1
|
Zeng Z, Miske R, Scharf M, Denno Y, Ott A, Brakopp S, Teegen B, Stöcker W, Siegert E, Saschenbrecker S, Probst C, Komorowski L. Identification of nuclear valosin-containing-protein-like as a target of anti-nuclear autoantibodies in systemic sclerosis. Front Med (Lausanne) 2025; 11:1477365. [PMID: 39906349 PMCID: PMC11790567 DOI: 10.3389/fmed.2024.1477365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Objective To identify the target antigen of an anti-nuclear autoantibody (ANA) from a patient with a suspected systemic autoimmune disease and to study the autoantibody's clinical association. Methods The index patient serum was screened for autoantibodies using indirect immunofluorescence assay (IFA) and line blots (membrane strips coated with parallel lines of different purified antigens). Immunoprecipitation with fixed HEp-2 cells followed by SDS-PAGE and MALDI-TOF mass spectrometry was used to identify the autoantigen, which was verified by competitive inhibition experiments, recombinant HEK293 cell-based IFA, and Western and line blots based on the recombinant antigen. The prevalence of autoantibodies against this antigen was studied in 693 patients with systemic autoimmune rheumatic diseases (SARD) and 150 healthy controls. Results The index patient serum displayed a homogeneous nucleolar staining pattern on HEp-2 cells and monkey liver by IFA but did not react with 27 known nuclear antigens. Nuclear valosin-containing-protein-like (NVL) was identified as the ANA target antigen. Preincubation with recombinant NVL abolished the reactivity of the patient serum with HEp-2 cells in IFA. Additionally, the patient serum reacted with recombinant NVL in cell-based IFA and Western blot analysis, whereas sera from 15 healthy controls were nonreactive. Using line blots coated with recombinant NVL, anti-NVL autoantibodies were exclusively found in four out of 378 patients with systemic sclerosis, but neither in 315 patients with other SARD nor in 150 healthy controls. Conclusion These findings indicate that autoantibodies against NVL may be a suitable marker to help narrowing the serological gap in systemic sclerosis.
Collapse
Affiliation(s)
- Zitao Zeng
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Ramona Miske
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Madeleine Scharf
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Yvonne Denno
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Anthonina Ott
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Stefanie Brakopp
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Bianca Teegen
- Clinical Immunological Laboratory, Groß Grönau, Germany
| | | | - Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Saschenbrecker
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Lars Komorowski
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| |
Collapse
|
2
|
Hirooka Y, Izumikawa K, Miyao S, Ohga T, Nobe Y, Taoka M, Nagahama M. Pre-ribosomal WDR74 module coordinates the early and late pre-rRNA processing stages for the NVL2-mediated regulation of 60S ribosome biogenesis. Biochem Biophys Res Commun 2025; 744:151175. [PMID: 39706051 DOI: 10.1016/j.bbrc.2024.151175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
WD repeat domain 74 (WDR74) is a nucleolar protein involved in the early stages of pre-60S maturation in the ribosome biogenesis pathway. In later stages, WDR74 interacts with MTR4, an RNA helicase that functions with the exosome nuclease complex, and is dissociated upon ATP hydrolysis by the chaperone-like nuclear VCP-like 2 (NVL2) AAA-ATPase. We previously reported that ATP hydrolysis-defective NVL2 causes aberrant accumulation of WDR74 on the MTR4-exosome complex at the nucleolar periphery and in the nucleoplasm and that this nuclear redistribution of WDR74 leads to the unusual cleavage of the early rRNA precursor within the internal transcribed spacer 1 sequence. However, the precise mechanisms underlying this NVL2-mediated regulation is largely obscure. In this study, co-immunoprecipitation combined with mass spectrometry revealed that WDR74 functions as part of a pre-ribosomal subcomplex, termed the WDR74 module, consisting of eukaryotic conserved WDR74, RPF1, MAK16, and RRP1. Each component of the WDR74 module was mutually essential for the interaction of other members with MTR4, and all components were required for the accurate cleavage of pre-rRNA during 60S ribosome biogenesis. Moreover, impaired release of WDR74 from the MTR4-exosome complex caused by NVL2 dysfunction prevented MTR4 from recruiting PICT1, an MTR4 adaptor protein required for the 3'-end maturation of 5.8S rRNA. Our results highlight the key role of the WDR74 module in coordinating the early pre-rRNA cleavage and late processing of pre-5.8S rRNAs.
Collapse
Affiliation(s)
- Yuya Hirooka
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Keiichi Izumikawa
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Sotaro Miyao
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Takayuki Ohga
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachiouji, Tokyo, 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachiouji, Tokyo, 192-0397, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
3
|
Matsuda KM, Kotani H, Yamaguchi K, Ono C, Okumura T, Ogawa K, Miya A, Sato A, Uchino R, Yumi M, Matsunaka H, Kono M, Norimatsu Y, Hisamoto T, Kawanabe R, Kuzumi A, Fukasawa T, Yoshizaki-Ogawa A, Okamura T, Shoda H, Fujio K, Matsushita T, Goshima N, Sato S, Yoshizaki A. Autoantibodies to nuclear valosin-containing protein-like protein: systemic sclerosis-specific antibodies revealed by in vitro human proteome. Rheumatology (Oxford) 2024; 63:2865-2873. [PMID: 38290780 DOI: 10.1093/rheumatology/keae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVES To identify and characterize undescribed systemic sclerosis (SSc)-specific autoantibodies targeting nucleolar antigens and to assess their clinical significance. METHODS We conducted proteome-wide autoantibody screening (PWAS) against serum samples from SSc patients with nucleolar patterned anti-nuclear antibodies (NUC-ANAs) of specific antibodies (Abs) unknown, utilizing wet protein arrays fabricated from in vitro human proteome. Controls included SSc patients with already-known SSc-specific autoantibodies, patients with other connective tissue diseases and healthy subjects. The selection of nucleolar antigens was performed by database search in the Human Protein Atlas. The presence of autoantibodies was certified by immunoblots and immunoprecipitations. Indirect immunofluorescence assays on HEp-2 cells were also conducted. Clinical assessment was conducted by retrospective review of electronic medical records. RESULTS PWAS identified three candidate autoantibodies, including anti-nuclear valosin-containing protein-like (NVL) Ab. Additional measurements in disease controls revealed that only anti-NVL Abs are exclusively detected in SSc. Detection of anti-NVL Abs was reproduced by conventional assays such as immunoblotting and immunoprecipitation. Indirect immunofluorescence assays demonstrated homogeneous nucleolar patterns. Anti-NVL Ab-positive cases were characterized by significantly low prevalence of diffuse skin sclerosis and interstitial lung disease, compared with SSc cases with NUC-ANAs other than anti-NVL Abs, such as anti-U3-RNP and anti-Th/To Abs. CONCLUSION Anti-NVL Ab is an SSc-specific autoantibody associated with a unique combination of clinical features, including limited skin sclerosis and lack of lung involvement.
Collapse
Affiliation(s)
- Kazuki M Matsuda
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirohito Kotani
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | - Rikako Uchino
- NOV Academic Research, TOKIWA Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Murakami Yumi
- NOV Academic Research, TOKIWA Pharmaceutical Co., Ltd, Tokyo, Japan
| | | | - Masanori Kono
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Teruyoshi Hisamoto
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ruriko Kawanabe
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ai Kuzumi
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Matsushita
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | | | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Perurena-Prieto J, Viñas-Giménez L, Sanz-Martínez MT, Selva-O'Callaghan A, Callejas-Moraga EL, Colobran R, Guillén-Del-Castillo A, Simeón-Aznar CP. Anti-nuclear valosin-containing protein-like autoantibody is associated with calcinosis and higher risk of cancer in systemic sclerosis. Rheumatology (Oxford) 2024; 63:2278-2283. [PMID: 37769243 DOI: 10.1093/rheumatology/kead520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVES Systemic sclerosis (SSc)-specific autoantibodies allow the diagnosis and predict the prognosis of SSc patients with different clinical characteristics. The aim of this study was to describe new SSc-related autoantibodies by a novel protein immunoprecipitation (IP) assay. METHODS Serum samples and clinical data were collected from 307 SSc patients. Antinuclear autoantibodies were tested in all patients by indirect immunofluorescence (IIF) on HEp-2 cells. SSc-specific autoantibodies were evaluated with a commercial immunoblot and chemiluminescence immunoassay, and traditional RNA-IP. Patients negative for all these autoantibodies (n = 51) were further tested with a non-radioactive protein IP assay. Protein bands detected on SDS-PAGE were then analysed by mass spectrometry (MS) and confirmed by western blot (WB). Additional 56 patients with nucleolar pattern by IIF were tested by protein IP-WB. RESULTS Five patients who underwent protein IP testing showed a 110-115kDa molecular weight band on SDS-PAGE and a homogeneous nucleolar pattern by IIF. MS identified the bands as nuclear valosin-containing protein-like (NVL). An additional positive patient was detected by IP-WB. As compared with the remaining 101 negative patients, anti-NVL positive patients showed a greater prevalence of calcinosis (100% vs 18.9%, P < 0.001), and cancer (66.7% vs 8.9%, P = 0.002), with a particular association with synchronous cancer (OR = 16.3; P = 0.024). CONCLUSION We identified NVL as a new autoantibody target by a novel protein IP assay in SSc patients with a homogeneous nucleolar IIF pattern, testing negative for all known SSc-specific autoantibodies by commercial assays and RNA IP. Anti-NVL identifies a new clinical phenotype, characterized by calcinosis and cancer.
Collapse
Affiliation(s)
- Janire Perurena-Prieto
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Spain
| | - Laura Viñas-Giménez
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María Teresa Sanz-Martínez
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Albert Selva-O'Callaghan
- Systemic Autoimmune Diseases Unit, Internal Medicine Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Roger Colobran
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alfredo Guillén-Del-Castillo
- Systemic Autoimmune Diseases Unit, Internal Medicine Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carmen P Simeón-Aznar
- Systemic Autoimmune Diseases Unit, Internal Medicine Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
5
|
Deryabin A, Moraleva A, Dobrochaeva K, Kovaleva D, Rubtsova M, Dontsova O, Rubtsov Y. Human RPF1 and ESF1 in Pre-rRNA Processing and the Assembly of Pre-Ribosomal Particles: A Functional Study. Cells 2024; 13:326. [PMID: 38391939 PMCID: PMC10886481 DOI: 10.3390/cells13040326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Ribosome biogenesis is essential for the functioning of living cells. In higher eukaryotes, this multistep process is tightly controlled and involves a variety of specialized proteins and RNAs. This pool of so-called ribosome biogenesis factors includes diverse proteins with enzymatic and structural functions. Some of them have homologs in yeast S. cerevisiae, and their function can be inferred from the structural and biochemical data obtained for the yeast counterparts. The functions of human proteins RPF1 and ESF1 remain largely unclear, although RPF1 has been recently shown to participate in 60S biogenesis. Both proteins have drawn our attention since they contribute to the early stages of ribosome biogenesis, which are far less studied than the later stages. In this study, we employed the loss-of-function shRNA/siRNA-based approach to the human cell line HEK293 to determine the role of RPF1 and ESF1 in ribosome biogenesis. Downregulating RPF1 and ESF1 significantly changed the pattern of RNA products derived from 47S pre-rRNA. Our findings demonstrate that RPF1 and ESF1 are associated with different pre-ribosomal particles, pre-60S, and pre-40S particles, respectively. Our results allow for speculation about the particular steps of pre-rRNA processing, which highly rely on the RPF1 and ESF1 functions. We suggest that both factors are not directly involved in pre-rRNA cleavage but rather help pre-rRNA to acquire the conformation favoring its cleavage.
Collapse
Affiliation(s)
- Alexander Deryabin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
| | - Anastasiia Moraleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
- Department of Applied Mathematics, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
| | - Diana Kovaleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
| | - Maria Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yury Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
- N.N.Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
6
|
Tomecki R, Drazkowska K, Kobylecki K, Tudek A. SKI complex: A multifaceted cytoplasmic RNA exosome cofactor in mRNA metabolism with links to disease, developmental processes, and antiviral responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1795. [PMID: 37384835 DOI: 10.1002/wrna.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Brucella effectors NyxA and NyxB target SENP3 to modulate the subcellular localisation of nucleolar proteins. Nat Commun 2023; 14:102. [PMID: 36609656 PMCID: PMC9823007 DOI: 10.1038/s41467-022-35763-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
The cell nucleus is a primary target for intracellular bacterial pathogens to counteract immune responses and hijack host signalling pathways to cause disease. Here we identify two Brucella abortus effectors, NyxA and NyxB, that interfere with host protease SENP3, and this facilitates intracellular replication of the pathogen. The translocated Nyx effectors directly interact with SENP3 via a defined acidic patch (identified from the crystal structure of NyxB), preventing nucleolar localisation of SENP3 at late stages of infection. By sequestering SENP3, the effectors promote cytoplasmic accumulation of nucleolar AAA-ATPase NVL and ribosomal protein L5 (RPL5) in effector-enriched structures in the vicinity of replicating bacteria. The shuttling of ribosomal biogenesis-associated nucleolar proteins is inhibited by SENP3 and requires the autophagy-initiation protein Beclin1 and the SUMO-E3 ligase PIAS3. Our results highlight a nucleomodulatory function of two Brucella effectors and reveal that SENP3 is a crucial regulator of the subcellular localisation of nucleolar proteins during Brucella infection, promoting intracellular replication of the pathogen.
Collapse
|
8
|
MTR4 adaptor PICT1 functions in two distinct steps during pre-rRNA processing. Biochem Biophys Res Commun 2022; 637:203-209. [DOI: 10.1016/j.bbrc.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
|
9
|
Fujiwara N, Shigemoto M, Hirayama M, Fujita KI, Seno S, Matsuda H, Nagahama M, Masuda S. MPP6 stimulates both RRP6 and DIS3 to degrade a specified subset of MTR4-sensitive substrates in the human nucleus. Nucleic Acids Res 2022; 50:8779-8806. [PMID: 35902094 PMCID: PMC9410898 DOI: 10.1093/nar/gkac559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro reconstitution analyses have proven that the physical interaction between the exosome core and MTR4 helicase, which promotes the exosome activity, is maintained by either MPP6 or RRP6. However, knowledge regarding the function of MPP6 with respect to in vivo exosome activity remains scarce. Here, we demonstrate a facilitative function of MPP6 that composes a specific part of MTR4-dependent substrate decay by the human exosome. Using RNA polymerase II-transcribed poly(A)+ substrate accumulation as an indicator of a perturbed exosome, we found functional redundancy between RRP6 and MPP6 in the decay of these poly(A)+ transcripts. MTR4 binding to the exosome core via MPP6 was essential for MPP6 to exert its redundancy with RRP6. However, at least for the decay of our identified exosome substrates, MTR4 recruitment by MPP6 was not functionally equivalent to recruitment by RRP6. Genome-wide classification of substrates based on their sensitivity to each exosome component revealed that MPP6 deals with a specific range of substrates and highlights the importance of MTR4 for their decay. Considering recent findings of competitive binding to the exosome between auxiliary complexes, our results suggest that the MPP6-incorporated MTR4-exosome complex is one of the multiple alternative complexes rather than the prevailing one.
Collapse
Affiliation(s)
- Naoko Fujiwara
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Maki Shigemoto
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Mizuki Hirayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Ken-Ichi Fujita
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan.,Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Seiji Masuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan.,Department of Food Science and Nutrition, Faculty of Agriculture Kindai University, Nara, Nara 631-8505, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Nara 631-8505, Japan.,Antiaging center, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
10
|
Qin Y, Huttlin EL, Winsnes CF, Gosztyla ML, Wacheul L, Kelly MR, Blue SM, Zheng F, Chen M, Schaffer LV, Licon K, Bäckström A, Vaites LP, Lee JJ, Ouyang W, Liu SN, Zhang T, Silva E, Park J, Pitea A, Kreisberg JF, Gygi SP, Ma J, Harper JW, Yeo GW, Lafontaine DLJ, Lundberg E, Ideker T. A multi-scale map of cell structure fusing protein images and interactions. Nature 2021; 600:536-542. [PMID: 34819669 PMCID: PMC9053732 DOI: 10.1038/s41586-021-04115-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
The cell is a multi-scale structure with modular organization across at least four orders of magnitude1. Two central approaches for mapping this structure-protein fluorescent imaging and protein biophysical association-each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately2,3. Here we integrate immunofluorescence images in the Human Protein Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical map of human cell architecture. Integration is achieved by configuring each approach as a general measure of protein distance, then calibrating the two measures using machine learning. The map, known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional affinity purifications and validate subunit associations for the majority of systems. The map reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in splicing. By integration across scales, MuSIC increases the resolution of imaging while giving protein interactions a spatial dimension, paving the way to incorporate diverse types of data in proteome-wide cell maps.
Collapse
Affiliation(s)
- Yue Qin
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Casper F Winsnes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | - Marcus R Kelly
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fan Zheng
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Michael Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Leah V Schaffer
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Katherine Licon
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anna Bäckström
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - John J Lee
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wei Ouyang
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sophie N Liu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Erica Silva
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jisoo Park
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Adriana Pitea
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jianzhu Ma
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gene W Yeo
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Ishida YI, Miyao S, Saito M, Hiraishi N, Nagahama M. Interactome analysis of the Tudor domain-containing protein SPF30 which associates with the MTR4-exosome RNA-decay machinery under the regulation of AAA-ATPase NVL2. Int J Biochem Cell Biol 2021; 132:105919. [PMID: 33422691 DOI: 10.1016/j.biocel.2021.105919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
The AAA-ATPase NVL2 associates with an RNA helicase MTR4 and the nuclear RNA exosome in the course of ribosome biogenesis. In our proteomic screen, we had identified a ribosome biogenesis factor WDR74 as a MTR4-interacting partner, whose dissociation is stimulated by the ATP hydrolysis of NVL2. In this study, we report the identification of splicing factor 30 (SPF30), another MTR4-interacting protein with a similar regulatory mechanism. SPF30 is a pre-mRNA splicing factor harboring a Tudor domain in its central region, which regulates various cellular events by binding to dimethylarginine-modified proteins. The interaction between SPF30 and the exosome core is mediated by MTR4 and RRP6, a catalytic component of the nuclear exosome. The N- and C-terminal regions, but not the Tudor domain, of SPF30 are involved in the association with MTR4 and the exosome. The knockdown of SPF30 caused subtle delay in the 12S pre-rRNA processing to mature 5.8S rRNA, even though no obvious effect was observed on the ribosome subunit profile in the cells. Shotgun proteomic analysis to search for SPF30-interacting proteins indicated its role in ribosome biogenesis, pre-mRNA splicing, and box C/D snoRNA biogenesis. These results suggest that SPF30 collaborates with the MTR4-exosome machinery to play a functional role in multiple RNA metabolic pathways, some of which may be regulated by the ATP hydrolysis of NVL2.
Collapse
Affiliation(s)
- Yo-Ichi Ishida
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Sotaro Miyao
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Mitsuaki Saito
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Nobuhiro Hiraishi
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
12
|
Urae S, Harita Y, Udagawa T, Ode KL, Nagahama M, Kajiho Y, Kanda S, Saito A, Ueda HR, Nangaku M, Oka A. A cellular model of albumin endocytosis uncovers a link between membrane and nuclear proteins. J Cell Sci 2020; 133:jcs242859. [PMID: 32482797 DOI: 10.1242/jcs.242859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cubilin (CUBN) and amnionless (AMN), expressed in kidney and intestine, form a multiligand receptor complex called CUBAM that plays a crucial role in albumin absorption. To date, the mechanism of albumin endocytosis mediated by CUBAM remains to be elucidated. Here, we describe a quantitative assay to evaluate albumin uptake by CUBAM using cells expressing full-length CUBN and elucidate the crucial roles of the C-terminal part of CUBN and the endocytosis signal motifs of AMN in albumin endocytosis. We also demonstrate that nuclear valosin-containing protein-like 2 (NVL2), an interacting protein of AMN, is involved in this process. Although NVL2 was mainly localized in the nucleolus in cells without AMN expression, it was translocated to the extranuclear compartment when coexpressed with AMN. NVL2 knockdown significantly impaired internalization of the CUBN-albumin complex in cultured cells, demonstrating an involvement of NVL2 in endocytic regulation. These findings uncover a link between membrane and nucleolar proteins that is involved in endocytic processes.
Collapse
Affiliation(s)
- Seiya Urae
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomohiro Udagawa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo 204-8588, Japan
| | - Yuko Kajiho
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shoichiro Kanda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata-shi, Niigata 951-8510, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Wako-shi, Saitama 351-0198, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
13
|
WDR74 modulates melanoma tumorigenesis and metastasis through the RPL5-MDM2-p53 pathway. Oncogene 2020; 39:2741-2755. [PMID: 32005977 DOI: 10.1038/s41388-020-1179-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 11/08/2022]
Abstract
The key molecules and underlying mechanisms of melanoma metastasis remain poorly understood. Using isobaric tag for relative and absolute quantitation (iTRAQ) proteomic screening, probing of patients' samples, functional verification, and mechanistic validation, we identified the important role of the WD repeat-containing protein 74 (WDR74) in melanoma progression and metastasis. Through gain- and loss-of-function approaches, WDR74 was found to promote cell proliferation, apoptosis resistance, and aggressive behavior in vitro. Moreover, WDR74 contributed to melanoma growth and metastasis in vivo. Mechanistically, WDR74 modulates RPL5 protein levels and consequently regulates MDM2 and insulates the ubiquitination degradation of p53 by MDM2. Our study is the first to reveal the oncogenic role of WDR74 in melanoma progression and the regulatory effect of WDR74 on the RPL5-MDM2-p53 pathway. Collectively, WDR74 can serve as a candidate target for the prevention and treatment of melanoma in the clinic.
Collapse
|
14
|
Prattes M, Lo YH, Bergler H, Stanley RE. Shaping the Nascent Ribosome: AAA-ATPases in Eukaryotic Ribosome Biogenesis. Biomolecules 2019; 9:E715. [PMID: 31703473 PMCID: PMC6920918 DOI: 10.3390/biom9110715] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
AAA-ATPases are molecular engines evolutionarily optimized for the remodeling of proteins and macromolecular assemblies. Three AAA-ATPases are currently known to be involved in the remodeling of the eukaryotic ribosome, a megadalton range ribonucleoprotein complex responsible for the translation of mRNAs into proteins. The correct assembly of the ribosome is performed by a plethora of additional and transiently acting pre-ribosome maturation factors that act in a timely and spatially orchestrated manner. Minimal disorder of the assembly cascade prohibits the formation of functional ribosomes and results in defects in proliferation and growth. Rix7, Rea1, and Drg1, which are well conserved across eukaryotes, are involved in different maturation steps of pre-60S ribosomal particles. These AAA-ATPases provide energy for the efficient removal of specific assembly factors from pre-60S particles after they have fulfilled their function in the maturation cascade. Recent structural and functional insights have provided the first glimpse into the molecular mechanism of target recognition and remodeling by Rix7, Rea1, and Drg1. Here we summarize current knowledge on the AAA-ATPases involved in eukaryotic ribosome biogenesis. We highlight the latest insights into their mechanism of mechano-chemical complex remodeling driven by advanced cryo-EM structures and the use of highly specific AAA inhibitors.
Collapse
Affiliation(s)
- Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010 Graz, Austria;
| | - Yu-Hua Lo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, Durham, NC 27709, USA;
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010 Graz, Austria;
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, Durham, NC 27709, USA;
| |
Collapse
|
15
|
Bohnsack KE, Bohnsack MT. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J 2019; 38:e100278. [PMID: 31268599 PMCID: PMC6600647 DOI: 10.15252/embj.2018100278] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
The essential cellular process of ribosome biogenesis is at the nexus of various signalling pathways that coordinate protein synthesis with cellular growth and proliferation. The fact that numerous diseases are caused by defects in ribosome assembly underscores the importance of obtaining a detailed understanding of this pathway. Studies in yeast have provided a wealth of information about the fundamental principles of ribosome assembly, and although many features are conserved throughout eukaryotes, the larger size of human (pre-)ribosomes, as well as the evolution of additional regulatory networks that can modulate ribosome assembly and function, have resulted in a more complex assembly pathway in humans. Notably, many ribosome biogenesis factors conserved from yeast appear to have subtly different or additional functions in humans. In addition, recent genome-wide, RNAi-based screens have identified a plethora of novel factors required for human ribosome biogenesis. In this review, we discuss key aspects of human ribosome production, highlighting differences to yeast, links to disease, as well as emerging concepts such as extra-ribosomal functions of ribosomal proteins and ribosome heterogeneity.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Markus T Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
- Göttingen Center for Molecular BiosciencesGeorg‐August UniversityGöttingenGermany
| |
Collapse
|
16
|
Cryo-EM structure of the essential ribosome assembly AAA-ATPase Rix7. Nat Commun 2019; 10:513. [PMID: 30705282 PMCID: PMC6355894 DOI: 10.1038/s41467-019-08373-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023] Open
Abstract
Rix7 is an essential type II AAA-ATPase required for the formation of the large ribosomal subunit. Rix7 has been proposed to utilize the power of ATP hydrolysis to drive the removal of assembly factors from pre-60S particles, but the mechanism of release is unknown. Rix7's mammalian homolog, NVL2 has been linked to cancer and mental illness disorders, highlighting the need to understand the molecular mechanisms of this essential machine. Here we report the cryo-EM reconstruction of the tandem AAA domains of Rix7 which form an asymmetric stacked homohexameric ring. We trapped Rix7 with a polypeptide in the central channel, revealing Rix7's role as a molecular unfoldase. The structure establishes that type II AAA-ATPases lacking the aromatic-hydrophobic motif within the first AAA domain can engage a substrate throughout the entire central channel. The structure also reveals that Rix7 contains unique post-α7 insertions within both AAA domains important for Rix7 function.
Collapse
|
17
|
Schmid M, Jensen TH. The Nuclear RNA Exosome and Its Cofactors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:113-132. [PMID: 31811632 DOI: 10.1007/978-3-030-31434-7_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The RNA exosome is a highly conserved ribonuclease endowed with 3'-5' exonuclease and endonuclease activities. The multisubunit complex resides in both the nucleus and the cytoplasm, with varying compositions and activities between the two compartments. While the cytoplasmic exosome functions mostly in mRNA quality control pathways, the nuclear RNA exosome partakes in the 3'-end processing and complete decay of a wide variety of substrates, including virtually all types of noncoding (nc) RNAs. To handle these diverse tasks, the nuclear exosome engages with dedicated cofactors, some of which serve as activators by stimulating decay through oligoA addition and/or RNA helicase activities or, as adaptors, by recruiting RNA substrates through their RNA-binding capacities. Most nuclear exosome cofactors contain the essential RNA helicase Mtr4 (MTR4 in humans). However, apart from Mtr4, nuclear exosome cofactors have undergone significant evolutionary divergence. Here, we summarize biochemical and functional knowledge about the nuclear exosome and exemplify its cofactor variety by discussing the best understood model organisms-the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and human cells.
Collapse
Affiliation(s)
- Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
18
|
Abstract
The nuclear RNA exosome is an essential and versatile machinery that regulates maturation and degradation of a huge plethora of RNA species. The past two decades have witnessed remarkable progress in understanding the whole picture of its RNA substrates and the structural basis of its functions. In addition to the exosome itself, recent studies focusing on associated co-factors have been elucidating how the exosome is directed towards specific substrates. Moreover, it has been gradually realized that loss-of-function of exosome subunits affect multiple biological processes such as the DNA damage response, R-loop resolution, maintenance of genome integrity, RNA export, translation and cell differentiation. In this review, we summarize the current knowledge of the mechanisms of nuclear exosome-mediated RNA metabolism and discuss their physiological significance.
Collapse
|
19
|
Hiraishi N, Ishida YI, Sudo H, Nagahama M. WDR74 participates in an early cleavage of the pre-rRNA processing pathway in cooperation with the nucleolar AAA-ATPase NVL2. Biochem Biophys Res Commun 2017; 495:116-123. [PMID: 29107693 DOI: 10.1016/j.bbrc.2017.10.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
WD repeat-containing protein 74 (WDR74), a nucleolar-localized protein, is the mammalian ortholog of Nsa1, a 60S ribosome assembly factor in yeast. We previously showed that WDR74 associates with MTR4, the nuclear exosome-assisting RNA helicase, whose dissociation is prohibited by an ATPase-deficient mutant of the AAA-type chaperone NVL2. However, the functions and regulation of WDR74 during ribosome biogenesis in cooperation with NVL2 remains unknown. Here, we demonstrated that knockdown of WDR74 leads to significant defects in the pre-rRNA cleavage within the internal transcribed spacer 1 (ITS1), occurring in an early stage of the processing pathway. Interestingly, when the dissociation of WDR74 from the MTR4-containing exonuclease complex was impaired upon expression of the mutant NVL2, the same processing defect, with partial migration of WDR74 from the nucleolus towards the nucleoplasm, was observed. In the nucleoplasm, an increased interaction between WDR74 and MTR4 was detected by in situ proximity ligation assay. Therefore, the dissociation of WDR74 from MTR4 in a late stage of rRNA synthesis is thought to be required for appropriate maturation of the pre-60S particles. These results suggest that the spatiotemporal regulation of ribosome biogenesis in the nucleolus is mediated by the ATPase activity of NVL2.
Collapse
Affiliation(s)
- Nobuhiro Hiraishi
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Yo-Ichi Ishida
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Haruka Sudo
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
20
|
Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast. Biochem J 2017; 474:195-214. [PMID: 28062837 DOI: 10.1042/bcj20160516] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022]
Abstract
Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ∼76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly.
Collapse
|
21
|
Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett 2017; 591:1801-1850. [PMID: 28524231 DOI: 10.1002/1873-3468.12682] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | | | | |
Collapse
|
22
|
Lo YH, Romes EM, Pillon MC, Sobhany M, Stanley RE. Structural Analysis Reveals Features of Ribosome Assembly Factor Nsa1/WDR74 Important for Localization and Interaction with Rix7/NVL2. Structure 2017; 25:762-772.e4. [PMID: 28416111 DOI: 10.1016/j.str.2017.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/06/2023]
Abstract
Ribosome assembly is a complex process that requires hundreds of essential assembly factors, including Rix7 (NVL2 in mammals) and Nsa1 (WDR74 in mammals). Rix7 is a type II double ring, AAA-ATPase, which is closely related to the well-known Cdc48/p97. Previous studies in Saccharomyces cerevisiae suggest that Rix7 mediates the release of Nsa1 from nucleolar pre-60S particles; however, the underlying mechanisms of this release are unknown. Through multiple structural analyses we show that S. cerevisiae Nsa1 is composed of an N-terminal seven-bladed WD40 domain followed by a lysine-rich C terminus that extends away from the WD40 domain and is required for nucleolar localization. Co-immunoprecipitation assays with the mammalian homologs identified a well-conserved interface within WDR74 that is important for its association with NVL2. We further show that WDR74 associates with the D1 AAA domain of NVL2, which represents a novel mode of binding of a substrate with a type II AAA-ATPase.
Collapse
Affiliation(s)
- Yu-Hua Lo
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Erin M Romes
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
23
|
He J, Xie Y, Kong S, Qiu W, Wang X, Wang D, Sun X, Sun D. Psychomotor retardation with a 1q42.11-q42.12 deletion. Hereditas 2017; 154:6. [PMID: 28286461 PMCID: PMC5340030 DOI: 10.1186/s41065-016-0022-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/12/2016] [Indexed: 01/06/2023] Open
Abstract
A 1q42 deletion is a rare structure variation that commonly harbours various deletion breakpoints along with diversified phenotypes. In our study, we found a de novo 1q42 deletion in a boy who did not have a cleft palate or a congenital diaphragmatic hernia but presented with psychomotor retardation. A 1.9 Mb deletion located within 1q42.11-q42.12 was validated at the molecular cytogenetic level. This is the first report of a 1q42.11-q42.12 deletion in a patient with onlypsychomotor retardation. The precise break points could facilitate the discovery of potential causative genes, such as LBR, EPHX1, etc. The correlation between the psychomotor retardation and the underlying genetic factors could not only shed light on the diagnosis of psychomotor retardation at the genetic level but also provide potential therapeutic targets.
Collapse
Affiliation(s)
- Jialing He
- Experimental Animal Center, Research Institute for National Health and Family Planning Commission, Tai hui temple road, NO. 12, Haidian District, Beijing, 100081 People's Republic of China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Shu Kong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Wenjun Qiu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Xiaoman Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Ding Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510080 China
| | - Deming Sun
- Experimental Animal Center, Research Institute for National Health and Family Planning Commission, Tai hui temple road, NO. 12, Haidian District, Beijing, 100081 People's Republic of China
| |
Collapse
|
24
|
Sudo H, Nozaki A, Uno H, Ishida YI, Nagahama M. Interaction properties of human TRAMP-like proteins and their role in pre-rRNA 5′ETS turnover. FEBS Lett 2016; 590:2963-72. [DOI: 10.1002/1873-3468.12314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/30/2016] [Accepted: 07/10/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Haruka Sudo
- Laboratory of Molecular and Cellular Biochemistry; Meiji Pharmaceutical University; Kiyose Tokyo Japan
| | - Aya Nozaki
- Laboratory of Molecular and Cellular Biochemistry; Meiji Pharmaceutical University; Kiyose Tokyo Japan
| | - Hideaki Uno
- Laboratory of Molecular and Cellular Biochemistry; Meiji Pharmaceutical University; Kiyose Tokyo Japan
| | - Yo-ichi Ishida
- Laboratory of Molecular and Cellular Biochemistry; Meiji Pharmaceutical University; Kiyose Tokyo Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry; Meiji Pharmaceutical University; Kiyose Tokyo Japan
| |
Collapse
|
25
|
Hiraishi N, Ishida YI, Nagahama M. AAA-ATPase NVL2 acts on MTR4-exosome complex to dissociate the nucleolar protein WDR74. Biochem Biophys Res Commun 2015; 467:534-40. [DOI: 10.1016/j.bbrc.2015.09.160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/30/2015] [Indexed: 01/29/2023]
|