1
|
Wei Q, Hao X, Lau BWM, Wang S, Li Y. Baicalin regulates stem cells as a creative point in the treatment of climacteric syndrome. Front Pharmacol 2022; 13:986436. [DOI: 10.3389/fphar.2022.986436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Graphical AbstractThis review summarizes the regulatory role of Baicalin on the diverse behaviors of distinct stem cell populations and emphasizes the potential applications of Baicalin and stem cell therapy in climacteric syndrome.
Collapse
|
2
|
|
3
|
Morita A, Omoya Y, Ito R, Ishibashi Y, Hiramoto K, Ohnishi S, Yoshikawa N, Kawanishi S. Glycyrrhizin and its derivatives promote hepatic differentiation via sweet receptor, Wnt, and Notch signaling. Biochem Biophys Rep 2021; 28:101181. [PMID: 34934826 PMCID: PMC8654616 DOI: 10.1016/j.bbrep.2021.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
The acute liver disease is involved in aberrant release of high-mobility group box 1 (HMGB1). Glycyrrhizin (GL), a traditional Chinese medicine for liver disease, binds to HMGB1, thereby inhibits tissue injury. However the mode of action of GL for chronic liver disease remains unclear. We investigated the effects of glycyrrhizin (GL) and its derivatives on liver differentiation using human iPS cells by using a flow cytometric analysis. GL promoted hepatic differentiation at the hepatoblast formation stage. The GL derivatives, 3-O-mono-glucuronyl 18β-glycyrrhetinic acid (Mono) and 3-O-[glucosyl (1 → 2)-glucuronyl] 18β-glycyrrhetinic acid increased AFP+ cell counts and albumin+ cell counts. Glucuronate conjugation seemed to be a requirement for hepatic differentiation. Mono exhibited the most significant hepatic differentiation effect. We evaluated the effects of (±)-2-(2,4-dichlorophenoxy) propionic acid (DP), a T1R3 antagonist, and sucralose, a T1R3 agonist, on hepatic differentiation, and found that DP suppressed Mono-induced hepatic differentiation, while sucralose promoted hepatic differentiation. Thus, GL promoted hepatic differentiation via T1R3 signaling. In addition, Mono increased β-catenin+ cell count and decreased Hes5+ cell count suggesting the involvement of Wnt and Notch signaling in GL-induced hepatic differentiation. In conclusion, GL exerted a hepatic differentiation effect via sweet receptor (T1R3), canonical Wnt, and Notch signaling.
Collapse
Key Words
- AFP, α-fetoprotein
- Api, 3-O-[apiosyl (1 → 2)-glucuronyl] βGA
- CBX, carbenoxolone, 3-O-hemisuccinyl βGA
- CK-19, cytokeratin 19
- DMSO, dimethyl sulfoxide
- DP, (±)-2-(2,4-dichlorophenoxy) propionic acid
- GL, glycyrrhizin
- Glc, 3-O-[glucosyl (1 → 2)-glucuronyl] βGA
- Glycyrrhizin
- HMGB1, high-mobility group box1
- HNF-4α, hepatocyte nuclear factor 4α
- Hepatic differentiation
- Hes, hairy and enhancer of split
- LSG, licorice saponin G
- LSH, licorice saponin H
- Liver regeneration
- Mono, 3-O-mono-glucuronyl βGA
- Sweet receptor
- T1R3
- αGA, 18α-glycyrrhetinic acid
- βGA, 18β-glycyrrhetinic acid
Collapse
Affiliation(s)
- Akihiro Morita
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Yuta Omoya
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Rie Ito
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Yuya Ishibashi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Shiho Ohnishi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Nobuji Yoshikawa
- Matsusaka R&D Center, Cokey Co., Ltd., Matsusaka, Mie, 515-0041, Japan
| | - Shosuke Kawanishi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| |
Collapse
|
4
|
Liu C, Ying Z, Li Z, Zhang L, Li X, Gong W, Sun J, Fan X, Yang K, Wang X, Wei S, Dong N. Danzhi Xiaoyao Powder Promotes Neuronal Regeneration by Downregulating Notch Signaling Pathway in the Treatment of Generalized Anxiety Disorder. Front Pharmacol 2021; 12:772576. [PMID: 34912225 PMCID: PMC8666953 DOI: 10.3389/fphar.2021.772576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Generalized anxiety disorder (GAD) is one of the most common types of anxiety disorders with unclear pathogenesis. Our team's previous research found that extensive neuronal apoptosis and neuronal regeneration disorders occur in the hippocampus of GAD rats. Danzhi Xiaoyao (DZXYS) Powder can improve the anxiety behavior of rats, but its molecular mechanism is not well understood. Objective: This paper discusses whether the pathogenesis of GAD is related to the abnormal expression of Notch signal pathway, and whether the anti-anxiety effect of DZXYS promotes nerve regeneration in the hippocampus by regulating the Notch signaling pathway. Methods: The animal model of GAD was developed by the chronic restraint stress and uncertain empty bottle stimulation method. After the model was successfully established, the rats in the model preparation group were divided into the buspirone, DZXYS, DZXYS + DAPT, and model groups, and were administered the corresponding drug intervention. The changes in body weight and food intake of rats were continuously monitored throughout the process. The changes in anxiety behavior of rats were measured by open field experiment and elevated plus-maze test, and morphological changes and regeneration of neurons in the rat hippocampus were observed by HE staining and double immunofluorescence staining. Changes in the expression of key targets of the Notch signaling pathway in the hippocampus were monitored by real-time fluorescence quantitative PCR and western blotting. Results: In this study, we verified that the GAD model was stable and reliable, and found that the key targets of the Notch signaling pathway (Notch1, Hes1, Hes5, etc.) in the hippocampus of GAD rats were significantly upregulated, leading to the increased proliferation of neural stem cells in the hippocampus and increased differentiation into astrocytes, resulting in neuronal regeneration. DZXYS intervention in GAD rats can improve appetite, promote weight growth, and significantly reverse the anxiety behavior of GAD rats, which can inhibit the upregulation of key targets of the Notch signaling pathway, promote the differentiation of neural stem cells in the hippocampus into neurons, and inhibit their differentiation into astrocytes, thus alleviating anxiety behavior. Conclusion: The occurrence of GAD is closely related to the upregulation of the Notch signaling pathway, which hinders the regeneration of normal neurons in the hippocampus, while DZXYS can downregulate the Notch signaling pathway and promote neuronal regeneration in the hippocampus, thereby relieving anxiety behavior.
Collapse
Affiliation(s)
- Chao Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Zhenhao Ying
- School of Rehabilitation Science, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Long Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Xin Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Wenbo Gong
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Jiang Sun
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Xuejing Fan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Ke Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Xingchen Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, China.,The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Ning Dong
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, China.,The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| |
Collapse
|
5
|
Effect of Active Ingredients of Chinese Herbal Medicine on the Rejuvenation of Healthy Aging: Focus on Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7307026. [PMID: 32724327 PMCID: PMC7366228 DOI: 10.1155/2020/7307026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Stem cells (SCs) are special types of cells with the ability of self-renewal and multidirectional differentiation. As the organism ages, the ability to maintain homeostasis and regeneration deteriorates and the number and activity of stem cells decline. Theoretically, the restoration of stem cells might reverse aging. However, due to their own aging, donor-derived immune rejection, and difficulties in stem cell differentiation control, a series of problems need to be solved to realize the potential for clinical application of stem cells. Chinese herbal medicine is a nature drug library which is suitable for the long-term treatment of aging-related diseases. Modern pharmacological studies have revealed that many active ingredients of Chinese herbal medicines with the effect of promoting stem cells growth and differentiation mainly belong to “reinforcing herbs.” In recent years, exploration of natural active ingredients from Chinese herbal medicines for delaying aging, improving the stem cell microenvironment, and promoting the proliferation and differentiation of endogenous stem cells has attracted substantial attention. This article will focus on active ingredients from Chinese herbs-mediated differentiation of stem cells into particular cell type, like neural cells, endothelial cells, cardiomyocytes, and osteoblasts. We will also discuss the effects of these small molecules on Wnt, Sonic Hedgehog, Notch, eNOS-cGMP, and MAP kinase signal transduction pathways, as well as reveal the role of estrogen receptor α and PPAR γ on selectively promoting or inhibiting stem cells differentiation. This review will provide new insights into the health aging strategies of active ingredients in Chinese herbal medicine in regenerative medicine.
Collapse
|
6
|
|
7
|
Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review. Brain Sci 2018; 8:brainsci8060104. [PMID: 29891783 PMCID: PMC6025220 DOI: 10.3390/brainsci8060104] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the gradual loss of neurons. The development of effective neuroprotective agents to prevent and control neurodegenerative diseases is specifically important. Recently, there has been an increasing interest in selecting flavonoid compounds as potential neuroprotective agents, owing to their high effectiveness with low side effects. Baicalin is one of the important flavonoid compounds, which is mainly isolated from the root of Scutellaria baicalensis Georgi (an important Chinese medicinal herb). In recent years, a number of studies have shown that baicalin has a potent neuroprotective effect in various in vitro and in vivo models of neuronal injury. In particular, baicalin effectively prevents neurodegenerative diseases through various pharmacological mechanisms, including antioxidative stress, anti-excitotoxicity, anti-apoptotic, anti-inflammatory, stimulating neurogenesis, promoting the expression of neuronal protective factors, etc. This review mainly focuses on the neuroprotective and cognitive enhancement effects of baicalin. The aim of the present review is to compile all information in relation to the neuroprotective and cognitive enhancement effects of baicalin and its molecular mechanisms of action in various in vitro and in vivo experimental models.
Collapse
|
8
|
Zhu Y, Liang Y, Zhu H, Lian C, Wang L, Wang Y, Gu H, Zhou G, Yu X. The generation and functional characterization of induced pluripotent stem cells from human intervertebral disc nucleus pulposus cells. Oncotarget 2018; 8:42700-42711. [PMID: 28498811 PMCID: PMC5522099 DOI: 10.18632/oncotarget.17446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/12/2017] [Indexed: 12/25/2022] Open
Abstract
Disc degenerative disease (DDD) is believed to originate in the nucleus pulposus (NP) region therefore, it is important to obtain a greater number of active NP cells for the study and therapy of DDD. Human induced pluripotent stem cells (iPSCs) are a powerful tool for modeling the development of DDD in humans, and have the potential to be applied in regenerative medicine. NP cells were isolated from DDD patients following our improved method, and then the primary NP cells were reprogramed into iPSCs with Sendai virus vectors encoding 4 factors. Successful reprogramming of iPSCs was verified by the expression of surface markers and presence of teratoma. Differentiation of iPSCs into NP-like cells was performed in a culture plate or in hydrogel, whereby skin fibroblast derived-iPSCs were used as a control. Results demonstrated that iPSCs derived from NP cells displayed a normal karyotype, expressed pluripotency markers, and formed teratoma in nude mice. NP induction of iPSCs resulted in the expression of NP cell specific matrix proteins and related genes. Non-induced NP derived-iPSCs also showed some NP-like phenotype. Furthermore, NP-derived iPSCs differentiate much better in hydrogel than that in a culture plate. This is a novel method for the generation of iPSCs from NP cells of DDD patients, and we have successfully differentiated these iPSCs into NP-like cells in hydrogel. This method provides a novel treatment of DDD by using patient-specific NP cells in a relatively simple and straightforward manner.
Collapse
Affiliation(s)
- Yanxia Zhu
- Shenzhen Key Laboratory for Anti-Aging and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yuhong Liang
- Shenzhen Key Laboratory for Anti-Aging and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Hongxia Zhu
- Department of Spinal Surgery, Xiaogan Maternity and Child Healthcare Hospital, Xiaogan, 432100, China
| | - Cuihong Lian
- Shenzhen Key Laboratory for Anti-Aging and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Liang Wang
- Shenzhen Key Laboratory for Anti-Aging and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Hongsheng Gu
- Department of Spinal Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518060, China
| | - Guangqian Zhou
- Shenzhen Key Laboratory for Anti-Aging and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoping Yu
- Department of Spinal Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
9
|
Pino A, Fumagalli G, Bifari F, Decimo I. New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol 2017; 141:4-22. [PMID: 28690140 DOI: 10.1016/j.bcp.2017.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
"Are new neurons added in the adult mammalian brain?" "Do neural stem cells activate following CNS diseases?" "How can we modulate their activation to promote recovery?" Recent findings in the field provide novel insights for addressing these questions from a new perspective. In this review, we will summarize the current knowledge about adult neurogenesis and neural stem cell niches in healthy and pathological conditions. We will first overview the milestones that have led to the discovery of the classical ventricular and hippocampal neural stem cell niches. In adult brain, new neurons originate from proliferating neural precursors located in the subventricular zone of the lateral ventricles and in the subgranular zone of the hippocampus. However, recent findings suggest that new neuronal cells can be added to the adult brain by direct differentiation (e.g., without cell proliferation) from either quiescent neural precursors or non-neuronal cells undergoing conversion or reprogramming to neuronal fate. Accordingly, in this review we will also address critical aspects of the newly described mechanisms of quiescence and direct conversion as well as the more canonical activation of the neurogenic niches and neuroblast reservoirs in pathological conditions. Finally, we will outline the critical elements involved in neural progenitor proliferation, neuroblast migration and differentiation and discuss their potential as targets for the development of novel therapeutic drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy.
| |
Collapse
|
10
|
Shu T, Wu T, Pang M, Liu C, Wang X, Wang J, Liu B, Rong L. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells. Biochem Biophys Res Commun 2016; 474:566-571. [PMID: 27130826 DOI: 10.1016/j.bbrc.2016.04.108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
Abstract
Melatonin, a lipophilic molecule mainly synthesized in the pineal gland, has properties of antioxidation, anti-inflammation, and antiapoptosis to improve neuroprotective functions. Here, we investigate effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells (iPSCs). iPSCs were induced into neural stem cells (NSCs), then further differentiated into neurons in medium with or without melatonin, melatonin receptor antagonist (Luzindole) or Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). Melatonin significantly promoted the number of neurospheres and cell viability. In addition, Melatonin markedly up-regulated gene and protein expression of Nestin and MAP2. However, Luzindole or LY294002 attenuated these increase. The expression of pAKT/AKT were increased by Melatonin, while Luzindole or LY294002 declined these melatonin-induced increase. These results suggest that melatonin significantly increased neural differentiation of iPSCs via activating PI3K/AKT signaling pathway through melatonin receptor.
Collapse
Affiliation(s)
- Tao Shu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Tao Wu
- Department of Emergency, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Mao Pang
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Chang Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xuan Wang
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Juan Wang
- Department of Gynaecology, Common Splendor International Health Management, Guangzhou, Guangdong 510000, China
| | - Bin Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Limin Rong
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|