1
|
Kariapper L, Marathe IA, Niesman AB, Suino-Powell K, Chook YM, Wysocki VH, Worden EJ. Setdb1 and Atf7IP form a hetero-trimeric complex that blocks Setdb1 nuclear export. J Biol Chem 2025:110171. [PMID: 40339988 DOI: 10.1016/j.jbc.2025.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/16/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been elucidated. We used Alphafold2 predictions and biochemical reconstitutions to show that one copy of Setdb1 and two copies of Atf7IP form a hetero-trimeric complex in vitro and in cells. We also find that Atf7IP self-associates, forming multimeric complexes that are resolved upon Setdb1 binding. Setdb1 binds to Atf7IP through coiled coil interactions that include both Setdb1 nuclear export signals (NES). Atf7IP directly competes with CRM1 to bind the Setdb1 NES motifs, explaining how Atf7IP prevents CRM1-mediated nuclear export of Setdb1. Setdb1 also forms hetero-trimeric complexes with the Atf7IP paralog Atf7IP2 and we show that Setdb1 can form mixed heterotrimers comprising one copy of each Setdb1, Atf7IP and Atf7IP2. Atf7IP and Atf7IP2 are co-expressed in many tissues suggesting that heterotrimers with different compositions of Atf7IP and Atf7IP2 may differentially regulate H3K9me by fine-tuning Setdb1 localization and activity.
Collapse
Affiliation(s)
- Leena Kariapper
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Ila A Marathe
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Ashley Brower Niesman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kelly Suino-Powell
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Evan J Worden
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
2
|
Han C, Wang P, Ye J, Wang R, Shi X, Hu G, Hu X, Shen J, Zhang M, Zhang X, Wu Y. Estrogen increases Setdb1 cytoplasmic localization to stabilize Serpinh1 and improve protein homeostasis in osteoblasts. Mol Cell Endocrinol 2025; 605:112568. [PMID: 40324678 DOI: 10.1016/j.mce.2025.112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/03/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Estrogen regulates osteoblast activity at the epigenetic level. Setdb1 is an epigenetic regulator that functions in skeleton homeostasis maintenance. Setdb1 shows nuclear and cytoplasm localization in cells; however, the subcellular distribution of Setdb1 and the role of cytoplasmic Setdb1 in osteoblasts are largely unknown. Here, immunofluorescence staining and immunoblotting analysis showed that the distribution of Setdb1 in the cytoplasm increased upon β-estradiol treatment by increasing nuclear Setdb1 stability in osteoblasts. In β-estradiol-treated MC3T3-E1 cells, knocking-down Atf7ip expression enhanced Setdb1 cytoplasmic localization, but the cytoplasmic distribution of Setdb1 decreased in cells treated with the Setdb1 inhibitor (R,R)-59. Moreover, ovariectomized (OVX) mice lacking Atf7ip in mature osteoblasts showed better bone microstructure than the OVX controls. The proteomic analysis of the cytoplasmic binding of Setdb1 showed that cytoplasmic Setdb1 in osteoblasts mainly functioned to regulate protein homeostasis. Setdb1 binds to Serpinh1, a regulator of pro-collagen folding and maturation, and enhances Serpinh1 stability. Interrupting Setdb1 cytoplasmic localization by treating the cells with Leptomycin B (LMB) or (R,R)-59 led to an accumulation of unfolded protein and the elicitation of endoplasmic reticulum (ER) stress. The findings revealed a previously unrecognized role of cytoplasmic Setdb1 in the regulation of β-estradiol-mediated osteoblast homeostasis, which could enhance the understanding of estrogen's mechanism of action in regulating osteoblasts.
Collapse
Affiliation(s)
- Chunqing Han
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Peiwen Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Public Health Research Center, Jiangnan University, Wuxi, Jiangsu, China
| | - Junxing Ye
- Affiliated Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruijian Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xian Shi
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Guoqin Hu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiping Hu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jin Shen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Mengqing Zhang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China.
| | - Yu Wu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Public Health Research Center, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
Kariapper L, Marathe IA, Niesman AB, Suino-Powell K, Min Chook Y, Wysocki VH, Worden EJ. Setdb1 and Atf7IP form a hetero-trimeric complex that blocks Setdb1 nuclear export. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630145. [PMID: 39764026 PMCID: PMC11703210 DOI: 10.1101/2024.12.23.630145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in constitutive heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been evaluated. We used Alphafold2 predictions and biochemical reconstitutions to show that one copy of Setdb1 and two copies of Atf7IP form a hetero-trimeric complex in vitro and in cells. We also find that Atf7IP self-associates, forming multimeric complexes that are resolved upon Setdb1 binding. Setdb1 binds to Atf7IP through coiled coil interactions that include both Setdb1 nuclear export signals (NES). Atf7IP directly competes with CRM1 to bind the Setdb1 NES motifs, explaining how Atf7IP prevents CRM1-mediated nuclear export of Setdb1. Setdb1 also forms hetero-trimeric complexes with the Atf7IP paralog Atf7IP2 and we show that Setdb1 can form mixed heterotrimers comprising one copy of each Setdb1, Atf7IP and Atf7IP2. Atf7IP and Atf7IP2 are co-expressed in many tissues suggesting that heterotrimers with different compositions of Atf7IP and Atf7IP2 may differentially regulate H3K9me by fine-tuning Setdb1 localization and activity.
Collapse
Affiliation(s)
- Leena Kariapper
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Ila A. Marathe
- School Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA USA
| | - Ashley B. Niesman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Kelly Suino-Powell
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Vicki H. Wysocki
- School Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA USA
| | - Evan J. Worden
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
4
|
Wu T, Sun H, Wang W, Xie B, Wang Z, Lu J, Xu A, Dong W, Zhou J, Jiang M. Boosting extracellular FastPETase production in E. coli: A combined approach of cognate chaperones co-expression and vesicle nucleating peptide tag fusion. Int J Biol Macromol 2024; 283:137857. [PMID: 39566783 DOI: 10.1016/j.ijbiomac.2024.137857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Enzymatic PET recycling has emerged as a promising green solution in addition to mechanical recycling, but low soluble expression levels of the inherently hydrophobic PET hydrolases hinder large-scale applications. Here, we propose a novel strategy for enhanced production of FastPETase in Escherichia coli using co-expression of molecular chaperones from Ideonella sakaiensis. Co-expression of cognate DnaK and DnaJ chaperones significantly increased soluble FastPETase expression (up to 2.5-fold), surpassing commercial chaperone plasmids. Furthermore, a combinatorial approach employing co-expression of DnaK/DnaJ chaperones and fusion of FastPETase with the VNp6-tag significantly boosted FastPETase secretion, yielding over 2 g/L of target protein in a 5-l bioreactor. Notably, the crude FastPETase in fermentation broth displayed comparable PET hydrolysis effects to the purified enzyme. This work not only provides new insights into the process of chaperones in protein folding but also suggests a novel and efficient strategy for producing recombinant proteins.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Huashan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Wenyao Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Bin Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Zhengjie Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jianqi Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Anming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
5
|
Zhang E, He P. The function of histone methyltransferase SETDB1 and its roles in liver cancer. Front Cell Dev Biol 2024; 12:1500263. [PMID: 39583200 PMCID: PMC11582049 DOI: 10.3389/fcell.2024.1500263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Epigenetic alterations in gene expression have been implicated in cancer development and tumor immune escape, with posttranslational histone or non-histone modifications representing attractive targets for disease surveillance and therapy. SET domain bifurcated 1 (SETDB1) is a histone lysine methyltransferase that reversibly catalyzes the di- and tri-methylation of histone 3 lysine 9 (H3K9) on euchromatin, inhibiting gene transcription within these regions and facilitating the switch from euchromatic to heterochromatic states. Emerging evidence suggests that SETDB1 amplification and aberrant activation are significantly associated with poor prognosis in hepatocellular carcinoma (HCC), and contribute to HCC development, immune escape, and immune checkpoint blockade (ICB) resistance. Here, we provide an updated overview of the cellular and molecular effects of SETDB1 activity in hepatocarcinogenesis and progression and focus on studies linking its function to immunotherapy for HCC, and present current challenges and future perspectives for targeting SETDB1 in HCC treatment.
Collapse
Affiliation(s)
- Enxiang Zhang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and food engineering, Liaocheng University, Liaocheng, China
| | - Pingping He
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and food engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
6
|
Fukushima HS, Ikeda T, Ikeda S, Takeda H. Cell cycle length governs heterochromatin reprogramming during early development in non-mammalian vertebrates. EMBO Rep 2024; 25:3300-3323. [PMID: 38943003 PMCID: PMC11315934 DOI: 10.1038/s44319-024-00188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Heterochromatin marks such as H3K9me3 undergo global erasure and re-establishment after fertilization, and the proper reprogramming of H3K9me3 is essential for early development. Despite the widely conserved dynamics of heterochromatin reprogramming in invertebrates and non-mammalian vertebrates, previous studies have shown that the underlying mechanisms may differ between species. Here, we investigate the molecular mechanism of H3K9me3 dynamics in medaka (Japanese killifish, Oryzias latipes) as a non-mammalian vertebrate model, and show that rapid cell cycle during cleavage stages causes DNA replication-dependent passive erasure of H3K9me3. We also find that cell cycle slowing, toward the mid-blastula transition, permits increasing nuclear accumulation of H3K9me3 histone methyltransferase Setdb1, leading to the onset of H3K9me3 re-accumulation. We further demonstrate that cell cycle length in early development also governs H3K9me3 reprogramming in zebrafish and Xenopus laevis. Together with the previous studies in invertebrates, we propose that a cell cycle length-dependent mechanism for both global erasure and re-accumulation of H3K9me3 is conserved among rapid-cleavage species of non-mammalian vertebrates and invertebrates such as Drosophila, C. elegans, Xenopus and teleost fish.
Collapse
Affiliation(s)
- Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Center for Integrative Medical Sciences, RIKEN, Yokohama, 230-0045, Japan.
| | - Takafumi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, 603-8555, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Shinra Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan.
| |
Collapse
|
7
|
Koryakov DE. Diversity and functional specialization of H3K9-specific histone methyltransferases. Bioessays 2024; 46:e2300163. [PMID: 38058121 DOI: 10.1002/bies.202300163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Histone modifications play a critical role in the control over activities of the eukaryotic genome; among these chemical alterations, the methylation of lysine K9 in histone H3 (H3K9) is one of the most extensively studied. The number of enzymes capable of methylating H3K9 varies greatly across different organisms: in fission yeast, only one such methyltransferase is present, whereas in mammals, 10 are known. If there are several such enzymes, each of them must have some specific function, and they can interact with one another. Thus arises a complex system of interchangeability, "division of labor," and contacts with each other and with diverse proteins. Histone methyltransferases specialize in the number of methyl groups that they attach and have different intracellular localizations as well as different distributions on chromosomes. Each also shows distinct binding to different types of sequences and has a specific set of nonhistone substrates.
Collapse
Affiliation(s)
- Dmitry E Koryakov
- Lab of Molecular Cytogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, Russia
| |
Collapse
|
8
|
Meng X, Xiao W, Sun J, Li W, Yuan H, Yu T, Zhang X, Dong W. CircPTK2/PABPC1/SETDB1 axis promotes EMT-mediated tumor metastasis and gemcitabine resistance in bladder cancer. Cancer Lett 2023; 554:216023. [PMID: 36436682 DOI: 10.1016/j.canlet.2022.216023] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Bladder cancer (BCa), characterized by high invasion, metastasis, recurrence, and chemoresistance, is one of the most prevalent urologic malignant tumors. Recent studies have highlighted the potential impact of the circRNAs-protein complex in tumorigenesis. However, the mechanisms by which the circRNAs-protein complex regulates BCa metastasis and chemoresistance remain elusive. Herein, we identified an upregulated circRNA, circPTK2, which could regulate SETDB1 expression by analyzing the transcriptome by RNA-sequencing. Importantly, using circRNA pulldown assay and RNA-binding protein immunoprecipitation, we identified PABPC1 as a robust novel interacting protein of circPTK2. Mechanistically, circPTK2 could bind to PABPC1 and enhance its ability to stabilize SETDB1 mRNA, thereby specifically promoting SETDB1 expression and facilitating SETDB1-mediated epithelial-mesenchymal transition (EMT). Functionally, overexpression of the circPTK2-SETDB1 axis markedly promoted migration, invasion, and gemcitabine resistance in vitro and enhanced lymph node metastasis in vivo. Collectively, our findings clarified a hitherto unexplored mechanism of the circPTK2/PABPC1/SETDB1 axis in EMT-mediated tumor metastasis and gemcitabine resistance in BCa.
Collapse
Affiliation(s)
- Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiayin Sun
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tiexi Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wei Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Eom J, Jeon K, Park JS, Kang YK. Functional dissection of N-terminal nuclear trafficking signals of SETDB1. Front Cell Dev Biol 2022; 10:1069765. [PMID: 36605719 PMCID: PMC9807615 DOI: 10.3389/fcell.2022.1069765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
SETDB1 is a histone H3-lysine 9-specific methyltransferase that fulfills epigenetic functions inside the nucleus; however, when overexpressed, SETDB1 majorily localizes in the cytoplasm. SETDB1 has a single nuclear-localization-signal (NLS) motif and two successive nuclear-export-signal (NES1 and NES2) motifs in the N-terminus, suggesting that SETDB1 localization is the consequence of a balance between the two antithetic motifs. Here, we performed a series of motif deletions to characterize their effects on the cellular movement of SETDB1. Given the cytoplasmic localization of GFP-SETDB1 in the whole form, without the NES motifs, GFP-SETDB1 was not nuclear, and 3xNLS addition plus NES removal held the majority of GFP-SETDB1 within the nucleus. The results indicated that the cytoplasmic localization of GFP-SETDB1 is the combined result of weak NLS and robust NESs. In ATF7IP-overexpressing cells, GFP-SETDB1 entered the nucleus only in the presence of the NES1 motif; neither the NES2 nor NLS motif was necessary. Since subcellular fractionation results showed that ATF7IP was nuclear-only, an intermediary protein may interact specifically with the NES1 motif after stimulation by ATF7IP. When GFP-SETDB1 had either NES1 or NES2, it was precipitated (in immunoprecipitation) and colocalized (in immunofluorescence) with ATF7IP, indicating that GFP-SETDB1 interacts with ATF7IP through the NES motifs in the nucleus. The regulated nuclear entry of SETDB1 is assumed to set a tight restriction on its abundance within the nucleus, thereby ensuring balanced nuclear SETDB1 levels.
Collapse
Affiliation(s)
- Jaemin Eom
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Daejeon, Korea,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Kyuheum Jeon
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Daejeon, Korea,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Daejeon, Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Daejeon, Korea,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, South Korea,*Correspondence: Yong-Kook Kang,
| |
Collapse
|
10
|
Hernandez‐Vicens R, Singh J, Pernicone N, Listovsky T, Gerlitz G. SETDB1 regulates microtubule dynamics. Cell Prolif 2022; 55:e13348. [DOI: 10.1111/cpr.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Jagreeti Singh
- Department of Molecular Biology, Faculty of Life Sciences Ariel University Ariel Israel
| | - Nomi Pernicone
- Department of Molecular Biology, Faculty of Life Sciences Ariel University Ariel Israel
| | - Tamar Listovsky
- Department of Molecular Biology, Faculty of Life Sciences Ariel University Ariel Israel
- Ariel Center for Applied Cancer Research Ariel University Ariel Israel
- Adelson School of Medicine Ariel University Ariel Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences Ariel University Ariel Israel
- Ariel Center for Applied Cancer Research Ariel University Ariel Israel
| |
Collapse
|
11
|
Zhang Q, Pan J, Cong Y, Mao J. Transcriptional Regulation of Endogenous Retroviruses and Their Misregulation in Human Diseases. Int J Mol Sci 2022; 23:ijms231710112. [PMID: 36077510 PMCID: PMC9456331 DOI: 10.3390/ijms231710112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Endogenous retroviruses (ERVs), deriving from exogenous retroviral infections of germ line cells occurred millions of years ago, represent ~8% of human genome. Most ERVs are highly inactivated because of the accumulation of mutations, insertions, deletions, and/or truncations. However, it is becoming increasingly apparent that ERVs influence host biology through genetic and epigenetic mechanisms under particular physiological and pathological conditions, which provide both beneficial and deleterious effects for the host. For instance, certain ERVs expression is essential for human embryonic development. Whereas abnormal activation of ERVs was found to be involved in numbers of human diseases, such as cancer and neurodegenerative diseases. Therefore, understanding the mechanisms of regulation of ERVs would provide insights into the role of ERVs in health and diseases. Here, we provide an overview of mechanisms of transcriptional regulation of ERVs and their dysregulation in human diseases.
Collapse
|
12
|
Markouli M, Strepkos D, Piperi C. Structure, Activity and Function of the SETDB1 Protein Methyltransferase. Life (Basel) 2021; 11:life11080817. [PMID: 34440561 PMCID: PMC8397983 DOI: 10.3390/life11080817] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) is a prominent member of the Suppressor of Variegation 3–9 (SUV39)-related protein lysine methyltransferases (PKMTs), comprising three isoforms that differ in length and domain composition. SETDB1 is widely expressed in human tissues, methylating Histone 3 lysine 9 (H3K9) residues, promoting chromatin compaction and exerting negative regulation on gene expression. SETDB1 has a central role in normal physiology and nervous system development, having been implicated in the regulation of cell cycle progression, inactivation of the X chromosome, immune cells function, expression of retroelements and formation of promyelocytic leukemia (PML) nuclear bodies (NB). SETDB1 has been frequently deregulated in carcinogenesis, being implicated in the pathogenesis of gliomas, melanomas, as well as in lung, breast, gastrointestinal and ovarian tumors, where it mainly exerts an oncogenic role. Aberrant activity of SETDB1 has also been implicated in several neuropsychiatric, cardiovascular and gastrointestinal diseases, including schizophrenia, Huntington’s disease, congenital heart defects and inflammatory bowel disease. Herein, we provide an update on the unique structural and biochemical features of SETDB1 that contribute to its regulation, as well as its molecular and cellular impact in normal physiology and disease with potential therapeutic options.
Collapse
|
13
|
Federico A, Steinfass T, Larribère L, Novak D, Morís F, Núñez LE, Umansky V, Utikal J. Mithramycin A and Mithralog EC-8042 Inhibit SETDB1 Expression and Its Oncogenic Activity in Malignant Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:83-99. [PMID: 32637583 PMCID: PMC7327877 DOI: 10.1016/j.omto.2020.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Abstract
Malignant melanoma is the most deadly skin cancer, associated with rising incidence and mortality rates. Most of the patients with melanoma, treated with current targeted therapies, develop a drug resistance, causing tumor relapse. The attainment of a better understanding of novel cancer-promoting molecular mechanisms driving melanoma progression is essential for the development of more effective targeted therapeutic approaches. Recent studies, including the research previously conducted in our laboratory, reported that the histone methyltransferase SETDB1 contributes to melanoma pathogenesis. In this follow-up study, we further elucidated the role of SETDB1 in melanoma, showing that SETDB1 modulated relevant transcriptomic effects in melanoma, in particular, as activator of cancer-related secreted (CRS) factors and as repressor of melanocyte-lineage differentiation (MLD) and metabolic enzymes. Next, we investigated the effects of SETDB1 inhibition via compounds belonging to the mithramycin family, mithramycin A and mithramycin analog (mithralog) EC-8042: melanoma cells showed strong sensitivity to these drugs, which effectively suppressed the expression of SETDB1 and induced changes at the transcriptomic, morphological, and functional level. Moreover, SETDB1 inhibitors enhanced the efficacy of mitogen-activated protein kinase (MAPK) inhibitor-based therapies against melanoma. Taken together, this work highlights the key regulatory role of SETDB1 in melanoma and supports the development of SETDB1-targeting therapeutic strategies for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Aniello Federico
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Tamara Steinfass
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Luz-Elena Núñez
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| |
Collapse
|
14
|
Fukuda K, Shinkai Y. SETDB1-Mediated Silencing of Retroelements. Viruses 2020; 12:E596. [PMID: 32486217 PMCID: PMC7354471 DOI: 10.3390/v12060596] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a protein lysine methyltransferase and methylates histone H3 at lysine 9 (H3K9). Among other H3K9 methyltransferases, SETDB1 and SETDB1-mediated H3K9 trimethylation (H3K9me3) play pivotal roles for silencing of endogenous and exogenous retroelements, thus contributing to genome stability against retroelement transposition. Furthermore, SETDB1 is highly upregulated in various tumor cells. In this article, we describe recent advances about how SETDB1 activity is regulated, how SETDB1 represses various types of retroelements such as L1 and class I, II, and III endogenous retroviruses (ERVs) in concert with other epigenetic factors such as KAP1 and the HUSH complex and how SETDB1-mediated H3K9 methylation can be maintained during replication.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
15
|
Mutlu B, Chen HM, Gutnik S, Hall DH, Keppler-Ross S, Mango SE. Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis. Development 2019; 146:dev174516. [PMID: 31540912 PMCID: PMC6803369 DOI: 10.1242/dev.174516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/09/2019] [Indexed: 01/25/2023]
Abstract
During the first hours of embryogenesis, formation of higher-order heterochromatin coincides with the loss of developmental potential. Here, we examine the relationship between these two events, and we probe the processes that contribute to the timing of their onset. Mutations that disrupt histone H3 lysine 9 (H3K9) methyltransferases reveal that the methyltransferase MET-2 helps terminate developmental plasticity, through mono- and di-methylation of H3K9 (me1/me2), and promotes heterochromatin formation, through H3K9me3. Although loss of H3K9me3 perturbs formation of higher-order heterochromatin, embryos are still able to terminate plasticity, indicating that the two processes can be uncoupled. Methylated H3K9 appears gradually in developing C. elegans embryos and depends on nuclear localization of MET-2. We find that the timing of H3K9me2 and nuclear MET-2 is sensitive to rapid cell cycles, but not to zygotic genome activation or cell counting. These data reveal distinct roles for different H3K9 methylation states in the generation of heterochromatin and loss of developmental plasticity by MET-2, and identify the cell cycle as a crucial parameter of MET-2 regulation.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Huei-Mei Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Silvia Gutnik
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
16
|
Tsusaka T, Shimura C, Shinkai Y. ATF7IP regulates SETDB1 nuclear localization and increases its ubiquitination. EMBO Rep 2019; 20:e48297. [PMID: 31576654 DOI: 10.15252/embr.201948297] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Understanding of the appropriate regulation of enzymatic activities of histone-modifying enzymes remains poor. The lysine methyltransferase, SETDB1, is one of the enzymes responsible for the methylation of histone H3 at lysine 9 (H3K9) and plays a key role in H3K9 trimethylation-mediated silencing of genes and retrotransposons. Here, we reported that how SETDB1's enzymatic activities can be regulated by the nuclear protein, ATF7IP, a known binding partner of SETDB1. Mechanistically, ATF7IP mediates SETDB1 retention inside the nucleus, presumably by inhibiting its nuclear export by binding to the N-terminal region of SETDB1, which harbors the nuclear export signal motifs, and also by promoting its nuclear import. The nuclear localization of SETDB1 increases its ubiquitinated, enzymatically more active form. Our results provided an insight as to how ATF7IP can regulate the histone methyltransferase activity of SETDB1 accompanied by its nuclear translocation.
Collapse
Affiliation(s)
- Takeshi Tsusaka
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
| |
Collapse
|
17
|
Orouji E, Federico A, Larribère L, Novak D, Lipka DB, Assenov Y, Sachindra S, Hüser L, Granados K, Gebhardt C, Plass C, Umansky V, Utikal J. Histone methyltransferase SETDB1 contributes to melanoma tumorigenesis and serves as a new potential therapeutic target. Int J Cancer 2019; 145:3462-3477. [PMID: 31131878 DOI: 10.1002/ijc.32432] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/06/2019] [Indexed: 12/29/2022]
Abstract
Alterations in histone modifications play a crucial role in the progression of various types of cancer. The histone methyltransferase SETDB1 catalyzes the addition of methyl groups to histone H3 at lysine 9. Here, we describe how overexpression of SETDB1 contributes to melanoma tumorigenesis. SETDB1 is highly amplified in melanoma cells and in the patient tumors. Increased expression of SETDB1, which correlates with SETDB1 amplification, is associated with a more aggressive phenotype in in vitro and in vivo studies. Mechanistically, SETDB1 implements its effects via regulation of thrombospondin 1, and the SET-domain of SETDB1 is essential for the maintenance of its tumorigenic activity. Inhibition of SETDB1 reduces cell growth in melanomas resistant to targeted treatments. Our results indicate that SETDB1 is a major driver of melanoma development and may serve as a potential future target for the treatment of this disease.
Collapse
Affiliation(s)
- Elias Orouji
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg, Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Aniello Federico
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg, Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Lionel Larribère
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg, Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Daniel Novak
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg, Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Daniel B Lipka
- Division of Epigenomics and Cancer Risk Factors, DKFZ, Heidelberg, Baden Württemberg, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, DKFZ, Heidelberg, Baden Württemberg, Germany
| | - Sachindra Sachindra
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg, Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Laura Hüser
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg, Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Karol Granados
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg, Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Christoffer Gebhardt
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg, Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Baden Württemberg, Germany.,Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, DKFZ, Heidelberg, Baden Württemberg, Germany
| | - Viktor Umansky
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg, Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Jochen Utikal
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg, Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Baden Württemberg, Germany
| |
Collapse
|
18
|
Jurkowska RZ, Qin S, Kungulovski G, Tempel W, Liu Y, Bashtrykov P, Stiefelmaier J, Jurkowski TP, Kudithipudi S, Weirich S, Tamas R, Wu H, Dombrovski L, Loppnau P, Reinhardt R, Min J, Jeltsch A. H3K14ac is linked to methylation of H3K9 by the triple Tudor domain of SETDB1. Nat Commun 2017; 8:2057. [PMID: 29234025 PMCID: PMC5727127 DOI: 10.1038/s41467-017-02259-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
SETDB1 is an essential H3K9 methyltransferase involved in silencing of retroviruses and gene regulation. We show here that its triple Tudor domain (3TD) specifically binds to doubly modified histone H3 containing K14 acetylation and K9 methylation. Crystal structures of 3TD in complex with H3K14ac/K9me peptides reveal that peptide binding and K14ac recognition occurs at the interface between Tudor domains (TD) TD2 and TD3. Structural and biochemical data demonstrate a pocket switch mechanism in histone code reading, because K9me1 or K9me2 is preferentially recognized by the aromatic cage of TD3, while K9me3 selectively binds to TD2. Mutations in the K14ac/K9me binding sites change the sub-nuclear localization of 3TD. ChIP-seq analyses show that SETDB1 is enriched at H3K9me3 regions and K9me3/K14ac is enriched at SETDB1 binding sites overlapping with LINE elements, suggesting that recruitment of the SETDB1 complex to K14ac/K9me regions has a role in silencing of active genomic regions.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada.,Life Science Research Center, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Goran Kungulovski
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Yanli Liu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Judith Stiefelmaier
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Tomasz P Jurkowski
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Srikanth Kudithipudi
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Raluca Tamas
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Ludmila Dombrovski
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Richard Reinhardt
- Max-Planck-Genomzentrum Köln, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
19
|
Liu T, Zhang P, Li T, Chen X, Zhu Z, Lyu Y, Li X, Tian X, Zeng W. SETDB1 plays an essential role in maintenance of gonocyte survival in pigs. Reproduction 2017; 154:23-34. [DOI: 10.1530/rep-17-0107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 04/18/2017] [Indexed: 01/12/2023]
Abstract
Histone methyltransferase SETDB1 suppresses gene expression and modulates heterochromatin formation through H3K9me2/3. Previous studies have revealed that SETDB1 catalyzes lysine 9 of histone H3 tri-methylation and plays essential roles in maintaining the survival of embryonic stem cells and spermatogonial stem cells in mice. However, the function of SETDB1 in porcine male germ cells remains unclear. The aim of the present study was to reveal the expression profile and function of SETDB1 in porcine germ cells. SETDB1 expression gradually increased during testis development. SETDB1 was strongly localized in gonocytes. Knockdown of SETDB1 gene expression led to gonocyte apoptosis and a decrease in H3K27me3, but no significant change in H3K9me3. These observations suggested that SETDB1 is a novel epigenetic regulator of porcine male germ cells, and contributes to the maintenance of gonocyte survival in pigs, probably due to the regulation of H3K27me3 rather than H3K9me3. These findings will provide a theoretical basis for the future study of epigenetic regulation of spermatogenesis.
Collapse
|
20
|
Ishimoto K, Hayase A, Kumagai F, Kawai M, Okuno H, Hino N, Okada Y, Kawamura T, Tanaka T, Hamakubo T, Sakai J, Kodama T, Tachibana K, Doi T. Degradation of human Lipin-1 by BTRC E3 ubiquitin ligase. Biochem Biophys Res Commun 2017; 488:159-164. [PMID: 28483528 DOI: 10.1016/j.bbrc.2017.04.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Lipin-1 has dual functions in the regulation of lipid and energy metabolism according to its subcellular localization, which is tightly controlled. However, it is unclear how Lipin-1 degradation is regulated. Here, we demonstrate that Lipin-1 is degraded through its DSGXXS motif. We show that Lipin-1 interacts with either of two E3 ubiquitin ligases, BTRC or FBXW11, and that this interaction is DSGXXS-dependent and mediates the attachment of polyubiquitin chains. Further, we demonstrate that degradation of Lipin-1 is regulated by BTRC in the cytoplasm and on membranes. These novel insights into the regulation of human Lipin-1 stability will be useful in planning further studies to elucidate its metabolic processes.
Collapse
Affiliation(s)
- Kenji Ishimoto
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ayaka Hayase
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumiko Kumagai
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Megumi Kawai
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroko Okuno
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobumasa Hino
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Okada
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Kawamura
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Toshiya Tanaka
- Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Tatsuhiko Kodama
- Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Keisuke Tachibana
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takefumi Doi
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
21
|
Abstract
Progression of cells through distinct phases of the cell cycle, and transition into out-of-cycling states, such as terminal differentiation and senescence, is accompanied by specific patterns of gene expression. These cell fate decisions are mediated not only by distinct transcription factors, but also chromatin modifiers that establish heritable epigenetic patterns. Lysine methyltransferases (KMTs) that mediate methylation marks on histone and non-histone proteins are now recognized as important regulators of gene expression in cycling and non-cycling cells. Among these, the SUV39 sub-family of KMTs, which includes SUV39H1, SUV39H2, G9a, GLP, SETDB1, and SETDB2, play a prominent role. In this review, we discuss their biochemical properties, sub-cellular localization and function in cell cycle, differentiation programs, and cellular senescence. We also discuss their aberrant expression in cancers, which exhibit de-regulation of cell cycle and differentiation.
Collapse
Affiliation(s)
- Vinay Kumar Rao
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
22
|
Karanth AV, Maniswami RR, Prashanth S, Govindaraj H, Padmavathy R, Jegatheesan SK, Mullangi R, Rajagopal S. Emerging role of SETDB1 as a therapeutic target. Expert Opin Ther Targets 2017; 21:319-331. [PMID: 28076698 DOI: 10.1080/14728222.2017.1279604] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Epigenetic changes lead to aberrant gene expression in cancer. SETDB1, a histone lysine methyltransferase plays an important role in methylation and gene silencing. Aberrant histone methylation at H3K9 by SETDB1 promotes silencing of tumor suppressor genes and thus contributes to carcinogenesis. Recent studies indicate that SETDB1 is abnormally expressed in various human cancer conditions which contributed to enhanced tumor growth and metastasis. Hence, SETDB1 appears to be a promising epigenetic target for therapeutic intervention. Areas covered: In this article, the structural features, localization and functions of SETDB1 are reviewed. Also, an overview of the role of SETDB1 in cancer and other disease mechanisms, the currently studied inhibitors for SETDB1 are mentioned. Expert opinion: Silencing of tumor suppressor genes due to excessive trimethylation at H3K9 by amplified SETDB1 levels is found in various cancerous conditions. Since epigenetic changes are reversible, SETDB1 holds promise as an important therapeutic target for cancer. Therefore, a better understanding of the role of SETDB1 and its interaction with various proteins in cancer-related mechanisms along with therapeutic interventions specific for SETDB1 may improve targeted cancer therapy.
Collapse
|
23
|
Kang HC, Kim HK, Lee S, Mendez P, Kim JW, Woodard G, Yoon JH, Jen KY, Fang LT, Jones K, Jablons DM, Kim IJ. Whole exome and targeted deep sequencing identify genome-wide allelic loss and frequent SETDB1 mutations in malignant pleural mesotheliomas. Oncotarget 2016; 7:8321-31. [PMID: 26824986 PMCID: PMC4884995 DOI: 10.18632/oncotarget.7032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/15/2016] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM), a rare malignancy with a poor prognosis, is mainly caused by exposure to asbestos or other organic fibers, but the underlying genetic mechanism is not fully understood. Genetic alterations and causes for multiple primary cancer development including MPM are unknown. We used whole exome sequencing to identify somatic mutations in a patient with MPM and two additional primary cancers who had no evidence of venous, arterial, lymphovascular, or perineural invasion indicating dissemination of a primary lung cancer to the pleura. We found that the MPM had R282W, a key TP53 mutation, and genome-wide allelic loss or loss of heterozygosity, a distinct genomic alteration not previously described in MPM. We identified frequent inactivating SETDB1 mutations in this patient and in 68 additional MPM patients (mutation frequency: 10%, 7/69) by targeted deep sequencing. Our observations suggest the possibility of a new genetic mechanism in the development of either MPM or multiple primary cancers. The frequent SETDB1 inactivating mutations suggest there could be new diagnostic or therapeutic options for MPM.
Collapse
Affiliation(s)
- Hio Chung Kang
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Hong Kwan Kim
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Pedro Mendez
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Gavitt Woodard
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jun-Hee Yoon
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kuang-Yu Jen
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Li Tai Fang
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kirk Jones
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Il-Jin Kim
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
24
|
Ubiquitination of Lysine 867 of the Human SETDB1 Protein Upregulates Its Histone H3 Lysine 9 (H3K9) Methyltransferase Activity. PLoS One 2016; 11:e0165766. [PMID: 27798683 PMCID: PMC5087952 DOI: 10.1371/journal.pone.0165766] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 10/17/2016] [Indexed: 11/22/2022] Open
Abstract
Posttranslational modifications (PTMs) of proteins play a crucial role in regulating protein-protein interactions, enzyme activity, subcellular localization, and stability of the protein. SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that regulates the methylation of histone H3 on lysine 9 (H3K9), gene silencing, and transcriptional repression. The C-terminal region of SETDB1 is a key site for PTMs, and is essential for its enzyme activity in mammalian and insect cells. In this study, we aimed to evaluate more precisely the effect of PTMs on the H3K9 methyltransferase activity of SETDB1. Using mass spectrometry analysis, we show that the C-terminal region of human SETDB1 purified from insect cells is ubiquitinated. We also demonstrate that the ubiquitination of lysine 867 of the human SETDB1 is necessary for full H3K9 methyltransferase activity in mammalian cells. Finally, we show that SETDB1 ubiquitination regulates the expression of its target gene, serpin peptidase inhibitor, clade E, member 1 (SERPINE1) by methylating H3K9. These results suggest that the ubiquitination of SETDB1 at lysine 867 controls the expression of its target gene by activating its H3K9 methyltransferase activity.
Collapse
|
25
|
Beyer S, Pontis J, Schirwis E, Battisti V, Rudolf A, Le Grand F, Ait-Si-Ali S. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discov 2016; 2:16037. [PMID: 27790377 PMCID: PMC5067623 DOI: 10.1038/celldisc.2016.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
The histone 3 lysine 9 methyltransferase Setdb1 is essential for both stem cell pluripotency and terminal differentiation of different cell types. To shed light on the roles of Setdb1 in these mutually exclusive processes, we used mouse skeletal myoblasts as a model of terminal differentiation. Ex vivo studies on isolated single myofibres showed that Setdb1 is required for adult muscle stem cells expansion following activation. In vitro studies in skeletal myoblasts confirmed that Setdb1 suppresses terminal differentiation. Genomic binding analyses showed a release of Setdb1 from selected target genes upon myoblast terminal differentiation, concomitant to a nuclear export of Setdb1 to the cytoplasm. Both genomic release and cytoplasmic Setdb1 relocalisation during differentiation were dependent on canonical Wnt signalling. Transcriptomic assays in myoblasts unravelled a significant overlap between Setdb1 and Wnt3a regulated genetic programmes. Together, our findings revealed Wnt-dependent subcellular relocalisation of Setdb1 as a novel mechanism regulating Setdb1 functions and myogenesis.
Collapse
Affiliation(s)
- Sophie Beyer
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| | - Julien Pontis
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| | - Elija Schirwis
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Valentine Battisti
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| | - Anja Rudolf
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Fabien Le Grand
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Slimane Ait-Si-Ali
- Centre National de la Recherche Scientifique CNRS-Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate UMR7216 , Paris, France
| |
Collapse
|
26
|
Hachiya R, Shiihashi T, Shirakawa I, Iwasaki Y, Matsumura Y, Oishi Y, Nakayama Y, Miyamoto Y, Manabe I, Ochi K, Tanaka M, Goda N, Sakai J, Suganami T, Ogawa Y. The H3K9 methyltransferase Setdb1 regulates TLR4-mediated inflammatory responses in macrophages. Sci Rep 2016; 6:28845. [PMID: 27349785 PMCID: PMC4924096 DOI: 10.1038/srep28845] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/08/2016] [Indexed: 12/24/2022] Open
Abstract
Proinflammatory cytokine production in macrophages involves multiple regulatory mechanisms, which are affected by environmental and intrinsic stress. In particular, accumulating evidence has suggested epigenetic control of macrophage differentiation and function mainly in vitro. SET domain, bifurcated 1 (Setdb1, also known as Eset) is a histone 3 lysine 9 (H3K9)-specific methyltransferase and is essential for early development of embryos. Here we demonstrate that Setdb1 in macrophages potently suppresses Toll-like receptor 4 (TLR4)-mediated expression of proinflammatory cytokines including interleukin-6 through its methyltransferase activity. As a molecular mechanism, Setdb1-deficiency decreases the basal H3K9 methylation levels and augments TLR4-mediated NF-κB recruitment on the proximal promoter region of interleukin-6, thereby accelerating interleukin-6 promoter activity. Moreover, macrophage-specific Setdb1-knockout mice exhibit higher serum interleukin-6 concentrations in response to lipopolysaccharide challenge and are more susceptible to endotoxin shock than wildtype mice. This study provides evidence that the H3K9 methyltransferase Setdb1 is a novel epigenetic regulator of proinflammatory cytokine expression in macrophages in vitro and in vivo. Our data will shed insight into the better understanding of how the immune system reacts to a variety of conditions.
Collapse
Affiliation(s)
- Rumi Hachiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takuya Shiihashi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku,Tokyo, 162-8480, Japan
| | - Ibuki Shirakawa
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yorihiro Iwasaki
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yumiko Oishi
- Department of Cellular and Molecular Medicine, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yukiteru Nakayama
- Department of Cardiovascular Medicine, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihiro Miyamoto
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-0873, Japan
| | - Ichiro Manabe
- Department of Aging Research, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Kozue Ochi
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku,Tokyo, 162-8480, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Japan Science and Technology Agency, PRESTO, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Japan Agency for Medical Research and Development, AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|