1
|
Chen J, Jiang Y, Hou M, Liu C, Liu E, Zong Y, Wang X, Meng Z, Gu M, Su Y, Wang H, Fu J. Nuclear translocation of plasma membrane protein ADCY7 potentiates T cell-mediated antitumour immunity in HCC. Gut 2024; 74:128-140. [PMID: 39349007 DOI: 10.1136/gutjnl-2024-332902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/31/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The potency of T cell-mediated responses is a determinant of immunotherapy effectiveness in treating malignancies; however, the clinical efficacy of T-cell therapies has been limited in hepatocellular carcinoma (HCC) owing to the extensive immunosuppressive microenvironment. OBJECTIVE Here, we aimed to investigate the key genes contributing to immune escape in HCC and raise a new therapeutic strategy for remoulding the HCC microenvironment. DESIGN The genome-wide in vivo clustered regularly interspaced short palindromic repeats (CRISPR) screen library was conducted to identify the key genes associated with immune tolerance. Single-cell RNA-seq (scRNA-seq), flow cytometry, HCC mouse models, chromatin immunoprecipitation and coimmunoprecipitation were used to explore the function and mechanism of adenylate cyclase 7 (ADCY7) in HCC immune surveillance. RESULTS Here, a genome-wide in vivo CRISPR screen identified a novel immune modulator-ADCY7. The transmembrane protein ADCY7 undergoes subcellular translocation via caveolae-mediated endocytosis and then translocates to the nucleus with the help of leucine-rich repeat-containing protein 59 (LRRC59) and karyopherin subunit beta 1 (KPNB1). In the nucleus, it functions as a transcription cofactor of CCAAT/enhancer binding protein alpha (CEBPA) to induce CCL5 transcription, thereby increasing CD8+ T cell infiltration to restrain HCC progression. Furthermore, ADCY7 can be secreted as exosomes and enter neighbouring tumour cells to promote CCL5 induction. Exosomes with high ADCY7 levels promote intratumoural infiltration of CD8+ T cells and suppress HCC tumour growth. CONCLUSION We delineate the unconventional function and subcellular location of ADCY7, highlighting its pivotal role in T cell-mediated immunity in HCC and its potential as a promising treatment target.
Collapse
Affiliation(s)
- Jianan Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Youhai Jiang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology, Anhui, China
| | - Minghui Hou
- Research Center for Organoids, Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunliang Liu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Erdong Liu
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Yali Zong
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Xiang Wang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhengyuan Meng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingye Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Su
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
3
|
Daďová P, Mikulová A, Jaroušek R, Chorvátová M, Uldrijan S, Kubala L. A forskolin-mediated increase in cAMP promotes T helper cell differentiation into the Th1 and Th2 subsets rather than into the Th17 subset. Int Immunopharmacol 2023; 125:111166. [PMID: 37948861 DOI: 10.1016/j.intimp.2023.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The adenylyl cyclase (AC) signaling pathway is suggested to be a key regulator of immune system functions. However, specific effects of cyclic adenosine monophosphate (cAMP) on T helper (Th) cell differentiation and functions are unclear. The involvement of cAMP in the Th cell differentiation program, in particular the development of Th1, Th2, and Th17 subsets, was evaluated employing forskolin (FSK), a labdane diterpene well known as an AC activator. FSK mediated an elevation in Th1-specific markers reinforcing the Th1 cell phenotype. The Th2 differentiation was supported by FSK, though cell metabolism was negatively affected. In contrast, the Th17 immunophenotype was severely suppressed leading to the highly specific upregulation of CXCL13. The causality between FSK-elicited cAMP production and the observed reinforcement of Th2 differentiation was established by using AC inhibitor 2',5'-dideoxyadenosine, which reverted the FSK effects. Overall, an FSK-mediated cAMP increase affects Th1, Th2 and Th17 differentiation and can contribute to the identification of novel therapeutic targets for the treatment of Th cell-related pathological processes.
Collapse
Affiliation(s)
- Petra Daďová
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Antónia Mikulová
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Radim Jaroušek
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Michaela Chorvátová
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Stjepan Uldrijan
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5,625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| |
Collapse
|
4
|
Sinha R, Dvorak M, Ganesan A, Kalesinskas L, Niemeyer CM, Flotho C, Sakamoto KM, Lacayo N, Patil RV, Perriman R, Cepika AM, Liu YL, Kuo A, Utz PJ, Khatri P, Bertaina A. Epigenetic Profiling of PTPN11 Mutant JMML Hematopoietic Stem and Progenitor Cells Reveals an Aberrant Histone Landscape. Cancers (Basel) 2023; 15:5204. [PMID: 37958378 PMCID: PMC10650722 DOI: 10.3390/cancers15215204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a deadly pediatric leukemia driven by RAS pathway mutations, of which >35% are gain-of-function in PTPN11. Although DNA hypermethylation portends severe clinical phenotypes, the landscape of histone modifications and chromatin profiles in JMML patient cells have not been explored. Using global mass cytometry, Epigenetic Time of Flight (EpiTOF), we analyzed hematopoietic stem and progenitor cells (HSPCs) from five JMML patients with PTPN11 mutations. These data revealed statistically significant changes in histone methylation, phosphorylation, and acetylation marks that were unique to JMML HSPCs when compared with healthy controls. Consistent with these data, assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis revealed significant alterations in chromatin profiles at loci encoding post-translational modification enzymes, strongly suggesting their mis-regulated expression. Collectively, this study reveals histone modification pathways as an additional epigenetic abnormality in JMML patient HSPCs, thereby uncovering a new family of potential druggable targets for the treatment of JMML.
Collapse
Affiliation(s)
- Roshani Sinha
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.S.); (R.V.P.); (R.P.); (A.-M.C.); (Y.L.L.)
| | - Mai Dvorak
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (M.D.); (A.G.); (L.K.); (A.K.); (P.J.U.); (P.K.)
| | - Ananthakrishnan Ganesan
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (M.D.); (A.G.); (L.K.); (A.K.); (P.J.U.); (P.K.)
| | - Larry Kalesinskas
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (M.D.); (A.G.); (L.K.); (A.K.); (P.J.U.); (P.K.)
| | - Charlotte M. Niemeyer
- Department of Pediatric Hematology and Oncology, University of Freiburg Medical Centre, 79098 Freiburg im Breisgau, Germany; (C.M.N.); (C.F.)
| | - Christian Flotho
- Department of Pediatric Hematology and Oncology, University of Freiburg Medical Centre, 79098 Freiburg im Breisgau, Germany; (C.M.N.); (C.F.)
| | - Kathleen M. Sakamoto
- Bass Center for Childhood Cancer and Blood Disorders at Lucile Packard Children’s Hospital, Palo Alto, CA 94304, USA; (K.M.S.); (N.L.)
| | - Norman Lacayo
- Bass Center for Childhood Cancer and Blood Disorders at Lucile Packard Children’s Hospital, Palo Alto, CA 94304, USA; (K.M.S.); (N.L.)
| | - Rachana Vinay Patil
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.S.); (R.V.P.); (R.P.); (A.-M.C.); (Y.L.L.)
| | - Rhonda Perriman
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.S.); (R.V.P.); (R.P.); (A.-M.C.); (Y.L.L.)
| | - Alma-Martina Cepika
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.S.); (R.V.P.); (R.P.); (A.-M.C.); (Y.L.L.)
| | - Yunying Lucy Liu
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.S.); (R.V.P.); (R.P.); (A.-M.C.); (Y.L.L.)
| | - Alex Kuo
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (M.D.); (A.G.); (L.K.); (A.K.); (P.J.U.); (P.K.)
| | - Paul J. Utz
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (M.D.); (A.G.); (L.K.); (A.K.); (P.J.U.); (P.K.)
| | - Purvesh Khatri
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (M.D.); (A.G.); (L.K.); (A.K.); (P.J.U.); (P.K.)
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.S.); (R.V.P.); (R.P.); (A.-M.C.); (Y.L.L.)
- Bass Center for Childhood Cancer and Blood Disorders at Lucile Packard Children’s Hospital, Palo Alto, CA 94304, USA; (K.M.S.); (N.L.)
| |
Collapse
|
5
|
Kanellou P, Georgakopoulos-Soares I, Zaravinos A. Deregulated Gene Expression Profiles and Regulatory Networks in Adult and Pediatric RUNX1/RUNX1T1-Positive AML Patients. Cancers (Basel) 2023; 15:1795. [PMID: 36980682 PMCID: PMC10046396 DOI: 10.3390/cancers15061795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and complex disease concerning molecular aberrations and prognosis. RUNX1/RUNX1T1 is a fusion oncogene that results from the chromosomal translocation t(8;21) and plays a crucial role in AML. However, its impact on the transcriptomic profile of different age groups of AML patients is not completely understood. Here, we investigated the deregulated gene expression (DEG) profiles in adult and pediatric RUNX1/RUNX1T1-positive AML patients, and compared their functions and regulatory networks. We retrospectively analyzed gene expression data from two independent Gene Expression Omnibus (GEO) datasets (GSE37642 and GSE75461) and computed their differentially expressed genes and upstream regulators, using limma, GEO2Enrichr, and X2K. For validation purposes, we used the TCGA-LAML (adult) and TARGET-AML (pediatric) patient cohorts. We also analyzed the protein-protein interaction (PPI) networks, as well as those composed of transcription factors (TF), intermediate proteins, and kinases foreseen to regulate the top deregulated genes in each group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were further performed for the DEGs in each dataset. We found that the top upregulated genes in (both adult and pediatric) RUNX1/RUNX1T1-positive AML patients are enriched in extracellular matrix organization, the cell projection membrane, filopodium membrane, and supramolecular fiber. Our data corroborate that RUNX1/RUNX1T1 reprograms a large transcriptional network to establish and maintain leukemia via intricate PPI interactions and kinase-driven phosphorylation events.
Collapse
Affiliation(s)
- Peggy Kanellou
- Department of Hematology, Venizeleio General Hospital of Heraklion, 71409 Heraklion, Greece
| | - Ilias Georgakopoulos-Soares
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
6
|
Chen L, Huang L, Dong B, Gu Y, Cang W, Li C, Sun P, Xiang Y. ADCY7 mRNA Is a Novel Biomarker in HPV Infection and Cervical High-Grade Squamous Lesions or Higher. Biomedicines 2023; 11:biomedicines11030868. [PMID: 36979847 PMCID: PMC10045083 DOI: 10.3390/biomedicines11030868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
The effect of cervical cancer immunotherapy is limited. Combination therapy will be a new direction for cervical cancer. Thus, it is essential to discover a novel and available predictive biomarker to stratify patients who may benefit from immunotherapy for cervical cancer. In this study, 563 participants were enrolled. Adenylate cyclase 7 (ADCY7) mRNA was detected by real-time quantitative PCR (qPCR) with cervical cytology specimens. The relationship between ADCY7 and cervical intraepithelial neoplasia in grade 2 and higher (CIN2+) was analyzed, and the optimal cut-off values of the relative expression of ADCY7 mRNA to predict CIN2+ were calculated. In addition, the clinical significance of ADCY7 in cervical cancer was determined by the Kaplan–Meier Cox regression based on the TCGA database. The mean ADCY7 mRNA expression increased significantly with cervical lesion development, especially compared with CIN2+ (p < 0.05). Moreover, the expression of ADCY7 increased significantly in high-risk human papillomavirus (HR-HPV) infection but not in HPV-A5/6 species. The area under the receiver operating characteristic curve (AUC) of ADCY7 was 0.897, and an optimal cut-off was 0.435. Furthermore, ADCY7 had the highest OR (OR= 8.589; 95% CI (2.281–22.339)) for detecting CIN 2+, followed by HPV genotyping, TCT, and age (OR = 4.487, OR = 2.071, and OR = 1.345; 95% CI (1.156–10.518), (0.370–8.137), and (0.171–4.694), respectively). Moreover, this study indicated that higher ADCY7 levels could be a suitable predictor for poor prognosis in cervical cancer due to immune cell infiltration. A new auxiliary predictor of CIN2+ in cervical cytology specimens is ADCY7 ≥ 0.435. Furthermore, it may be a promising prognosis predictor and potential immunotherapy target for the combined treatment of cervical cancer and possibly further block HR-HPV persistent infection.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Binhua Dong
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital), Fuzhou 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou 350001, China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Wei Cang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital), Fuzhou 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou 350001, China
- Correspondence: (P.S.); (Y.X.); Tel.: +86-591-87558732 (P.S.); +86-01065296068 (Y.X.); Fax: +86-591-87551247 (P.S.); +86-01065296218 (Y.X.)
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
- Correspondence: (P.S.); (Y.X.); Tel.: +86-591-87558732 (P.S.); +86-01065296068 (Y.X.); Fax: +86-591-87551247 (P.S.); +86-01065296218 (Y.X.)
| |
Collapse
|
7
|
Chen P, Cao J, Chen L, Gao G, Xu Y, Jia P, Li Y, Li Y, Du J, Zhang S, Zhang J. Prognostic value of an eighteen-genes panel in acute myeloid leukemia by analyzing TARGET and TCGA databases. Cancer Biomark 2023; 36:287-298. [PMID: 36938728 DOI: 10.3233/cbm-220179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) has a poor prognosis, and the current 5-year survival rate is less than 30%. OBJECTIVE The present study was designed to identify the significant genes closely related to AML prognosis and predict the prognostic value by constructing a risk model based on their expression. METHODS Using bioinformatics (Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, univariate and multivariate Cox regression analysis, Kaplan-Meier survival analysis, and receiver operating characteristic (ROC) analysis) to identify a prognostic gene signature for AML. Finally, The Cancer Genome Atlas (TCGA) database was used to validate this prognostic signature. RESULTS Based on univariate and multivariate Cox regression analysis, eighteen prognostic genes were identified, and the gene signature and risk score model were constructed. Multivariate Cox analysis showed that the risk score was an independent prognostic factor [hazard ratio (HR) = 1.122, 95% confidence interval (CI) = 1.067-1.180, P< 0.001]. ROC analysis showed a high predictive value of the risk model with an area under the curve (AUC) of 0.705. CONCLUSIONS This study evaluated a potential prognostic signature with eighteen genes and constructed a risk model significantly related to the prognosis of AML patients.
Collapse
Affiliation(s)
- Panpan Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaming Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lingling Chen
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guanfei Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanlin Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Peijun Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yating Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingxin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Development of a Clinical Prognostic Model for Metabolism-Related Genes in Squamous Lung Cancer and Correlation Analysis of Immune Microenvironment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6962056. [PMID: 36110123 PMCID: PMC9470302 DOI: 10.1155/2022/6962056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 12/23/2022]
Abstract
Background The incidence of squamous lung cancer (LUSC) has substantially increased. Systematic studies of metabolic genomic patterns are fundamental for the treatment and prediction of LUSC. Because cancer metabolism and immune cell metabolism have been studied in depth, metabolism and the state and function of immune cells have become key factors in tumor development. This also indicates that metabolic genes and the tumor immune microenvironment (TME) are crucial in tumor treatment. This study is aimed at dissecting the connection between TME and LUSC digestion-related qualities. Methods The information used in this study was obtained from The Cancer Genome Atlas dataset. Metabolism-related genes in patients with LUSC were screened, and relevant clinical data were collated. Next, genes associated with prognosis were screened using univariate COX regression and LASSO regression analyses. Finally, a timer database study was conducted to analyze the molecular mechanisms of immune cell infiltration of LUSC prognosis-related metabolic genes at the immune cell level. Results Nine metabolism-related genes were identified: ADCY7, ALDH3B1, CHIA, CYP2C18, ENTPD6, GGCT, HPRT1, PLA2G1B, and PTGIS. A clinical prediction model for LUSC based on metabolism-related genes was constructed. In addition, 22 subpopulations of tumor-infiltrating immune cells (TIIC) in the TME were analyzed using the CIBERSORT algorithm. Finally, we used the TIMER database to analyze the immune infiltration of LUSC and the relationship between metabolism-related genes and immune cells. Conclusion Our study identified metabolic genes associated with the prognosis of LUSC, which are important markers for its diagnosis, clinically relevant assessments, and prognosis. The relationship between metabolic genes with prognostic impact and immune infiltration was also analyzed, and a metabolic gene-based clinical prediction model was identified, providing a new perspective for LUSC treatment.
Collapse
|
9
|
Guo R, Liu T, Shasaltaneh MD, Wang X, Imani S, Wen Q. Targeting Adenylate Cyclase Family: New Concept of Targeted Cancer Therapy. Front Oncol 2022; 12:829212. [PMID: 35832555 PMCID: PMC9271773 DOI: 10.3389/fonc.2022.829212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
The adenylate cyclase (ADCY) superfamily is a group of glycoproteins regulating intracellular signaling. ADCYs act as key regulators in the cyclic adenosine monophosphate (cAMP) signaling pathway and are related to cell sensitivity to chemotherapy and ionizing radiation. Many members of the superfamily are detectable in most chemoresistance cases despite the complexity and unknownness of the specific mechanism underlying the role of ADCYs in the proliferation and invasion of cancer cells. The overactivation of ADCY, as well as its upstream and downstream regulators, is implicated as a major potential target of novel anticancer therapies and markers of exceptional responders to chemotherapy. The present review focuses on the oncogenic functions of the ADCY family and emphasizes the possibility of the mediating roles of deleterious nonsynonymous single nucleotide polymorphisms (nsSNPs) in ADCY as a prognostic therapeutic target in modulating resistance to chemotherapy and immunotherapy. It assesses the mediating roles of ADCY and its counterparts as stress regulators in reprogramming cancer cell metabolism and the tumor microenvironment. Additionally, the well-evaluated inhibitors of ADCY-related signaling, which are under clinical investigation, are highlighted. A better understanding of ADCY-induced signaling and deleterious nsSNPs (p.E1003K and p.R1116C) in ADCY6 provides new opportunities for developing novel therapeutic strategies in personalized oncology and new approaches to enhance chemoimmunotherapy efficacy in treating various cancers.
Collapse
Affiliation(s)
- Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | | | - Xuan Wang
- China Regional Research Center, International Centre for Genetic Engineering and Biotechnology Taizhou, Jiangsu, China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- China Regional Research Center, International Centre for Genetic Engineering and Biotechnology Taizhou, Jiangsu, China
- *Correspondence: Saber Imani, ; QingLian Wen,
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Saber Imani, ; QingLian Wen,
| |
Collapse
|
10
|
Identification of a Pyroptosis-Related Gene Signature for Prediction of Overall Survival in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2021; 2021:6365459. [PMID: 34630565 PMCID: PMC8497135 DOI: 10.1155/2021/6365459] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022]
Abstract
Pyroptosis is a kind of programmed cell death that is characterized by inflammation. However, the expression of pyroptosis-related genes and their connection with prognosis in lung adenocarcinoma (LUAD) remain unknown. The aim of this study is to create and validate a LUAD prediction signature based on genes associated with pyroptosis. The TCGA and GEO were used to collect gene sequencing data and clinical information for LUAD samples. To identify patients with LUAD from the TCGA cohort, consensus clustering by pyroptosis-related genes was employed. Our prognostic model was constructed using LASSO-Cox analysis after Cox regression using differentially expressed genes. To predict patient survival, we created a seven-mRNA signature. Additionally, reliability and validity were established in the GEO cohort. To assess its diagnostic and prognostic usefulness, an integrated bioinformatics method was used. Using a risk score with varying overall survival (OS) in two cohorts (all p < 0.001), a seven-gene signature was developed to categorize patients into two risk categories. The signature was shown to be an independent predictor of LUAD using multivariate regression analysis. The signature was linked to a variety of immune cell subtypes according to a study of immune cell infiltration. We constructed a signature consisting of seven genes as a robust biomarker with potential for clinical use in risk stratification and OS prediction in LUAD patients, as well as a potential indicator of immunotherapy in LUAD.
Collapse
|
11
|
Zeng Y, Li N, Zheng Z, Chen R, Liu W, Zhu J, Zeng M, Cheng J, Peng M, Hong C. A Pan-Cancer Analysis of the Prognostic Value and Expression of Adenylate Cyclase 7 (ADCY7) in Human Tumors. Int J Gen Med 2021; 14:5415-5429. [PMID: 34539183 PMCID: PMC8445103 DOI: 10.2147/ijgm.s330680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The role of adenylate cyclase 7 (ADCY7) in cancer is still unclear. This study analyzed the interrelationship between the expression and immune function of ADCY7. METHODS ADCY7 expression in multiple human cancers was analyzed using the databases of Genotype-Tissue Expression Project (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA). Correlations among ADCY7 gene expression, mismatch repair (MMR) gene expression, and DNA methyltransferase (DNMT) expression were assessed using Spearman correlation analysis. Univariate survival analysis and Kaplan-Meier (KM) curve were used to examine the effect of ADCY7 expression on prognosis. The Tumor Immune Estimation Resource (TIMER) database was used to evaluate the relationship between ADCY7 gene expression and tumor immune invasion or immune checkpoint gene (ICG) expression. RESULTS ADCY7 was abnormally expressed in multiple human cancers and was correlated with MMR genes and DNMT expression. Univariate survival analysis and KM curve showed that ADCY7 expression influences the overall survival (OS) of six types of cancer, disease-specific survival (DSS) of eight, and progression-free interval (PFI) of three. The high expression of ADCY7 in OS, DSS, and PFI was strongly associated with poor outcomes in patients with breast cancer and lung squamous cell carcinoma. ADCY7 expression was strongly associated with immune cell infiltration and ICG expression. CONCLUSION The results of this study indicated that ADCY7 may be a prognostic biomarker of tumorigenesis. The study may also provide a new perspective on the role of ADCY7 in human cancers.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Nanhong Li
- Department of Pathology and Pathophysiology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wang Liu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Jinru Zhu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Mingqing Zeng
- First Clinical School of Medicine, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Junfen Cheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Min Peng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
12
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
13
|
Doherty A, Lopes I, Ford CT, Monaco G, Guest P, de Magalhães JP. A scan for genes associated with cancer mortality and longevity in pedigree dog breeds. Mamm Genome 2020; 31:215-227. [PMID: 32661568 PMCID: PMC7496057 DOI: 10.1007/s00335-020-09845-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Selective breeding of the domestic dog (Canis lupus familiaris) rigidly retains desirable features, and could inadvertently fix disease-causing variants within a breed. We combine phenotypic data from > 72,000 dogs with a large genotypic dataset to search for genes associated with cancer mortality and longevity in pedigree dog breeds. We validated previous findings that breeds with higher average body weight have higher cancer mortality rates and lower life expectancy. We identified a significant positive correlation between life span and cancer mortality residuals corrected for body weight, implying that long-lived breeds die more frequently from cancer compared to short-lived breeds. We replicated a number of known genetic associations with body weight (IGF1, GHR, CD36, SMAD2 and IGF2BP2). Subsequently, we identified five genetic variants in known cancer-related genes (located within SIPA1, ADCY7 and ARNT2) that could be associated with cancer mortality residuals corrected for confounding factors. One putative genetic variant was marginally significantly associated with longevity residuals that had been corrected for the effects of body weight; this genetic variant is located within PRDX1, a peroxiredoxin that belongs to an emerging class of pro-longevity associated genes. This research should be considered as an exploratory analysis to uncover associations between genes and longevity/cancer mortality.
Collapse
Affiliation(s)
- Aoife Doherty
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Christopher T Ford
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Gianni Monaco
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Patrick Guest
- School of Biology, Medical and Biological Sciences Building, University of St. Andrews, North Haugh, St. Andrews, KY16 9TF, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
14
|
Chen SL, Hu F, Wang DW, Qin ZY, Liang Y, Dai YJ. Prognosis and regulation of an adenylyl cyclase network in acute myeloid leukemia. Aging (Albany NY) 2020; 12:11864-11877. [PMID: 32568101 PMCID: PMC7343484 DOI: 10.18632/aging.103357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
We explored the roles of adenylyl cyclases (ADCYs) in acute myeloid leukemia (AML). Expression ADCYs in AML and their effect on prognosis was analyzed using data from Oncomine, GEPIA and cBioPortal databases. Frequently altered neighbor genes (FANGs) of ADCYs were detected using the 3D Genome Browser, after which the functions of these FANGs were predicted using Metascape tools. Cell viability and apoptosis were assessed using CCK-8 and Annexin V-FITC/PI kits. Expression levels of ADCYs were higher in AML cells lines and in bone marrow-derived mononuclear cells from AML patients than in control cells, and were predictive of a poor prognosis. A total of 58 ADCY FANGs were identified from the topologically associating domains on the basis of the Hi-C data. Functional analysis of these FANGs revealed abnormal activation of the MAPK signaling pathway. Drug sensitivity tests showed that fasudil plus trametinib or sapanisertib had a synergistic effect suppressing AML cell viability and increasing apoptosis. These findings suggest that dysregulation of ADCY expression leads to altered signaling in the MAPK pathway in AML and that the ADCY expression profile may be predictive of prognosis in AML patients.
Collapse
Affiliation(s)
- Si-Liang Chen
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Hu
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Da-Wei Wang
- National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe-Yuan Qin
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yang Liang
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yu-Jun Dai
- Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
15
|
Cui H, Xu L, Li Z, Hou KZ, Che XF, Liu BF, Liu YP, Qu XJ. Integrated bioinformatics analysis for the identification of potential key genes affecting the pathogenesis of clear cell renal cell carcinoma. Oncol Lett 2020; 20:1573-1584. [PMID: 32724399 PMCID: PMC7377202 DOI: 10.3892/ol.2020.11703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
Clear cell renal cell carcinoma (CCRCC) is a typical type of RCC with the worst prognosis among the common epithelial neoplasms of the kidney. However, its molecular pathogenesis remains unknown. Therefore, the aim of the present study was to screen for effective and potential pathogenic biomarkers of CCRCC. The gene expression profile of the GSE16441, GSE36895, GSE40435, GSE46699, GSE66270 and GSE71963 datasets were downloaded from the Gene Expression Omnibus database. First, the limma package in R language was used to identify differentially expressed genes (DEGs) in each dataset. The robust and strong DEGs were explored using the robust rank aggregation method. A total of 980 markedly robust DEGs were identified (429 upregulated and 551 downregulated). According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, these DEGs exhibited an obvious enrichment in various cancer-related biological pathways and functions. The Search Tool for the Retrieval of Interacting Genes/Proteins database was used for the construction of a protein-protein interaction (PPI) network, the Cytoscape MCODE plug-in for module analysis and the cytoHubba plug-in to identify hub genes from the aforementioned DEGs. A total of four key modules were identified in the PPI network. A total of six hub genes, including C-X-C motif chemokine ligand 12, bradykinin receptor B2, adenylate cyclase 7, calcium sensing receptor (CASR), kininogen 1 and lysophosphatidic acid receptor 5, were identified. The DEG results of the hub genes were verified using The Cancer Genome Atlas database, and CASR was found to be significantly associated with the prognosis of patients with CCRCC. In conclusion, the present study provided new insight and potential biomarkers for the diagnosis and prognosis of CCRCC.
Collapse
Affiliation(s)
- Hao Cui
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Xu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ke-Zuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiao-Fang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bo-Fang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
16
|
Teng H, Wei W, Li Q, Xue M, Shi X, Li X, Mao F, Sun Z. Prevalence and architecture of posttranscriptionally impaired synonymous mutations in 8,320 genomes across 22 cancer types. Nucleic Acids Res 2020; 48:1192-1205. [PMID: 31950163 PMCID: PMC7026592 DOI: 10.1093/nar/gkaa019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Somatic synonymous mutations are one of the most frequent genetic variants occurring in the coding region of cancer genomes, while their contributions to cancer development remain largely unknown. To assess whether synonymous mutations involved in post-transcriptional regulation contribute to the genetic etiology of cancers, we collected whole exome data from 8,320 patients across 22 cancer types. By employing our developed algorithm, PIVar, we identified a total of 22,948 posttranscriptionally impaired synonymous SNVs (pisSNVs) spanning 2,042 genes. In addition, 35 RNA binding proteins impacted by these identified pisSNVs were significantly enriched. Remarkably, we discovered markedly elevated ratio of somatic pisSNVs across all 22 cancer types, and a high pisSNV ratio was associated with worse patient survival in five cancer types. Intriguing, several well-established cancer genes, including PTEN, RB1 and PIK3CA, appeared to contribute to tumorigenesis at both protein function and posttranscriptional regulation levels, whereas some pisSNV-hosted genes, including UBR4, EP400 and INTS1, exerted their function during carcinogenesis mainly via posttranscriptional mechanisms. Moreover, we predicted three drugs associated with two pisSNVs, and numerous compounds associated with expression signature of pisSNV-hosted genes. Our study reveals the prevalence and clinical relevance of pisSNVs in cancers, and emphasizes the importance of considering posttranscriptional impaired synonymous mutations in cancer biology.
Collapse
Affiliation(s)
- Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wenqing Wei
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiying Xue
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Shi
- Sino-Danish college, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
Perez DR, Sklar LA, Chigaev A, Matlawska-Wasowska K. Drug repurposing for targeting cyclic nucleotide transporters in acute leukemias - A missed opportunity. Semin Cancer Biol 2020; 68:199-208. [PMID: 32044470 DOI: 10.1016/j.semcancer.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
While current treatment regimens for acute leukemia can dramatically improve patient survival, there remains room for improvement. Due to its roles in cell differentiation, cell survival, and apoptotic signaling, modulation of the cyclic AMP (cAMP) pathway has provided a meaningful target in hematological malignancies. Several studies have demonstrated that gene expression profiles associated with increased pro-survival cAMP activity or downregulation of various pro-apoptotic factors associated with the cAMP pathway are apparent in acute leukemia patients. Previous work to increase leukemia cell intracellular cAMP focused on the use of cAMP analogs, stimulating cAMP production via transmembrane-associated adenylyl cyclases, or decreasing cAMP degradation by inhibiting phosphodiesterase activity. However, targeting cyclic nucleotide efflux by ATP-binding cassette (ABC) transporters represents an unexplored approach for modulation of intracellular cyclic nucleotide levels. Preliminary studies have shown that inhibition of cAMP efflux can stimulate leukemia cell differentiation, cell growth arrest, and apoptosis, indicating that targeting cAMP efflux may show promise for future therapeutic development. Furthermore, inhibition of cyclic nucleotide transporter activity may also contribute multiple anticancer benefits by reducing extracellular pro-survival signaling in malignant cells. Hence, several opportunities for drug repurposing may exist for targeting cyclic nucleotide transporters.
Collapse
Affiliation(s)
- Dominique R Perez
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Larry A Sklar
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Alexandre Chigaev
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| | - Ksenia Matlawska-Wasowska
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA; Department of Pediatrics, Division of Hematology-Oncology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
18
|
Fan Y, Mu J, Huang M, Imani S, Wang Y, Lin S, Fan J, Wen Q. Epigenetic identification of ADCY4 as a biomarker for breast cancer: an integrated analysis of adenylate cyclases. Epigenomics 2019; 11:1561-1579. [PMID: 31584294 DOI: 10.2217/epi-2019-0207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To explore the role of adenylyl cyclase isoforms and its epigenetics in cancer. Materials & methods: Adenylyl cyclase expression profiles, epigenetic alterations, prognostic value and molecular networks were assessed by use of public omics datasets. Results: ADCY4 was significantly downregulated in breast cancer. This downregulation was associated with promoter hypermethylation. High ADCY4 expression was correlated with better survival of patients with breast cancer and its different intrinsic subtypes and tumor stages. ADCY4 was shown to be strongly associated with G protein coupled receptors and the downstream cAMP signaling pathway, which was also significantly enriched in newly identified lysophosphatidic acid receptor 4 and glucagon-like peptide-1. Conclusion: ADCY4 may be used as an epigenetic biomarker for breast cancer, as well as a possible target for therapy.
Collapse
Affiliation(s)
- Yu Fan
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China
| | - Mingquan Huang
- Breast Surgery Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Saber Imani
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Yu Wang
- Health Examination Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Sheng Lin
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Juan Fan
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| | - Qinglian Wen
- Oncology Department, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, PR China
| |
Collapse
|
19
|
Li M, Hao S, Li C, Xiao H, Sun L, Yu Z, Zhang N, Xiong Y, Zhao D, Yin Y. Elevated SH3BP5 Correlates with Poor Outcome and Contributes to the Growth of Acute Myeloid Leukemia Cells. Biomolecules 2019; 9:biom9090505. [PMID: 31546831 PMCID: PMC6770748 DOI: 10.3390/biom9090505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Current strategies are not especially successful in the treatment of acute myeloid leukemia (AML). The identification and characterization of oncogenes crucial to the survival and growth of leukemia cells will provide potential targets for the exploitation of novel therapies. Herein, we report that the elevated expression of SH3 domain-binding protein 5 (SH3BP5) significantly correlates with poor outcomes of AML patients. To test whether SH3BP5 contributes to the growth and survival of AML cells, we use the shRNA-encoding lentivirus system to achieve the knockdown of SH3BP5 expression in human AML cell lines U937, THP-1, Kasumi-1, and MV4-11. Functionally, the knockdown of SH3BP5 expression markedly inhibits the cell viability and induced apoptosis of these leukemia cells. Mechanistically, western blot analysis indicates that the knockdown of SH3BP5 expression decreases the phosphorylation of JNK and BAD. Moreover, the JNK agonist anisomycin rescues the growth inhibition phenotype of SH3BP5 deficiency in THP-1 cells. Moreover, the expression of SH3BP5 positively correlates with CD25 and CD123 levels. Finally, our study highlights the crucial role of SH3BP5 in promoting the survival of AML cells, and its suppression may be a potential therapeutic strategy for treating human AML.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Aged
- Aged, 80 and over
- Animals
- Anisomycin/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Knockdown Techniques
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- MAP Kinase Kinase 4/metabolism
- Male
- Mice
- Middle Aged
- Neoplasm Transplantation
- Phosphorylation/drug effects
- Prognosis
- RNA, Small Interfering/pharmacology
- Survival Analysis
- THP-1 Cells
- U937 Cells
- Up-Regulation/drug effects
- Young Adult
- bcl-Associated Death Protein/metabolism
Collapse
Affiliation(s)
- Minjing Li
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003, China.
| | - Shiyu Hao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Chunling Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Huimin Xiao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Liyuan Sun
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhenhai Yu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Naili Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yanlian Xiong
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Dongmei Zhao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
20
|
Jiang Y, Lin X, Kapoor A, He L, Wei F, Gu Y, Mei W, Zhao K, Yang H, Tang D. FAM84B promotes prostate tumorigenesis through a network alteration. Ther Adv Med Oncol 2019; 11:1758835919846372. [PMID: 31205500 PMCID: PMC6535720 DOI: 10.1177/1758835919846372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/13/2019] [Indexed: 01/04/2023] Open
Abstract
Background: The aim of this study was to investigate the contributions of FAM84B in prostate tumorigenesis and progression. Methods: A FAM84B mutant with deletion of its HRASLS domain (ΔHRASLS) was constructed. DU145 prostate cancer (PC) cells stably expressing an empty vector (EV), FAM84B, or FAM84B (ΔHRASLS) were produced. These lines were examined for proliferation, invasion, and growth in soft agar in vitro. DU145 EV and FAM84B cells were investigated for tumor growth and lung metastasis in NOD/SCID mice. The transcriptome of DU145 EV xenografts (n = 2) and DU145 FAM84B tumors (n = 2) was determined using RNA sequencing, and analyzed for pathway alterations. The FAM84B-affected network was evaluated for an association with PC recurrence. Results: FAM84B but not FAM84B (ΔHRASLS) increased DU145 cell invasion and growth in soft agar. Co-immunoprecipitation and co-localization analyses revealed an interaction between FAM84B and FAM84B (ΔHRASLS), suggesting an intramolecular association among FAM84B molecules. FAM84B significantly enhanced DU145 cell-derived xenografts and lung metastasis. In comparison with DU145 EV cell-produced tumors, those generated by DU145 FAM84B cells showed a large number of differentially expressed genes (DEGs; n = 4976). A total of 51 pathways were enriched in these DEGs, which function in the Golgi-to-endoplasmic reticulum processes, cell cycle checkpoints, mitochondrial events, and protein translation. A novel 27-gene signature (SigFAM) was derived from these DEGs; SigFAM robustly stratifies PC recurrence in two large PC populations (n = 490, p = 0; n = 140, p = 4e−11), and remains an independent risk factor of PC recurrence after adjusting for age at diagnosis, Gleason scores, surgical margin, and tumor stages. Conclusions: FAM84B promotes prostate tumorigenesis through a complex network that predicts PC recurrence.
Collapse
Affiliation(s)
- Yanzhi Jiang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, ON. Canada Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Hamilton Urologic Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Xiaozeng Lin
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital/Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Anil Kapoor
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Lizhi He
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital, Longgang District, Shenzhen, Guangdong, China
| | - Yan Gu
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital/Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Wenjuan Mei
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada Department of Nephrology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Kuncheng Zhao
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital/Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Damu Tang
- Department of Medicine, McMaster University, T3310, St. Joseph's Hospital, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| |
Collapse
|
21
|
Mascolo MG, Perdichizzi S, Vaccari M, Rotondo F, Zanzi C, Grilli S, Paparella M, Jacobs MN, Colacci A. The transformics assay: first steps for the development of an integrated approach to investigate the malignant cell transformation in vitro. Carcinogenesis 2019; 39:955-967. [PMID: 29554273 PMCID: PMC6031005 DOI: 10.1093/carcin/bgy037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
The development of alternative methods to animal testing is a priority in the context of regulatory toxicology. Carcinogenesis is a field where the demand for alternative methods is particularly high. The standard rodent carcinogenicity bioassay requires a large use of animals, high costs, prolonged duration and shows several limitations, which can affect the comprehension of the human relevance of animal carcinogenesis. The cell transformation assay (CTA) has long been debated as a possible in vitro test to study carcinogenesis. This assay provides an easily detectable endpoint of oncotransformation, which can be used to anchor the exposure to the acquisition of the malignant phenotype. However, the current protocols do not provide information on either molecular key events supporting the carcinogenesis process, nor the mechanism of action of the test chemicals. In order to improve the use of this assay in the integrated testing strategy for carcinogenesis, we developed the transformics method, which combines the CTA and transcriptomics, to highlight the molecular steps leading to in vitro malignant transformation. We studied 3-methylcholanthrene (3-MCA), a genotoxic chemical able to induce in vitro cell transformation, at both transforming and subtransforming concentrations in BALB/c 3T3 cells and evaluated the gene modulation at critical steps of the experimental protocol. The results gave evidence for the potential key role of the immune system and the possible involvement of the aryl hydrocarbon receptor (AhR) pathway as the initial steps of the in vitro transformation process induced by 3-MCA, suggesting that the initiating events are related to non-genotoxic mechanisms.
Collapse
Affiliation(s)
- Maria Grazia Mascolo
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Stefania Perdichizzi
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Monica Vaccari
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Francesca Rotondo
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Cristina Zanzi
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| | - Sandro Grilli
- Department of Experimental, Diagnostic and Specialty Medicine, Section of Cancerology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Martin Paparella
- Chemicals and Biocides, Environment Agency Austria, Vienna, Austria
| | - Miriam N Jacobs
- Department of Toxicology, Centre for Radiation, Chemical and Environmental Hazards Public Health England, Chilton, Oxfordshire, UK
| | - Annamaria Colacci
- Center for Environmental Toxicology, Agency for Prevention, Environment and Energy, Emilia-Romagna, Viale Filopanti, Bologna, Italy
| |
Collapse
|
22
|
He B, Chang Y, Yang C, Zhang Z, Xu G, Feng X, Zhuang L. Adenylate cyclase 7 regulated by miR-192 promotes ATRA-induced differentiation of acute promyelocytic leukemia cells. Biochem Biophys Res Commun 2018; 506:543-547. [PMID: 30366671 DOI: 10.1016/j.bbrc.2018.10.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022]
Abstract
Adenylate cyclase 7 (AC7) has been reported to participate in various biological processes during cancer progression. However, the roles of AC7 in all-trans retinoic acid (ATRA)-induced differentiation of acute promyelocytic leukemia (APL) cells are still unknown. In this study, firstly, our results showed that AC7 affected intracellular cAMP level and influenced ATRA-induced differentiation of APL cells. Secondly, we revealed that miR-192 could directly target AC7 expression and knockdown of miR-192 promoted ATRA-induced APL cell differentiation by regulating AC7 expression. Furthermore, we found that AC7 expression was lower in patients with relapsed APL than that in patients with newly diagnosed APL, while miR-192 expression was relatively higher in patients with relapsed APL. Taken together, our results show that miR-192-mediated AC7 could play important roles in differentiation of APL cells, AC7 and miR-192 might be new biomarkers and therapeutic targets for patients with relapsed APL.
Collapse
Affiliation(s)
- Bing He
- Department of General Surgery, The First People's Hospital of Tianmen City, Tianmen, 431700, China
| | - Yanyan Chang
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Chao Yang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhanglin Zhang
- Department of Laboratorial Examination, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| | - Guiping Xu
- Transfusion Department, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Xianqi Feng
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Likun Zhuang
- Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
23
|
Yin Y, Xu M, Gao J, Li M. Alkaline ceramidase 3 promotes growth of hepatocellular carcinoma cells via regulating S1P/S1PR2/PI3K/AKT signaling. Pathol Res Pract 2018; 214:1381-1387. [PMID: 30097213 DOI: 10.1016/j.prp.2018.07.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is one of the cancer types with poor prognosis. To effectively treat HCC, new molecular targets and therapeutic approaches must be identified. Alkaline ceramidase 3 (Acer3) hydrolyzed long-chain unsaturated ceramide to produce free fatty acids and sphingosine. However, whether and how Acer3 modulates progression of HCC remains largely unknown. METHODS Acer3 mRNA levels in different types of human HCC samples or normal tissues were determined from Gene Expression across Normal and Tumor tissue (GENT) database. The expression level of Acer3 in human HCC cell lines were examined by western blot. Overall survival and disease-free survival of HCC patients were determined by Kaplan-Meier analysis. Effects of Acer3 knockdown by lentivirus infection were evaluated on cell growth and apoptosis. The mechanisms involved in HCC cells growth and apoptosis were analyzed by western blot. RESULTS In silico analysis of TCGA databases of HCC patients showed that the expression of Acer3 significantly inversely correlates with the overall and disease-free survival of HCC patients. Knockdown expression of Acer3 resulted in decreased cell growth and increased apoptosis. Notably, inhibition of Acer3 resulted in intracellular exhaustion of Sphingosine-1-phosphate (S1P) and inhibited activation of S1PR2/PI3K/AKT signaling. Finally, knockdown of Acer3 induced up-regulation of Bax and down-regulation of Bcl-2. CONCLUSIONS Our study suggests that Acer3 contributes to HCC propagation, and suggests that inhibition of Acer3 may be novel strategy for treating human HCC.
Collapse
Affiliation(s)
- Yancun Yin
- Taishan Scholar Immunology Program, School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, Shandong, China.
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
| | - Ju Gao
- Departments of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Minjing Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
24
|
Sun X, Huang S, Wang X, Zhang X, Wang X. CD300A promotes tumor progression by PECAM1, ADCY7 and AKT pathway in acute myeloid leukemia. Oncotarget 2018; 9:27574-27584. [PMID: 29938007 PMCID: PMC6007949 DOI: 10.18632/oncotarget.24164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022] Open
Abstract
CD300A is a member of the CD300 glycoprotein family of cell surface proteins involved in immune response signaling pathways. There is evidence that CD300A plays a role in autophagy and angiogenesis, while, no studies have been reported which investigated the role of CD300A in tumors. CD300A was found to be highly expressed with statistical significance in acute myeloid leukemia (AML), as well as associated with prognosis, through the analysis of differential expression genes using the TCGA and GTEx database. A decrease in CD300A expression could promote apoptosis and inhibit proliferation and migration of AML cell line U937, as well as promote the activation of the AKT/mTOR pathway. These results demonstrated that CD300A operated as a tumor promoter in AML cells. We further analyzed coexpression genes of CD300A and then screened two genes, ADCY7 and PECAM1, which were both overexpressed and associated with poor prognosis in AML. Meanwhile, CD300A increased the expression of PECAM1 and ADCY7 in U937 cells. Furthermore, we demonstrated that PECAM1 promoted the proliferation and migration and inhibited the apoptosis of U937 cells. ADCY7 participated in the regulation of proliferation and migration, but not apoptosis, in U937 cells. Both PECAM1 and ADCY7 promoted tumor progression through the AKT pathway, showing the same molecular mechanism as CD300A. To summarize, we, for the first time, confirmed that CD300A promoted tumor progression by increase PECAM1 and ADCY7 expression, and activating the AKT/mTOR signaling pathway in AML. It is suggested CD300A is an oncogene and potential therapeutic target for AML.
Collapse
Affiliation(s)
- Xiaogang Sun
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Shuhong Huang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xin Wang
- Tengzhou Municipal Hospital of Traditional Chinese Medicine, Tengzhou, Shandong, P.R. China
| | - Xiaohua Zhang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Xin Wang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| |
Collapse
|
25
|
Chen J, Li C, Zhan R, Yin Y. SPG6 supports development of acute myeloid leukemia by regulating BMPR2-Smad-Bcl-2/Bcl-xl signaling. Biochem Biophys Res Commun 2018; 501:220-225. [DOI: 10.1016/j.bbrc.2018.04.220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 01/28/2023]
|
26
|
Rodríguez CI, Castro-Pérez E, Longley BJ, Setaluri V. Elevated cyclic AMP levels promote BRAF CA/Pten -/- mouse melanoma growth but pCREB is negatively correlated with human melanoma progression. Cancer Lett 2017; 414:268-277. [PMID: 29179997 DOI: 10.1016/j.canlet.2017.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Melanocyte development and differentiation are regulated by cAMP, which is produced by the adenylate cyclase (AC) enzyme upon activation of the melanocortin-1-receptor (MC1R). Individuals carrying single amino acid substitution variants of MC1R have impaired cAMP signaling and higher risk of melanoma. However, the contribution of AC to this risk is not clear. Downstream of AC, the phosphorylated transcription factor, cyclic AMP Responsive Element Binding Protein (pCREB), which is activated by protein kinase A, regulates the expression of several genes including the melanocyte master regulator MITF. The roles of AC and CREB in melanoma development and growth are not well understood. Here, we investigated the effect of topical application of AC inhibitor on BrafCA/Pten-/- mouse melanoma development. We show that AC inhibitor delays melanoma growth independent of MAPK pathway activity and melanin content. Next, employing a primary melanoma tissue microarray and quantitative immunohistochemistry, we show that pCREB levels are positively correlated with the proliferative status of melanoma, but low pCREB expression is associated with tumor aggressiveness and metastatic recurrence. These data suggest that low cAMP signaling inhibits tumor growth but is a predictor of melanoma aggressiveness.
Collapse
Affiliation(s)
- Carlos I Rodríguez
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| | - Edgardo Castro-Pérez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - B Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Vijayasaradhi Setaluri
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
27
|
Trop-Steinberg S, Azar Y. Is Myc an Important Biomarker? Myc Expression in Immune Disorders and Cancer. Am J Med Sci 2017; 355:67-75. [PMID: 29289266 DOI: 10.1016/j.amjms.2017.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/17/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023]
Abstract
The proto-oncogene Myc serves as a paradigm for understanding the dynamics of transcriptional regulation. Myc protein has been linked to immune dysfunction, cancer development and neoplastic transformation. We review recent research regarding functions of Myc as an important modulator in immune disorders, postallogeneic hematopoietic stem cell transplantation (HSCT) and several cancers. Myc overexpression has been repeatedly linked to immune disorders and specific cancers, such as myasthenia gravis, psoriasis, pemphigus vulgaris, atherosclerosis, long-term allogeneic survival among HSCT patients, (primary) inflammatory breast cancer, (primary) ovarian carcinoma and hematological malignancies: acute myeloid leukemia, chronic myelogenous leukemia, Hodgkin's lymphoma and diffuse large B-cell lymphoma. However, decreased expression of Myc has been observed in HSCT patients who did not survive. Understanding impaired or inappropriate expression of Myc may present a path for the discovery of new targets for therapeutic applications.
Collapse
Affiliation(s)
- Shivtia Trop-Steinberg
- Faculty of Life and Health Sciences (ST-S), JCT Lev Academic Institute, Jerusalem, Israel.
| | - Yehudit Azar
- Department of Bone Marrow Transplantation (YA), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
28
|
Chen C, Yin Y, Li C, Chen J, Xie J, Lu Z, Li M, Wang Y, Zhang CC. ACER3 supports development of acute myeloid leukemia. Biochem Biophys Res Commun 2016; 478:33-38. [DOI: 10.1016/j.bbrc.2016.07.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 12/31/2022]
|