1
|
Kegulian NC, Visakan G, Bapat RA, Moradian-Oldak J. Ameloblastin and its multifunctionality in amelogenesis: A review. Matrix Biol 2024; 131:62-76. [PMID: 38815936 PMCID: PMC11218920 DOI: 10.1016/j.matbio.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Extracellular matrix proteins play crucial roles in the formation of mineralized tissues like bone and teeth via multifunctional mechanisms. In tooth enamel, ameloblastin (Ambn) is one such multifunctional extracellular matrix protein implicated in cell signaling and polarity, cell adhesion to the developing enamel matrix, and stabilization of prismatic enamel morphology. To provide a perspective for Ambn structure and function, we begin this review by describing dental enamel and enamel formation (amelogenesis) followed by a description of enamel extracellular matrix. We then summarize the established domains and motifs in Ambn protein, human amelogenesis imperfecta cases, and genetically engineered mouse models involving mutated or null Ambn. We subsequently delineate in silico, in vitro, and in vivo evidence for the amphipathic helix in Ambn as a proposed cell-matrix adhesive and then more recent in vitro evidence for the multitargeting domain as the basis for dynamic interactions of Ambn with itself, amelogenin, and membranes. The multitargeting domain facilitates tuning between Ambn-membrane interactions and self/co-assembly and supports a likely overall role for Ambn as a matricellular protein. We anticipate that this review will enhance the understanding of multifunctional matrix proteins by consolidating diverse mechanisms through which Ambn contributes to enamel extracellular matrix mineralization.
Collapse
Affiliation(s)
- Natalie C Kegulian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Gayathri Visakan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Rucha Arun Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., CSA 148, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Kegulian NC, Langen R, Moradian-Oldak J. The Dynamic Interactions of a Multitargeting Domain in Ameloblastin Protein with Amelogenin and Membrane. Int J Mol Sci 2023; 24:3484. [PMID: 36834897 PMCID: PMC9966149 DOI: 10.3390/ijms24043484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The enamel matrix protein Ameloblastin (Ambn) has critical physiological functions, including regulation of mineral formation, cell differentiation, and cell-matrix adhesion. We investigated localized structural changes in Ambn during its interactions with its targets. We performed biophysical assays and used liposomes as a cell membrane model. The xAB2N and AB2 peptides were rationally designed to encompass regions of Ambn that contained self-assembly and helix-containing membrane-binding motifs. Electron paramagnetic resonance (EPR) on spin-labeled peptides showed localized structural gains in the presence of liposomes, amelogenin (Amel), and Ambn. Vesicle clearance and leakage assays indicated that peptide-membrane interactions were independent from peptide self-association. Tryptophan fluorescence and EPR showed competition between Ambn-Amel and Ambn-membrane interactions. We demonstrate localized structural changes in Ambn upon interaction with different targets via a multitargeting domain, spanning residues 57 to 90 of mouse Ambn. Structural changes of Ambn following its interaction with different targets have relevant implications for the multifunctionality of Ambn in enamel formation.
Collapse
Affiliation(s)
- Natalie C. Kegulian
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Ralf Langen
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Cell-Free Biomimetic Mineralization Strategies to Regenerate the Enamel Microstructure. CRYSTALS 2021. [DOI: 10.3390/cryst11111385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The distinct architecture of native enamel gives it its exquisite appearance and excellent intrinsic-extrinsic fracture toughening properties. However, damage to the enamel is irreversible. At present, the clinical treatment for enamel lesion is an invasive method; besides, its limitations, caused by the chemical and physical difference between restorative materials and dental hard tissue, makes the restorative effects far from ideal. With more investigations on the mechanism of amelogenesis, biomimetic mineralization techniques for enamel regeneration have been well developed, which hold great promise as a non-invasive strategy for enamel restoration. This review disclosed the chemical and physical mechanism of amelogenesis; meanwhile, it overviewed and summarized studies involving the regeneration of enamel microstructure in cell-free biomineralization approaches, which could bring new prospects for resolving the challenges in enamel regeneration.
Collapse
|
4
|
Petronijevic S, Stig S, Halstensen TS. Epitope mapping of anti‐amelogenin IgA in coeliac disease. Eur J Oral Sci 2020; 128:27-36. [DOI: 10.1111/eos.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Sanja Petronijevic
- Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
| | - Solveig Stig
- Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
| | - Trond S. Halstensen
- Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
| |
Collapse
|
5
|
Screening of perfused combinatorial 3D microenvironments for cell culture. Acta Biomater 2019; 96:222-236. [PMID: 31255663 DOI: 10.1016/j.actbio.2019.06.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023]
Abstract
Biomaterials combining biochemical and biophysical cues to establish close-to-extracellular matrix (ECM) models have been explored for cell expansion and differentiation purposes. Multivariate arrays are used as material-saving and rapid-to-analyze platforms, which enable selecting hit-spotted formulations targeting specific cellular responses. However, these systems often lack the ability to emulate dynamic mechanical aspects that occur in specific biological milieus and affect physiological phenomena including stem cells differentiation, tumor progression, or matrix modulation. We report a tailor-made strategy to address the combined effect of flow and biochemical composition of three-dimensional (3D) biomaterials on cellular response. We suggest a simple-to-implement device comprising (i) a perforated platform accommodating miniaturized 3D biomaterials and (ii) a bioreactor that enables the incorporation of the biomaterial-containing array into a disposable perfusion chamber. The system was upscaled to parallelizable setups, increasing the number of analyzed platforms per independent experiment. As a proof-of-concept, porous chitosan scaffolds with 1 mm diameter were functionalized with combinations of 5 ECM and cell-cell contact-mediating proteins, relevant for bone and dental regeneration, corresponding to 32 protein combinatorial formulations. Mesenchymal stem cells adhesion and production of an early osteogenic marker were assessed on-chip on static and under-flow dynamic perfusion conditions. Different hit-spotted biomaterial formulations were detected for the different flow regimes using direct image analysis. Cell-binding proteins still poorly explored as biomaterials components - amelogenin and E-cadherin - were here shown as relevant cell response modulators. Their combination with ECM cell-binding proteins - fibronectin, vitronectin, and type 1 collagen - rendered specific biomaterial combinations with high cell adhesion and ALP production under flow. The developed versatile system may be targeted at widespread tissue regeneration applications, and as a disease model/drug screening platform. STATEMENT OF SIGNIFICANCE: A perfusion system that enables cell culture in arrays of three-dimensional biomaterials under dynamic flow is reported. The effect of 31 cell-binding protein combinations in the adhesion and alkaline phosphatase (ALP) production of mesenchymal stem cells was assessed using a single bioreactor chamber. Flow perfusion was not only assessed as a classical enhancer/accelerator of cell growth and early osteogenic differentiation. We hypothesized that flow may affect cell-protein interactions, and that key components driving cell response may differ under static or dynamic regimes. Indeed, hit-spotted formulations that elicited highest cell attachment and ALP production on static cell culture differed from the ones detected for dynamic flow assays. The impacting role of poorly studied proteins as E-cadherin and amelogenin as biomaterial components was highlighted.
Collapse
|
6
|
Malmberg P, Norén JG, Bernin D. Molecular insights into hypomineralized enamel. Eur J Oral Sci 2019; 127:340-346. [DOI: 10.1111/eos.12619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Per Malmberg
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | - Jörgen G. Norén
- Department of Pediatric Dentistry Institute of Odontology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Diana Bernin
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
- Swedish NMR Centre University of Gothenburg Gothenburg Sweden
| |
Collapse
|
7
|
Su J, Kegulian NC, Arun Bapat R, Moradian-Oldak J. Ameloblastin Binds to Phospholipid Bilayers via a Helix-Forming Motif within the Sequence Encoded by Exon 5. ACS OMEGA 2019; 4:4405-4416. [PMID: 30873509 PMCID: PMC6410667 DOI: 10.1021/acsomega.8b03582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Ameloblastin (Ambn), the most abundant non-amelogenin enamel protein, is intrinsically disordered and has the potential to interact with other enamel proteins and with cell membranes. Here, through multiple biophysical methods, we investigated the interactions between Ambn and large unilamellar vesicles (LUVs), whose lipid compositions mimicked cell membranes involved in epithelial cell-extracellular matrix adhesion. Using a series of Ambn Trp/Phe variants and Ambn mutants, we further showed that Ambn binds to LUVs through a highly conserved motif within the sequence encoded by exon 5. Synthetic peptides derived from different regions of Ambn confirmed that the sequence encoded by exon 5 is involved in LUV binding. Sequence analysis of Ambn across different species showed that the N-terminus of this sequence contains a highly conserved motif with a propensity to form an amphipathic helix. Mutations in the helix-forming sequence resulted in a loss of peptide binding to LUVs. Our in vitro data suggest that Ambn binds the lipid membrane directly through a conserved helical motif and have implications for biological events such as Ambn-cell interactions, Ambn signaling, and Ambn secretion via secretory vesicles.
Collapse
|
8
|
Ren D, Ruan Q, Tao J, Lo J, Nutt S, Moradian-Oldak J. Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite. CRYSTAL GROWTH & DESIGN 2016; 16:4981-4990. [PMID: 28808430 PMCID: PMC5553050 DOI: 10.1021/acs.cgd.6b00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), one of the precursors of hydroxyapatite mineralization in vitro, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of the enamel protein amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto the surface of brushite, leading to the formation of layered morphology on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cells. Changes to the crystal morphology mediated by amelogenin continued even after the phase transformation from brushite to monetite, leading to the formation of organized platelets with an interlocked structure. This effect of amelogenin on brushite morphology and the phase transformation to monetite could provide a new approach to developing biomimetic materials.
Collapse
Affiliation(s)
- Dongni Ren
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90033, United States
| | - Qichao Ruan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90033, United States
| | - Jinhui Tao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jonathan Lo
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Steven Nutt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
9
|
Abstract
Interactions between enamel matrix proteins are important
for enamel biomineralization. In recent in situ studies, we
showed that the N-terminal proteolytic product of ameloblastin co-localized with
amelogenin around the prism boundaries. However, the molecular mechanisms of such
interactions are still unclear. Here, in order to determine the interacting domains
between amelogenin and ameloblastin, we designed four ameloblastin peptides derived
from different regions of the full-length protein (AB1, AB2 and AB3 at N-terminus,
and AB6 at C-terminus) and studied their interactions with recombinant amelogenin
(rP172), and the tyrosine-rich amelogenin polypeptide (TRAP). A series of amelogenin
Trp variants (rP172(W25), rP172(W45) and rP172(W161)) were also used for intrinsic
fluorescence spectroscopy. Fluorescence spectra of rP172 titrated with AB3, a peptide
encoded by exon 5 of ameloblastin, showed a shift in λmax in a
dose-dependent manner, indicating molecular interactions in the region encoded by
exon 5 of ameloblastin. Circular dichroism (CD) spectra of amelogenin titrated with
AB3 showed that amelogenin was responsible for forming α-helix in the presence of
ameloblastin. Fluorescence spectra of amelogenin Trp variants as well as the spectra
of TRAP titrated with AB3 showed that the N-terminus of amelogenin is involved in the
interaction between ameloblastin and amelogenin. We suggest that macromolecular
co-assembly between amelogenin and ameloblastin may play important roles in enamel
biomineralization. An in vitro approach to study
ameloblastin-amelogenin interactions is presented. Intrinsic fluorescence of tryptophan and Circular Dichroism
were utilized. We report that amelogenin has ameloblastin-binding ability
via its N-terminal close to Trp 25. We report that ameloblastin has amelogenin-binding ability
via a peptide encoded by exon 5. Macromolecular co-assembly between amelogenin and
ameloblastin may play important roles in enamel biomineralization.
Collapse
|