are multifactorial and depend on the immune state of the host, but little is known about the fungal mechanism that develops during the process of lung invasion. In this study, microarray technology was combined with a histopathology evaluation of infected lungs so that the invasion strategy followed by the fungus could be described. To achieve this, an intranasal mice infection was performed to extract daily fungal samples from the infected lungs over four days post-infection. The pathological study revealed a heavy fungal progression throughout the lung, reaching the blood vessels on the third day after exposure and causing tissue necrosis. One percent of the fungal genome followed a differential expression pattern during this process. Strikingly, most of the genes of the intertwined fumagillin/pseurotin biosynthetic gene cluster were upregulated as were genes encoding lytic enzymes such as lipases, proteases (DppIV, DppV, Asp f 1 or Asp f 5) and chitinase (chiB1) as well as three genes related with pyomelanin biosynthesis process. Furthermore, we demonstrate that fumagillin is produced in an in vitro pneumocyte cell line infection model and that loss of fumagillin synthesis reduces epithelial cell damage. These results suggest that fumagillin contributes to tissue damage during invasive aspergillosis. Therefore, it is probable that A. fumigatus progresses through the lungs via the production of the mycotoxin fumagillin combined with the secretion of lytic enzymes that allow fungal growth, angioinvasion and the disruption of the lung parenchymal structure.
Collapse
Affiliation(s)
- Xabier Guruceaga
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Guillermo Ezpeleta
- Preventive Medicine and Hospital Hygiene Service, Complejo Hospitalario de Navarra, Pamplona, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Emilio Mayayo
- Pathology Unit, Medicine and Health Science Faculty, University of Rovira i Virgili, Reus, Tarragona, Spain
| | - Monica Sueiro-Olivares
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ana Abad-Diaz-De-Cerio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Manuel Aguirre Urízar
- Department of Stomatology II, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hong G. Liu
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Fernando L. Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
7
|
Mine S, Hishima T, Suganuma A, Fukumoto H, Sato Y, Kataoka M, Sekizuka T, Kuroda M, Suzuki T, Hasegawa H, Fukayama M, Katano H. Interleukin-6-dependent growth in a newly established plasmablastic lymphoma cell line and its therapeutic targets. Sci Rep 2017; 7:10188. [PMID: 28860565 PMCID: PMC5579229 DOI: 10.1038/s41598-017-10684-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Plasmablastic lymphoma (PBL) is a rare, highly aggressive subtype of non-Hodgkin lymphoma with plasma-cell differentiation occurring typically in immune-suppressed patients such as those with AIDS. This study reports the establishment and characterization of a new cell line, PBL-1, derived from a patient with AIDS-associated PBL. Morphological assessment of PBL-1 indicated plasma-cell differentiation with a CD20(-) CD38(+) CD138(+) immunophenotype and IgH/c-myc translocation. The cell line harbours Epstein-Barr virus, but a 52.7-kbp length defect was identified in its genome, resulting in no expression of viral microRNAs encoded in the BamHI-A Rightward Transcript region. Importantly, supplementation of culture medium with >5 ng/mL of interleukin-6 (IL-6) was required for PBL-1 growth. Starvation of IL-6 or addition of tocilizumab, an inhibitory antibody for the IL-6 receptor, induced apoptosis of PBL-1. Transduction of IL-6 into PBL-1 by lentivirus vector induced autologous growth without IL-6 supplementation of culture medium. These data indicate the IL-6 dependency of PBL-1 for proliferation and survival. mTOR inhibitors induced cell death effectively, suggesting mTOR in the IL-6 signalling pathway is a potential therapeutic target for PBL. This established PBL cell line will be a useful tool to further understand the pathophysiology of PBL and aid the future development of PBL treatment.
Collapse
Affiliation(s)
- Sohtaro Mine
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Akihiko Suganuma
- Department of Infectious Diseases, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Hitomi Fukumoto
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomic Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomic Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
8
|
Osawa M, Mine S, Ota S, Kato K, Sekizuka T, Kuroda M, Kataoka M, Fukumoto H, Sato Y, Kanno T, Hasegawa H, Ueda K, Fukayama M, Maeda T, Kanoh S, Kawana A, Fujikura Y, Katano H. Establishing and characterizing a new primary effusion lymphoma cell line harboring Kaposi's sarcoma-associated herpesvirus. Infect Agent Cancer 2016; 11:37. [PMID: 27536332 PMCID: PMC4988020 DOI: 10.1186/s13027-016-0086-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Primary effusion lymphoma is a rare distinct large B-cell neoplasm that is associated with Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Over recent years, 9 KSHV-positive/Epstein-Barr virus (EBV)-negative PEL cell lines have been established. METHODS Tumor cells were collected from the pleural effusion of a 49-year-old male with AIDS. Cells were grown in RPMI1640 culture medium supplemented with 10 % fetus bovine serum. Single cell cloning was performed successfully by a limiting dilution method in a 96-well plate. The cell line obtained was designated SPEL. RESULTS SPEL cells showed gourd-shaped morphology with a polarized nucleus, expressing CD38, CD138, and Blimp-1, but not B cell markers such as CD19 and CD20. Polymerase chain reaction analysis revealed that SPEL cells were positive for KSHV but negative for EBV. Tetradecanoylphorbol acetate induced expression of KSHV lytic proteins and the production of KSHV particles in SPEL cells. Subcutaneous inoculation of SPEL cells into severe combined immunodeficiency mice resulted in the formation of solid tumors. Next-generation sequencing revealed the 138 kbp genome sequence of KSHV in SPEL cells. Suberic bishydroxamate, a histone deacetylase inhibitor, induced the expression of KSHV-encoded lytic proteins and cell death in SPEL cells. CONCLUSIONS A new KSHV-positive and EBV-negative PEL cell line, SPEL was established. This cell line may contribute to furthering our understanding of the pathogenesis of PEL and KSHV infection.
Collapse
Affiliation(s)
- Madori Osawa
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan.,Military Medicine Research Unit, Test and Evaluation Command, Japan Ground Self Defense Force, 1-2-24 Ikejiri, Setagaya, Tokyo, 154-0001 Japan
| | - Sohtaro Mine
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan.,Department of Pathology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Tokyo, 113-0033 Japan
| | - Shinichiro Ota
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513 Japan
| | - Kengo Kato
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan
| | - Hitomi Fukumoto
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan
| | - Takayuki Kanno
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Tokyo, 113-0033 Japan
| | - Takuya Maeda
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513 Japan
| | - Soichiro Kanoh
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513 Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513 Japan
| | - Yuji Fujikura
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513 Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan
| |
Collapse
|
9
|
Purushothaman P, Uppal T, Sarkar R, Verma SC. KSHV-Mediated Angiogenesis in Tumor Progression. Viruses 2016; 8:E198. [PMID: 27447661 PMCID: PMC4974533 DOI: 10.3390/v8070198] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi's sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman's disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV's efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders.
Collapse
Affiliation(s)
- Pravinkumar Purushothaman
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Roni Sarkar
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|