1
|
Xue X, Li Y, Yao Y, Zhang S, Peng C, Li Y. A comprehensive review of miR-21 in liver disease: Big impact of little things. Int Immunopharmacol 2024; 134:112116. [PMID: 38696909 DOI: 10.1016/j.intimp.2024.112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
microRNAs (miRNAs), a class of non-coding RNA with 20-24 nucleotides, are defined as the powerful regulators for gene expression. miR-21 is a multifunctional miRNA enriched in the circulatory system and multiple organs, which not only serves as a non-invasive biomarker in disease diagnosis, but also participates in many cellular activities. In various chronic liver diseases, the increase of miR-21 affects glycolipid metabolism, viral infection, inflammatory and immune cell activation, hepatic stellate cells activation and tissue fibrosis, and autophagy. Moreover, miR-21 is also a liaison in the deterioration of chronic liver disease to hepatocellular carcinoma (HCC), and it impacts on cell proliferation, apoptosis, migration, invasion, angiogenesis, immune escape, and epithelial-mesenchymal transformation by regulating target genes expression in different signaling pathways. In current research on miRNA therapy, some natural products can exert the hepatoprotective effects depending on the inhibition of miR-21 expression. In addition, miR-21-based therapeutic also play a role in regulating intracellular miR-21 levels and enhancing the efficacy of chemotherapy drugs. Herein, we systemically summarized the recent progress of miR-21 on biosynthesis, biomarker function, molecular mechanism and miRNA therapy in chronic liver disease and HCC, and looked forward to outputting some information to enable it from bench to bedside.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Sandeep P, Sharma P, Luhach K, Dhiman N, Kharkwal H, Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol Cell Neurosci 2023; 127:103905. [PMID: 37972804 DOI: 10.1016/j.mcn.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.
Collapse
Affiliation(s)
- Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
3
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
4
|
Du Y, Geng G, Zhao C, Gao T, Wei B. LncRNA MEG3 promotes cisplatin sensitivity of cervical cancer cells by regulating the miR-21/PTEN axis. BMC Cancer 2022; 22:1145. [DOI: 10.1186/s12885-022-10188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Cervical cancer (CC) is a common gynecological malignancy worldwide. Some patients perform serious resistance after chemotherapy, and long-stranded non-coding RNA MEG3 is reported to be involved in the regulation of chemoresistance in many solid tumors. However, its involvement in cervical adenocarcinoma has not been reported.
Methods
Hela cell lines, cisplatin-resistant cell lines (Hela-CR) and nude mice were used in this study. After MEG3 was overexpressed or knocked down in cells by the lentivirus vector, cell growth was detected by the CCK-8 assay, and cell migration was evaluated using Transwell assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine the expression of MEG3, miR-21 and PTEN mRNA. Apoptosis was detected by flow cytometry. The targeting relationship between mRNAs was predicted and verified using dual-luciferase reporter gene experiments. Western blot was executed to examine Bax, cleaved-caspase 3, Bcl-2, PTEN and GAPDH expression. Cells were injected into the mice to form xenograft tumors to compare tumorigenesis capacity.
Results
We demonstrated that MEG3 was down-regulated in cervical cancer by analyzing the TCGA database. Moreover, knockdown of MEG3 promoted CC cell proliferation, migration and inhibited the apoptosis. These changes of CC cells were more pronounced under cisplatin treatment. Further studies showed that the MEG3/miR-21/PTEN axis affected cisplatin sensitivity in cervical cancer cells, and these results of recue assay were used to confirm this conclusion.
Conclusions
MEG3 performing as ceRNA promotes cisplatin sensitivity in CC cells through the miR-21/PTEN axis.
Collapse
|
5
|
Akhtarkhavari T, Bahrami AR, M Matin M. Downregulation of miR-21 as a promising strategy to overcome drug resistance in cancer. Eur J Pharmacol 2022; 932:175233. [PMID: 36038011 DOI: 10.1016/j.ejphar.2022.175233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Despite tremendous achievements in the field of targeted cancer therapy, chemotherapy is still the main treatment option, which is challenged by acquired drug resistance. Various microRNAs are involved in developing drug-resistant cells. miR-21 is one of the first identified miRNAs involved in this process. Here, we conducted a literature review to categorize different mechanisms employed by miR-21 to drive drug resistance. miR-21 targets various genes involved in many pathways that can justify chemoresistance. It alters cancer cell metabolism and facilitates adaptation to the new environment. It also enhances drug detoxification in cancerous cells and increases genomic instability. We also summarized various strategies applied for the inhibition of miR-21 in order to reverse cancer drug resistance. These strategies include the delivery of antagomiRs, miRZip knockdown vectors, inhibitory small molecules, CRISPR-Cas9 technology, catalytic nucleic acids, artificial DNA and RNA sponges, and nanostructures like mesoporous silica nanoparticles, dendrimers, and exosomes. Furthermore, current challenges and limitations in targeting miR-21 are discussed in this article. Although huge progress has been made in the downregulation of miR-21 in drug-resistant cancer cells, there are still many challenges to be resolved. More research is still required to find the best strategy and timeline for the downregulation of miR-21 and also the most feasible approach for the delivery of this system into the tumor cells. In conclusion, downregulation of miR-21 would be a promising strategy to reverse chemoresistance, but still, more studies are required to clarify the aforementioned issues.
Collapse
Affiliation(s)
- Tara Akhtarkhavari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.
| |
Collapse
|
6
|
LI X, ZHANG X, MA H, LIU Y, CHENG S, WANG H, SUN J. Upregulation of serum exosomal miR-21 was associated with poor prognosis of acute myeloid leukemia patients. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.51621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xingang LI
- The Third People's Hospital of Zhengzhou, China
| | | | - Hongxia MA
- The Third People's Hospital of Zhengzhou, China
| | - Yang LIU
- The Third People's Hospital of Zhengzhou, China
| | | | - Huili WANG
- The Third People's Hospital of Zhengzhou, China
| | - Jing SUN
- The Third People's Hospital of Zhengzhou, China
| |
Collapse
|
7
|
Zhang H, Ding R, Chen D. Value of miR-21 levels as potential biomarkers in the early diagnosis of hepatocellular carcinoma:a meta-analysis. Biomarkers 2021; 26:586-597. [PMID: 34266326 DOI: 10.1080/1354750x.2021.1955976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Many studies have reported that miR-21 levels are different between hepatocellular carcinoma (HCC) patients and healthy controls, which could be used as a potential diagnostic biomarker for HCC. However, the diagnostic value of miR-21 for HCC varied greatly in previous studies. Therefore, this meta-analysis aims to provide higher grade evidence to investigate the diagnostic value of miR-21 for HCC. METHODS The databases of PubMed, Embase, Web of Science, and Chinese databases (CNKI and VIP) were searched. The indices of miR-21 in the diagnosis of HCC were pooled using bivariate random-effect models. QUADAS-2 was used to evaluate the quality of included studies. All statistical analyses were performed by STATA (12.0) software. RESULTS Totally, 1589 subjects from 14 publications were included in this study. The pooled sensitivity, specificity, positive likelihood ratios (PLR), negative likelihood ratios (NLR), and area under the curve (AUC) were 0.83 (0.77-0.88), 0.80 (0.74-0.85), 4.12 (3.04-5.57), 0.21 (0.15-0.30), and 0.88 (0.85-0.91), respectively. Subgroup analysis showed that the AUC was higher in Non-China subgroup, qRT-PCR subgroup, and plasma subgroup than that in China subgroup, ddPCR subgroup, and serum subgroup, respectively. However, the AUC was not significantly different between the healthy control subgroup and chronic hepatitis control subgroup. Significant heterogeneity was found in this meta-analysis, while no evident publication bias was identified. CONCLUSIONS miR-21 is a valuable biomarker for the early diagnosis of HCC.
Collapse
Affiliation(s)
- Huiying Zhang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Rui Ding
- School of Public Health, Anhui Medical University, Hefei, China
| | - Daojun Chen
- School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
9
|
Raza S, Jokl E, Pritchett J, Martin K, Su K, Simpson K, Birchall L, Mullan AF, Athwal VS, Doherty DT, Zeef L, Henderson NC, Kalra PA, Hanley NA, Piper Hanley K. SOX9 is required for kidney fibrosis and activates NAV3 to drive renal myofibroblast function. Sci Signal 2021; 14:14/672/eabb4282. [PMID: 33653921 DOI: 10.1126/scisignal.abb4282] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Renal fibrosis is a common end point for kidney injury and many chronic kidney diseases. Fibrogenesis depends on the sustained activation of myofibroblasts, which deposit the extracellular matrix that causes progressive scarring and organ failure. Here, we showed that the transcription factor SOX9 was associated with kidney fibrosis in humans and required for experimentally induced kidney fibrosis in mice. From genome-wide analysis, we identified Neuron navigator 3 (NAV3) as acting downstream of SOX9 in kidney fibrosis. NAV3 increased in abundance and colocalized with SOX9 after renal injury in mice, and both SOX9 and NAV3 were present in diseased human kidneys. In an in vitro model of renal pericyte transdifferentiation into myofibroblasts, we demonstrated that NAV3 was required for multiple aspects of fibrogenesis, including actin polymerization linked to cell migration and sustained activation of the mechanosensitive transcription factor YAP1. In summary, our work identifies a SOX9-NAV3-YAP1 axis involved in the progression of kidney fibrosis and points to NAV3 as a potential target for pharmacological intervention.
Collapse
Affiliation(s)
- Sayyid Raza
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Elliot Jokl
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - James Pritchett
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Katherine Martin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Kim Su
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Kara Simpson
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Lindsay Birchall
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Aoibheann F Mullan
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Varinder S Athwal
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK.,Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9PT, UK
| | - Daniel T Doherty
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| | - Leo Zeef
- Bioinformatics Core Facility, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Neil C Henderson
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Philip A Kalra
- Salford Royal NHS Foundation Trust, Stott Lane, Salford, UK
| | - Neil A Hanley
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK.,Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9PT, UK
| | - Karen Piper Hanley
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK. .,Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK
| |
Collapse
|
10
|
Lai CY, Yeh KY, Lin CY, Hsieh YW, Lai HH, Chen JR, Hsu CC, Her GM. MicroRNA-21 Plays Multiple Oncometabolic Roles in the Process of NAFLD-Related Hepatocellular Carcinoma via PI3K/AKT, TGF-β, and STAT3 Signaling. Cancers (Basel) 2021; 13:940. [PMID: 33668153 PMCID: PMC7956552 DOI: 10.3390/cancers13050940] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-21 (miR-21) is one of the most frequently upregulated miRNAs in liver diseases such as nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). However, mechanistic pathways that connect NAFLD and HCC remain elusive. We developed a doxycycline (Dox)-inducible transgenic zebrafish model (LmiR21) which exhibited an upregulation of miR-21 in the liver, which in turn induced the full spectrum of NAFLD, including steatosis, inflammation, fibrosis, and HCC, in the LmiR21 fish. Diethylnitrosamine (DEN) treatment led to accelerated liver tumor formation and exacerbated their aggressiveness. Moreover, prolonged miR-21 expression for up to ten months induced nonalcoholic steatohepatitis (NASH)-related HCC (NAHCC). Immunoblotting and immunostaining confirmed the presence of miR-21 regulatory proteins (i.e., PTEN, SMAD7, p-AKT, p-SMAD3, and p-STAT3) in human nonviral HCC tissues and LmiR21 models. Thus, we demonstrated that miR-21 can induce NAHCC via at least three mechanisms: First, the occurrence of hepatic steatosis increases with the decrease of ptenb, pparaa, and activation of the PI3K/AKT pathway; second, miR-21 induces hepatic inflammation (or NASH) through an increase in inflammatory gene expression via STAT3 signaling pathways, and induces liver fibrosis through hepatic stellate cell (HSC) activation and collagen deposition via TGF-β/Smad3/Smad7 signaling pathways; finally, oncogenic activation of Smad3/Stat3 signaling pathways induces HCC. Our LmiR21 models showed similar molecular pathology to the human cancer samples in terms of initiation of lipid metabolism disorder, inflammation, fibrosis and activation of the PI3K/AKT, TGF-β/SMADs and STAT3 (PTS) oncogenic signaling pathways. Our findings indicate that miR-21 plays critical roles in the mechanistic perspectives of NAHCC development via the PTS signaling networks.
Collapse
Affiliation(s)
- Chi-Yu Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (C.-Y. L.); (C.-Y. L.); (Y.-W.H.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Kun-Yun Yeh
- Division of Hemato-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Chiu-Ya Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (C.-Y. L.); (C.-Y. L.); (Y.-W.H.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Yang-Wen Hsieh
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (C.-Y. L.); (C.-Y. L.); (Y.-W.H.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Jim-Ray Chen
- Department of Pathology, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Chia-Chun Hsu
- Department of Radiology, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung 427, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
11
|
MicroRNA-21 promotes proliferation in acute myeloid leukemia by targeting Krüppel-like factor 5. Oncol Lett 2019; 18:3367-3372. [PMID: 31452816 DOI: 10.3892/ol.2019.10667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Abnormal expression of microRNA (miR)-21 has been reported in various types of cancers. However, the role and mechanism of miR-21 remain to be elucidated in acute myeloid leukemia (AML). In the present study, it was observed that miR-21 was upregulated and Krüppel-like factor 5 (KLF5) was downregulated in AML cells compared with normal bone marrow cells. Dual luciferase reporter assays revealed that KLF5 was a direct target of miR-21. Indeed, miR-21 overexpression resulted in a downregulation of KLF5 expression, while miR-21 inhibition had the opposite effect in AML cells. In addition, miR-21 overexpression promoted the proliferation of AML cells in vitro. Notably, using a mouse xenograft model, miR-21 overexpression was demonstrated to result in enhanced tumor growth and suppressed KLF5 expression in the xenograft tumors in vivo. In conclusion, the present results indicated that miR-21 promoted proliferation through directly regulating KLF5 expression in AML cells. miR-21 may thus serve as an oncogene in AML, providing a potential target for AML therapy.
Collapse
|
12
|
Lou W, Liu J, Ding B, Chen D, Xu L, Ding J, Jiang D, Zhou L, Zheng S, Fan W. Identification of potential miRNA-mRNA regulatory network contributing to pathogenesis of HBV-related HCC. J Transl Med 2019; 17:7. [PMID: 30602391 PMCID: PMC6317219 DOI: 10.1186/s12967-018-1761-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is one of the major risk factors of hepatocellular carcinoma (HCC). Increasing evidence indicates that microRNA (miRNA)-mRNA axis is involved in HCC. However, a comprehensive miRNA-mRNA regulatory network in HBV-related HCC is still absent. This study aims to identify potential miRNA-mRNA regulatory pathways contributing to pathogenesis of HBV-related HCC. METHODS Microarray GSE69580 was downloaded from Gene Expression Omnibus (GEO) database. GEO2R and 'R-limma' were used to conduct differential expression analysis. The common miRNAs appeared in the two analytic sets were screened as potential differentially expressed miRNAs (DE-miRNAs). The prognostic roles of screened DE-miRNAs in HCC were further evaluated using Kaplan-Meier plotter database. Target genes of DE-miRNAs were predicted by miRNet. Then, protein-protein interaction (PPI) networks were established for these targets via the STRING database, after which hub genes in the networks were identified by Cytoscape. Functional annotation and pathway enrichment analyses for the target genes were performed through DAVID database. Three enriched pathways related to HBV-related HCC were selected for further analysis and potential target genes commonly appeared in all three pathways were screened. Cytoscape was employed to construct miRNA-hub gene network. The expression and correlation of potential miRNAs and targets were further detected in clinical HBV-related HCC samples by qRT-PCR. RESULTS 7 upregulated and 9 downregulated DE-miRNAs were accessed. 5 of 7 upregulated DE-miRNAs and 5 of 7 downregulated DE-miRNAs indicated significant prognostic roles in HCC. 2312 and 1175 target genes were predicted for the upregulated and downregulated DE-miRNAs, respectively. TP53 was identified as the hub gene in the PPI networks. Pathway enrichment analysis suggested that these predicted targets were linked to hepatitis B, pathways in cancer, microRNAs in cancer and viral carcinogenesis. Further analysis of these pathways screened 20 and 16 target genes for upregulated and downregulated DE-miRNAs, respectively. By detecting the expression of 36 target genes, six candidate target genes were identified. Finally, a potential miRNA-mRNA regulatory network was established based on the results of qRT-PCR and expression correlation analysis. CONCLUSIONS In the study, potential miRNA-mRNA regulatory pathways were identified, exploring the underlying pathogenesis and effective therapy strategy of HBV-related HCC.
Collapse
Affiliation(s)
- Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Organ Transplantation, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Jingxing Liu
- Department of Intensive Care Unit, Changxing People's Hospital of Zhejiang, Huzhou, 313100, Zhejiang Province, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Organ Transplantation, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Danni Chen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Organ Transplantation, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Liang Xu
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Organ Transplantation, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Jun Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Organ Transplantation, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Donghai Jiang
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Organ Transplantation, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Lin Zhou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Organ Transplantation, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang Province, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Shusen Zheng
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Organ Transplantation, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China. .,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang Province, China. .,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China.
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Key Laboratory of Organ Transplantation, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China. .,Key Laboratory of Organ Transplantation, Hangzhou, 310003, Zhejiang Province, China. .,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China. .,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
13
|
Arvidsson Y, Rehammar A, Bergström A, Andersson E, Altiparmak G, Swärd C, Wängberg B, Kristiansson E, Nilsson O. miRNA profiling of small intestinal neuroendocrine tumors defines novel molecular subtypes and identifies miR-375 as a biomarker of patient survival. Mod Pathol 2018; 31:1302-1317. [PMID: 29487354 DOI: 10.1038/s41379-018-0010-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
Abstract
The aim of this study was to define the miRNA profile of small intestinal neuroendocrine tumors and to search for novel molecular subgroups and prognostic biomarkers. miRNA profiling was conducted on 42 tumors from 37 patients who underwent surgery for small intestinal neuroendocrine tumors. Unsupervised hierarchical clustering analysis of miRNA profiles identified two groups of tumor metastases, denoted cluster M1 and M2. The smaller cluster M1 was associated with shorter overall survival and contained tumors with higher grade (WHO grade G2/3) and multiple chromosomal gains including gain of chromosome 14. Tumors of cluster M1 had elevated expression of miR-1246 and miR-663a, and reduced levels of miR-488-3p. Pathway analysis predicted Wnt signaling to be the most significantly altered signaling pathway between clusters M1 and M2. Analysis of miRNA expression in relation to tumor proliferation rate showed significant alterations including downregulation of miR-137 and miR-204-5p in tumors with Ki67 index above 3%. Similarly, tumor progression was associated with significant alterations in miRNA expression, e.g. higher expression of miR-95 and miR-210, and lower expression of miR-378a-3p in metastases. Pathway analysis predicted Wnt signaling to be altered during tumor progression, which was supported by decreased nuclear translocation of β-catenin in metastases. Survival analysis revealed that downregulation of miR-375 was associated with shorter overall survival. We performed in situ hybridization on biopsies from an independent cohort of small intestinal neuroendocrine tumors using tissue microarrays. Expression of miR-375 was found in 578/635 (91%) biopsies and survival analysis confirmed that there was a correlation between downregulation of miR-375 in tumor metastases and shorter patient survival. We conclude that miRNA profiling defines novel molecular subgroups of metastatic small intestinal neuroendocrine tumors and identifies miRNAs associated with tumor proliferation rate and progression. miR-375 is highly expressed in small intestinal neuroendocrine tumors and may be used as a prognostic biomarker.
Collapse
Affiliation(s)
- Yvonne Arvidsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Anna Rehammar
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Anders Bergström
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ellinor Andersson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gülay Altiparmak
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christina Swärd
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bo Wängberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Monteforte A, Lam B, Sherman MB, Henderson K, Sligar AD, Spencer A, Tang B, Dunn AK, Baker AB. * Glioblastoma Exosomes for Therapeutic Angiogenesis in Peripheral Ischemia. Tissue Eng Part A 2018; 23:1251-1261. [PMID: 28699397 DOI: 10.1089/ten.tea.2016.0508] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral ischemia as a result of occlusive vascular disease is a widespread problem in patients older than the age of 65. Angiogenic therapies that can induce microvascular growth have great potential for providing a long-lasting solution for patients with ischemia and would provide an appealing alternative to surgical and percutaneous interventions. However, many angiogenic therapies have seen poor efficacy in clinical trials, suggesting that patients with long-term peripheral ischemia have considerable therapeutic resistance to angiogenic stimuli. Glioblastoma is one of the most angiogenic tumor types, inducing robust vessel growth in the area surrounding the tumor. One major angiogenic mechanism used by the tumor cells to induce blood vessel growth is the production of exosomes and other extracellular vesicles that can carry pro-angiogenic and immunomodulatory signals. Here, we explored whether the pro-angiogenic aspects of glioblastoma-derived exosomes could be harnessed to promote angiogenesis and healing in the context of peripheral ischemic disease. We demonstrate that the exosomes derived from glioblastoma markedly enhance endothelial cell proliferation and increase endothelial tubule formation in vitro. An analysis of the microRNA expression using next generation sequencing identified that exosomes contained a high concentration of miR-221. In addition, we found that glioblastoma exosomes contained significant amounts of the proteoglycans glypican-1 and syndecan-4, which can serve as co-receptors for angiogenic factors, including fibroblast growth factor-2 (FGF-2). In a hindlimb ischemia model in mice, we found that the exosomes promoted enhanced revascularization in comparison to control alginate gels and FGF-2 treatment alone. Taken together, our results support the fact that glioblastoma-derived exosomes have powerful effects in increasing revascularization in the context of peripheral ischemia.
Collapse
Affiliation(s)
- Anthony Monteforte
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Brian Lam
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Michael B Sherman
- 2 Department of Biochemistry and Molecular Biology, University of Texas Medical Branch , Galveston, Texas
| | - Kayla Henderson
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Andrew D Sligar
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Adrianne Spencer
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Brian Tang
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Andrew K Dunn
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Aaron B Baker
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas.,3 Institute for Cellular and Molecular Biology, University of Texas at Austin , Austin, Texas.,4 Institute for Computational Engineering and Sciences, University of Texas at Austin , Austin, Texas.,5 Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin , Austin, Texas
| |
Collapse
|
15
|
Lai YC, Ushio N, Rahman MM, Katanoda Y, Ogihara K, Naya Y, Moriyama A, Iwanaga T, Saitoh Y, Sogawa T, Sunaga T, Momoi Y, Izumi H, Miyoshi N, Endo Y, Fujiki M, Kawaguchi H, Miura N. Aberrant expression of microRNAs and the miR-1/MET pathway in canine hepatocellular carcinoma. Vet Comp Oncol 2018; 16:288-296. [DOI: 10.1111/vco.12379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Y.-C. Lai
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
- The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - N. Ushio
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
- The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - M. M. Rahman
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
- The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - Y. Katanoda
- Laboratory of Veterinary Diagnostic Imaging, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - K. Ogihara
- Laboratory of Pathology, School of Life and Environmental Science; Azabu University; Sagamihara Japan
| | - Y. Naya
- Laboratory of Pathology, School of Life and Environmental Science; Azabu University; Sagamihara Japan
| | - A. Moriyama
- Drug Safety Research Laboratories; Shin Nippon Biomedical Laboratories, Ltd.; Kagoshima Japan
| | - T. Iwanaga
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - Y. Saitoh
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - T. Sogawa
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - T. Sunaga
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - Y. Momoi
- Laboratory of Veterinary Diagnostic Imaging, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - H. Izumi
- Drug Safety Research Laboratories; Shin Nippon Biomedical Laboratories, Ltd.; Kagoshima Japan
| | - N. Miyoshi
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - Y. Endo
- Laboratory of Small Animal Internal Medicine, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - M. Fujiki
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| | - H. Kawaguchi
- Department of Hygiene and Health Promotion Medicine; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - N. Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine; Kagoshima University; Kagoshima Japan
| |
Collapse
|
16
|
Newie I, Søkilde R, Persson H, Jacomasso T, Gorbatenko A, Borg Å, de Hoon M, Pedersen SF, Rovira C. HER2-encoded mir-4728 forms a receptor-independent circuit with miR-21-5p through the non-canonical poly(A) polymerase PAPD5. Sci Rep 2016; 6:35664. [PMID: 27752128 PMCID: PMC5067774 DOI: 10.1038/srep35664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022] Open
Abstract
We previously reported that the human HER2 gene encodes the intronic microRNA mir-4728, which is overexpressed together with its oncogenic host gene and may act independently of the HER2 receptor. More recently, we also reported that the oncogenic miR-21-5p is regulated by 3' tailing and trimming by the non-canonical poly(A) polymerase PAPD5 and the ribonuclease PARN. Here we demonstrate a dual function for the HER2 locus in upregulation of miR-21-5p; while HER2 signalling activates transcription of mir-21, miR-4728-3p specifically stabilises miR-21-5p through inhibition of PAPD5. Our results establish a new and unexpected oncogenic role for the HER2 locus that is not currently being targeted by any anti-HER2 therapy.
Collapse
Affiliation(s)
- Inga Newie
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Rolf Søkilde
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden
| | - Helena Persson
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University Cancer Center, Lund, Sweden
| | - Thiago Jacomasso
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University Cancer Center, Lund, Sweden
| | - Andrej Gorbatenko
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Åke Borg
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden.,CREATE Health, Strategic Centre for Translational Cancer Research, Lund, Sweden
| | - Michiel de Hoon
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Stine F Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Rovira
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University Cancer Center, Lund, Sweden.,BioCARE, Strategic Cancer Research Program, Lund, Sweden.,CREATE Health, Strategic Centre for Translational Cancer Research, Lund, Sweden
| |
Collapse
|
17
|
Ouyang X, Jiang X, Gu D, Zhang Y, Kong SK, Jiang C, Xie W. Dysregulated Serum MiRNA Profile and Promising Biomarkers in Dengue-infected Patients. Int J Med Sci 2016; 13:195-205. [PMID: 26941580 PMCID: PMC4773284 DOI: 10.7150/ijms.13996] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/22/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Pathological biomarkers and mechanisms of dengue infection are poorly understood. We investigated a new serum biomarker using miRNAs and performed further correlation analysis in dengue-infected patients. METHODS Expression levels of broad-spectrum miRNAs in serum samples from three patients with dengue virus type 1 (DENV-1) and three healthy volunteers were separately analyzed using miRNA PCR arrays. The expressions of the five selected miRNAs were verified by qRT-PCR in the sera of 40 DENV-1 patients and compared with those from 32 healthy controls. Receiver operating characteristic (ROC) curve and correlation analyses were performed to evaluate the potential of these miRNAs for the diagnosis of dengue infection. RESULTS MiRNA PCR arrays revealed that 41 miRNAs were upregulated, whereas 12 miRNAs were down-regulated in the sera of DENV-1 patients compared with those in healthy controls. Among these miRNAs, qRT-PCR validation showed that serum hsa-miR-21-5p, hsa-miR-590-5p, hsa-miR-188-5p, and hsa-miR-152-3p were upregulated, whereas hsa-miR-146a-5p was down-regulated in dengue-infected patients compared with healthy controls. ROC curves showed serum hsa-miR-21-5p and hsa-miR-146a-5p could distinguish dengue-infected patients with preferable sensitivity and specificity. Correlation analysis indicated that expression levels of serum hsa-miR-21-5p and hsa-miR-146a-5p were negative and positively correlated with the number of white blood cells and neutrophils, respectively. Functional analysis of target proteins of these miRNAs in silico indicated their involvement in inflammation and cell proliferation. CONCLUSION Dengue-infected patients have a broad "fingerprint" profile with dysregulated serum miRNAs. Among these miRNAs, serum hsa-miR-21-5p, hsa-miR-146a-5p, hsa-miR-590-5p, hsa-miR-188-5p, and hsa-miR-152-3p were identified as promising serum indicators for dengue infection.
Collapse
Affiliation(s)
- Xiaoxi Ouyang
- 1. Department of health inspection and quarantine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;; 2. Shenzhen Key Lab of Health Science and Technology, Division of Life Science & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xin Jiang
- 2. Shenzhen Key Lab of Health Science and Technology, Division of Life Science & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Dayong Gu
- 3. Institute of Disease Control and Prevention, Shenzhen International Travel Health Care Center, Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518048, China
| | - Yaou Zhang
- 2. Shenzhen Key Lab of Health Science and Technology, Division of Life Science & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - S K Kong
- 4. School of Life Sciences, Biochemistry Programme, The Chinese University of Hong Kong, Room 609, Mong Man Wai Building, Shatin, NT, Hong Kong, China
| | - Chaoxin Jiang
- 5. Clinical Laboratory, Third People's Hospital, Nanhai District, Foshan City, Guangdong 528244, China
| | - Weidong Xie
- 2. Shenzhen Key Lab of Health Science and Technology, Division of Life Science & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|