1
|
Dietz LT, Põld K, Györffy BA, Zharkovsky A, Sørensen JB, Pankratova S, Dmytriyeva O. A Peptide Motif Covering Splice Site B in Neuroligin-1 Binds to Aβ and Acts as a Neprilysin Inhibitor. Mol Neurobiol 2025; 62:3244-3257. [PMID: 39261388 PMCID: PMC11790763 DOI: 10.1007/s12035-024-04475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
The most common cause of dementia among elderly people is Alzheimer's disease (AD). The typical symptom of AD is the decline of cognitive abilities, which is caused by loss of synaptic function. Amyloid-β (Aβ) oligomers play a significant role in the development of this synaptic dysfunction. Neuroligin-(NL)1 is a postsynaptic cell-adhesion molecule located in excitatory synapses and involved in the maintenance and modulation of synaptic contacts. A recent study has found that Aβ interacts with the soluble N-terminal fragment of NL1. The present study aimed to elucidate the role of NL1 in Aβ-induced neuropathology. Employing surface plasmon resonance and competitive ELISA, we confirmed the high-affinity binding of NL1 to the Aβ peptide. We also identified a sequence motif representing the NL1-binding site for the Aβ peptide and showed that a synthetic peptide modeled after this motif, termed neurolide, binds to the Aβ peptide with high affinity, comparable to the NL1-Aβ interaction. To assess the effect of neurolide in vivo, wild-type and 5XFAD mice were subcutaneously treated with this peptide for 10 weeks. We observed an increase in Aβ plaque formation in the cortex of neurolide-treated 5XFAD mice. Furthermore, we showed that neurolide reduces the activity of neprilysin, the predominant Aβ-degrading enzyme in the brain. Accordingly, we suggest that neurolide is the NL1-binding site for Aβ peptide, and acts as an inhibitor of neprilysin activity. Based on these data, we confirm the involvement of NL1 in the development of AD and suggest a mechanism for NL1-induced Aβ plaque formation.
Collapse
Affiliation(s)
- Lene T Dietz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Põld
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Balázs A Györffy
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jakob B Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanislava Pankratova
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Frick EA, Emilsson V, Jonmundsson T, Steindorsdottir AE, Johnson ECB, Puerta R, Dammer EB, Shantaraman A, Cano A, Boada M, Valero S, García-González P, Gudmundsson EF, Gudjonsson A, Pitts R, Qiu X, Finkel N, Loureiro JJ, Orth AP, Seyfried NT, Levey AI, Ruiz A, Aspelund T, Jennings LL, Launer LJ, Gudmundsdottir V, Gudnason V. Serum proteomics reveal APOE-ε4-dependent and APOE-ε4-independent protein signatures in Alzheimer's disease. NATURE AGING 2024; 4:1446-1464. [PMID: 39169269 PMCID: PMC11485263 DOI: 10.1038/s43587-024-00693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
A deeper understanding of the molecular processes underlying late-onset Alzheimer's disease (LOAD) could aid in biomarker and drug target discovery. Using high-throughput serum proteomics in the prospective population-based Age, Gene/Environment Susceptibility-Reykjavik Study (AGES) cohort of 5,127 older Icelandic adults (mean age, 76.6 ± 5.6 years), we identified 303 proteins associated with incident LOAD over a median follow-up of 12.8 years. Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status, were implicated in neuronal processes and overlapped with LOAD protein signatures in brain and cerebrospinal fluid. We identified 17 proteins whose associations with LOAD were strongly dependent on APOE-ε4 carrier status, with mostly consistent associations in cerebrospinal fluid. Remarkably, four of these proteins (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated due to LOAD, a finding replicated in external cohorts and possibly reflecting a response to disease onset. These findings highlight dysregulated pathways at the preclinical stages of LOAD, including those both independent of and dependent on APOE-ε4 status.
Collapse
Affiliation(s)
| | - Valur Emilsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Raquel Puerta
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
| | - Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Anantharaman Shantaraman
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Cano
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Agustin Ruiz
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Thor Aspelund
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
3
|
Gudmundsdottir V, Frick E, Emilsson V, Jonmundsson T, Steindorsdottir A, Johnson ECB, Puerta R, Dammer E, Shantaraman A, Cano A, Boada M, Valero S, Garcia-Gonzalez P, Gudmundsson E, Gudjonsson A, Pitts R, Qiu X, Finkel N, Loureiro J, Orth A, Seyfried N, Levey A, Ruiz A, Aspelund T, Jennings L, Launer L, Gudnason V. Serum proteomics reveals APOE dependent and independent protein signatures in Alzheimer's disease. RESEARCH SQUARE 2024:rs.3.rs-3706206. [PMID: 38260284 PMCID: PMC10802738 DOI: 10.21203/rs.3.rs-3706206/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The current demand for early intervention, prevention, and treatment of late onset Alzheimer's disease (LOAD) warrants deeper understanding of the underlying molecular processes which could contribute to biomarker and drug target discovery. Utilizing high-throughput proteomic measurements in serum from a prospective population-based cohort of older adults (n = 5,294), we identified 303 unique proteins associated with incident LOAD (median follow-up 12.8 years). Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status. These proteins were implicated in neuronal processes and overlapped with protein signatures of LOAD in brain and cerebrospinal fluid. We found 17 proteins which LOAD-association was strongly dependent on APOE-ε4 carrier status. Most of them showed consistent associations with LOAD in cerebrospinal fluid and a third had brain-specific gene expression. Remarkably, four proteins in this group (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated as a consequence of LOAD as determined in a bi-directional Mendelian randomization analysis, reflecting a potential response to the disease onset. Accordingly, the direct association of these proteins to LOAD was reversed upon APOE-ε4 genotype adjustment, a finding which we replicate in an external cohort (n = 719). Our findings provide an insight into the dysregulated pathways that may lead to the development and early detection of LOAD, including those both independent and dependent on APOE-ε4. Importantly, many of the LOAD-associated proteins we find in the circulation have been found to be expressed - and have a direct link with AD - in brain tissue. Thus, the proteins identified here, and their upstream modulating pathways, provide a new source of circulating biomarker and therapeutic target candidates for LOAD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Merce Boada
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades-UIC, Barcelona
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lenore Launer
- National Institute on Aging, National Institutes of Health
| | | |
Collapse
|
4
|
Arias-Aragón F, Tristán-Clavijo E, Martínez-Gallego I, Robles-Lanuza E, Coatl-Cuaya H, Martín-Cuevas C, Sánchez-Hidalgo AC, Rodríguez-Moreno A, Martinez-Mir A, Scholl FG. A Neuroligin-1 mutation associated with Alzheimer's disease produces memory and age-dependent impairments in hippocampal plasticity. iScience 2023; 26:106868. [PMID: 37260747 PMCID: PMC10227424 DOI: 10.1016/j.isci.2023.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by memory impairments and age-dependent synapse loss. Experimental and clinical studies have shown decreased expression of the glutamatergic protein Neuroligin-1 (Nlgn1) in AD. However, the consequences of a sustained reduction of Nlgn1 are unknown. Here, we generated a knockin mouse that reproduces the NLGN1 Thr271fs mutation, identified in heterozygosis in a familial case of AD. We found that Nlgn1 Thr271fs mutation abolishes Nlgn1 expression in mouse brain. Importantly, heterozygous Nlgn1 Thr271fs mice showed delay-dependent amnesia for recognition memory. Electrophysiological recordings uncovered age-dependent impairments in basal synaptic transmission and long-term potentiation (LTP) in CA1 hippocampal neurons of heterozygous Nlgn1 Thr271fs mice. In contrast, homozygous Nlgn1 Thr271fs mice showed impaired fear-conditioning memory and normal basal synaptic transmission, suggesting unshared mechanisms for a partial or total loss of Nlgn1. These data suggest that decreased Nlgn1 may contribute to the synaptic and memory deficits in AD.
Collapse
Affiliation(s)
- Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Enriqueta Tristán-Clavijo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013 Seville, Spain
| | - Estefanía Robles-Lanuza
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Heriberto Coatl-Cuaya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013 Seville, Spain
| | - Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Ana C. Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013 Seville, Spain
| | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Francisco G. Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| |
Collapse
|
5
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|
6
|
Camporesi E, Nilsson J, Vrillon A, Cognat E, Hourregue C, Zetterberg H, Blennow K, Becker B, Brinkmalm A, Paquet C, Brinkmalm G. Quantification of the trans-synaptic partners neurexin-neuroligin in CSF of neurodegenerative diseases by parallel reaction monitoring mass spectrometry. EBioMedicine 2022; 75:103793. [PMID: 34990894 PMCID: PMC8743209 DOI: 10.1016/j.ebiom.2021.103793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Synaptic proteins are increasingly studied as biomarkers for synaptic dysfunction and loss, which are early and central events in Alzheimer's disease (AD) and strongly correlate with the degree of cognitive decline. In this study, we specifically investigated the synaptic binding partners neurexin (NRXN) and neuroligin (Nlgn) proteins, to assess their biomarker's potential. METHODS we developed a parallel reaction monitoring mass spectrometric method for the simultaneous quantification of NRXNs and Nlgns in cerebrospinal fluid (CSF) of neurodegenerative diseases, focusing on AD. Specifically, NRXN-1α, NRXN-1β, NRXN-2α, NRXN-3α and Nlgn1, Nlgn2, Nlgn3 and Nlgn4 proteins were targeted. FINDINGS The proteins were investigated in a clinical cohort including CSF from controls (n=22), mild cognitive impairment (MCI) due to AD (n=44), MCI due to other conditions (n=46), AD (n=77) and a group of non-AD dementia (n=28). No difference in levels of NRXNs and Nlgns was found between AD (both at dementia and MCI stages) or controls or the non-AD dementia group for any of the targeted proteins. NRXN and Nlgn proteins correlated strongly with each other, but only a weak correlation with the AD core biomarkers and the synaptic biomarkers neurogranin and growth-associated protein 43, was found, possibly reflecting different pathogenic processing at the synapse. INTERPRETATION we conclude that NRXN and Nlgn proteins do not represent suitable biomarkers for synaptic pathology in AD. The panel developed here could aid in future investigations of the potential involvement of NRXNs and Nlgns in synaptic dysfunction in other disorders of the central nervous system. FUNDING a full list of funding can be found under the acknowledgments section.
Collapse
Affiliation(s)
- Elena Camporesi
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Johanna Nilsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Agathe Vrillon
- Université de Paris, Cognitive Neurology Center, GHU Nord APHP Hospital Lariboisière Fernand Widal, Paris, France; Université de Paris, Inserm UMR S11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Emmanuel Cognat
- Université de Paris, Cognitive Neurology Center, GHU Nord APHP Hospital Lariboisière Fernand Widal, Paris, France; Université de Paris, Inserm UMR S11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Claire Hourregue
- Université de Paris, Cognitive Neurology Center, GHU Nord APHP Hospital Lariboisière Fernand Widal, Paris, France
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Bruno Becker
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Claire Paquet
- Université de Paris, Cognitive Neurology Center, GHU Nord APHP Hospital Lariboisière Fernand Widal, Paris, France; Université de Paris, Inserm UMR S11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
7
|
Huperzine A and Its Neuroprotective Molecular Signaling in Alzheimer's Disease. Molecules 2021; 26:molecules26216531. [PMID: 34770940 PMCID: PMC8587556 DOI: 10.3390/molecules26216531] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Huperzine A (HupA), an alkaloid found in the club moss Huperzia serrata, has been used for centuries in Chinese folk medicine to treat dementia. The effects of this alkaloid have been attributed to its ability to inhibit the cholinergic enzyme acetylcholinesterase (AChE), acting as an acetylcholinesterase inhibitor (AChEI). The biological functions of HupA have been studied both in vitro and in vivo, and its role in neuroprotection appears to be a good therapeutic candidate for Alzheimer´s disease (AD). Here, we summarize the neuroprotective effects of HupA on AD, with an emphasis on its interactions with different molecular signaling avenues, such as the Wnt signaling, the pre- and post-synaptic region mechanisms (synaptotagmin, neuroligins), the amyloid precursor protein (APP) processing, the amyloid-β peptide (Aβ) accumulation, and mitochondrial protection. Our goal is to provide an integrated overview of the molecular mechanisms through which HupA affects AD.
Collapse
|
8
|
Camporesi E, Lashley T, Gobom J, Lantero-Rodriguez J, Hansson O, Zetterberg H, Blennow K, Becker B. Neuroligin-1 in brain and CSF of neurodegenerative disorders: investigation for synaptic biomarkers. Acta Neuropathol Commun 2021; 9:19. [PMID: 33522967 PMCID: PMC7852195 DOI: 10.1186/s40478-021-01119-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/09/2021] [Indexed: 02/02/2023] Open
Abstract
Synaptic pathology is a central event in Alzheimer’s disease (AD) and other neurodegenerative conditions, and investigation of synaptic proteins can provide valuable tools to follow synaptic dysfunction and loss in these diseases. Neuroligin-1 (Nlgn1) is a postsynaptic cell adhesion protein, important for synapse stabilization and formation. Nlgn1 has been connected to cognitive disorders, and specifically to AD, as target of the synaptotoxic effect of amyloid-β (Aβ) oligomers and Aβ fibrils. To address changes in Nlgn1 expression in human brain, brain regions in different neurological disorders were examined by Western blot and mass spectrometry. Brain specimens from AD (n = 23), progressive supranuclear palsy (PSP, n = 11), corticobasal degeneration (CBD, n = 10), and Pick’s disease (PiD, n = 9) were included. Additionally, cerebrospinal fluid (CSF) samples of AD patients (n = 43) and non-demented controls (n = 42) were analysed. We found decreased levels of Nlgn1 in temporal and parietal cortex (~ 50–60% reductions) in AD brains compared with controls. In frontal grey matter the reduction was not seen for AD patients; however, in the same region, marked reduction was found for PiD (~ 77%), CBD (~ 66%) and to a lesser extent for PSP (~ 43%), which could clearly separate these tauopathies from controls. The Nlgn1 level was reduced in CSF from AD patients compared to controls, but with considerable overlap. The dramatic reduction of Nlgn1 seen in the brain extracts of tauopathies warrants further investigation regarding the potential use of Nlgn1 as a biomarker for these neurodegenerative diseases.
Collapse
|
9
|
Goetzl EJ. Advancing medicine for Alzheimer's disease: A plasma neural exosome platform. FASEB J 2020; 34:13079-13084. [PMID: 32856798 DOI: 10.1096/fj.202001655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Enrichment of neurally derived extracellular vesicles of several cell-types from plasma for protein quantification longitudinally in living patients with Alzheimer's disease has permitted the development of a tentative temporal framework of initiating events, progression mechanisms, and amplification processes. Interactions of beta-amyloid peptides with an elevated level of their normal prion protein dendritic receptor and of phospho-tau species with their synaptogyrin-3 synaptic vesicle receptor replace excessive production and accumulation of neuropathic proteins as the major initiating events. Synaptic dysfunction and microvascular angiopathy are confirmed as early progression mechanisms of decreased neuronal network connectivity, hypoxia, altered blood-brain barrier, and neurocellular degeneration. Neurally derived extracellular vesicle protein abnormalities also reveal a range of later amplification processes that encompasses insulin resistance, lysosomal defects, decreased survival factors, increased reactive oxygen species, and excessive neuroinflammation. New potential therapeutic targets also are suggested as well as the likely timing of their pathogenic engagement.
Collapse
Affiliation(s)
- Edward J Goetzl
- Department of Medicine, University of California Medical Center, San Francisco, CA, USA.,Geriatric Research Center, Campus for Jewish Living, San Francisco, CA, USA
| |
Collapse
|
10
|
YU J, XU J. [Proteolytic cleavage of neuroligins and functions of their cleavage products]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:514-523. [PMID: 32985166 PMCID: PMC8800723 DOI: 10.3785/j.issn.1008-9292.2020.08.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Neuroligin is a key protein that mediates synaptic development and maturation, and is closely related to neurodevelopmental diseases such as autism. In recent years, researchers have found that neuroligin can be hydrolyzed by various proteases at different stages of development, neuronal activities or pathological states of some neuropsychiatric diseases, thus affecting synaptic activity and participating in the occurrence and development of neurological diseases. The hydrolysates may have different physiological functions from the whole protein, and play different functions in neural activities, such as regulating synaptic plasticity, increasing synaptic strength and number, affecting amyloid-β polymerization, promoting glioma proliferation and growth, activating related signaling pathways, and so on. In this article, on the basis of elaborating the structure and function of neuroligin as a whole protein, the conditions and products of its hydrolysis are summarized and analyzed, and the functional consequences and physiological significance of its hydrolysis are discussed.
Collapse
Affiliation(s)
| | - Junyu XU
- 许均瑜(1982-), 女, 博士, 副教授, 博士生导师, 主要从事神经生物学研究; E-mail:
;
https://orcid.org/0000-0002-1911-3553
| |
Collapse
|
11
|
Dufort-Gervais J, Provost C, Charbonneau L, Norris CM, Calon F, Mongrain V, Brouillette J. Neuroligin-1 is altered in the hippocampus of Alzheimer's disease patients and mouse models, and modulates the toxicity of amyloid-beta oligomers. Sci Rep 2020; 10:6956. [PMID: 32332783 PMCID: PMC7181681 DOI: 10.1038/s41598-020-63255-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Synapse loss occurs early and correlates with cognitive decline in Alzheimer's disease (AD). Synaptotoxicity is driven, at least in part, by amyloid-beta oligomers (Aβo), but the exact synaptic components targeted by Aβo remain to be identified. We here tested the hypotheses that the post-synaptic protein Neuroligin-1 (NLGN1) is affected early in the process of neurodegeneration in the hippocampus, and specifically by Aβo, and that it can modulate Aβo toxicity. We found that hippocampal NLGN1 was decreased in patients with AD in comparison to patients with mild cognitive impairment and control subjects. Female 3xTg-AD mice also showed a decreased NLGN1 level in the hippocampus at an early age (i.e., 4 months). We observed that chronic hippocampal Aβo injections initially increased the expression of one specific Nlgn1 transcript, which was followed by a clear decrease. Lastly, the absence of NLGN1 decreased neuronal counts in the dentate gyrus, which was not the case in wild-type animals, and worsens impairment in spatial learning following chronic hippocampal Aβo injections. Our findings support that NLGN1 is impacted early during neurodegenerative processes, and that Aβo contributes to this effect. Moreover, our results suggest that the presence of NLGN1 favors the cognitive prognosis during Aβo-driven neurodegeneration.
Collapse
Affiliation(s)
- Julien Dufort-Gervais
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada
| | - Chloé Provost
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada
| | | | - Christopher M Norris
- Department of Molecular and Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Frédéric Calon
- Neuroscience Unit, Research Center - CHU de Québec, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada.
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada.
| | - Jonathan Brouillette
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada.
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada.
| |
Collapse
|
12
|
Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Selles MC, Oliveira MM, Ferreira ST. Brain Inflammation Connects Cognitive and Non-Cognitive Symptoms in Alzheimer's Disease. J Alzheimers Dis 2019; 64:S313-S327. [PMID: 29710716 DOI: 10.3233/jad-179925] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the main form of dementia in the elderly and affects greater than 47 million people worldwide. Care for AD patients poses very significant personal and economic demands on individuals and society, and the situation is expected to get even more dramatic in the coming decades unless effective treatments are found to halt the progression of the disease. Although AD is most commonly regarded as a disease of the memory, the entire brain is eventually affected by neuronal dysfunction or neurodegeneration, which brings about a host of other behavioral disturbances. AD patients often present with apathy, depression, eating and sleeping disorders, aggressive behavior, and other non-cognitive symptoms, which deeply affect not only the patient but also the caregiver's health. These symptoms are usually associated with AD pathology but are often neglected as part of disease progression due to the early and profound impact of disease on memory centers such as the hippocampus and entorhinal cortex. Yet, a collection of findings offers biochemical insight into mechanisms underlying non-cognitive symptoms in AD, and indicate that, at the molecular level, such symptoms share common mechanisms. Here, we review evidence indicating mechanistic links between memory loss and non-cognitive symptoms of AD. We highlight the central role of the pro-inflammatory activity of microglia in behavioral alterations in AD patients and in experimental models of the disease. We suggest that a deeper understanding of non-cognitive symptoms of AD may illuminate a new beginning in AD research, offering a fresh approach to elucidate mechanisms involved in disease progression and potentially unveiling yet unexplored therapeutic targets.
Collapse
Affiliation(s)
- M Clara Selles
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauricio M Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Torres VI, Godoy JA, Inestrosa NC. Modulating Wnt signaling at the root: Porcupine and Wnt acylation. Pharmacol Ther 2019; 198:34-45. [DOI: 10.1016/j.pharmthera.2019.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
|
15
|
Purro SA, Nicoll AJ, Collinge J. Prion Protein as a Toxic Acceptor of Amyloid-β Oligomers. Biol Psychiatry 2018; 83:358-368. [PMID: 29331212 DOI: 10.1016/j.biopsych.2017.11.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 02/08/2023]
Abstract
The initial report that cellular prion protein (PrPC) mediates toxicity of amyloid-β species linked to Alzheimer's disease was initially treated with scepticism, but growing evidence supports this claim. That there is a high-affinity interaction is now clear, and its molecular basis is being unraveled, while recent studies have identified possible downstream toxic mechanisms. Determination of the clinical significance of such interactions between PrPC and disease-associated amyloid-β species will require experimental medicine studies in humans. Trials of compounds that inhibit PrP-dependent amyloid-β toxicity are commencing in humans, and although it is clear that only a fraction of Alzheimer's disease toxicity could be governed by PrPC, a partial, but still therapeutically useful, role in human disease may soon be testable.
Collapse
Affiliation(s)
- Silvia A Purro
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London (UCL), London, United Kingdom
| | - Andrew J Nicoll
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London (UCL), London, United Kingdom; Elkington and Fife LLP, Kent, United Kingdom.
| | - John Collinge
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London (UCL), London, United Kingdom.
| |
Collapse
|
16
|
Goetzl EJ, Abner EL, Jicha GA, Kapogiannis D, Schwartz JB. Declining levels of functionally specialized synaptic proteins in plasma neuronal exosomes with progression of Alzheimer's disease. FASEB J 2018; 32:888-893. [PMID: 29025866 DOI: 10.1096/fj.201700731r] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interactions of the presynaptic proteins, neuronal pentraxin 2 (NPTX2) and neurexin 2α (NRXN2α), with their respective postsynaptic functional partners, GluA4-containing glutamate (AMPA4) receptor and neuroligin 1 (NLGN1), enhance excitatory synaptic activity in some areas of the hippocampus and cerebral cortex. As early damage of such excitatory circuits in the brain tissues of participants with Alzheimer's disease (AD) correlates with cognitive losses, plasma neuron-derived exosome (NDE) levels of these 2 pairs of specialized synaptic proteins were quantified to assess their biomarker characteristics. The NDE contents of all 4 proteins were decreased significantly in AD dementia ( n = 46), and diminished levels of AMPA4 and NLGN1 correlated with the extent of cognitive loss. In a preclinical period, 6-11 yr before the onset of dementia, the NDE levels of all but NPTX2 were significantly lower than those of matched controls, and levels of all proteins declined significantly with the development of dementia. Reductions in NDE levels of these specialized excitatory synaptic proteins may therefore be indicative of the extent of cognitive loss and may reflect progression of the severity of AD.-Goetzl, E. J., Abner, E. L., Jicha, G. A., Kapogiannis, D., Schwartz, J. B. Declining levels of functionally specialized synaptic proteins in plasma neuronal exosomes with progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Edward J Goetzl
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA.,Jewish Home of San Francisco, San Francisco, California, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | | - Janice B Schwartz
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA.,Jewish Home of San Francisco, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
NLGN1 and NLGN2 in the prefrontal cortex: their role in memory consolidation and strengthening. Curr Opin Neurobiol 2017; 48:122-130. [PMID: 29278843 DOI: 10.1016/j.conb.2017.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 12/21/2022]
Abstract
The prefrontal cortex (PFC) is critical for memory formation, but the underlying molecular mechanisms are poorly understood. Clinical and animal model studies have shown that changes in PFC excitation and inhibition are important for cognitive functions as well as related disorders. Here, we discuss recent findings revealing the roles of the excitatory and inhibitory synaptic proteins neuroligin 1 (NLGN1) and NLGN2 in the PFC in memory formation and modulation of memory strength. We propose that shifts in NLGN1 and NLGN2 expression in specific excitatory and inhibitory neuronal subpopulations in response to experience regulate the dynamic processes of memory consolidation and strengthening. Because excitatory/inhibitory imbalances accompany neuropsychiatric disorders in which strength and flexibility of representations play important roles, understanding these mechanisms may suggest novel therapies.
Collapse
|
18
|
Brito-Moreira J, Lourenco MV, Oliveira MM, Ribeiro FC, Ledo JH, Diniz LP, Vital JFS, Magdesian MH, Melo HM, Barros-Aragão F, de Souza JM, Alves-Leon SV, Gomes FCA, Clarke JR, Figueiredo CP, De Felice FG, Ferreira ST. Interaction of amyloid-β (Aβ) oligomers with neurexin 2α and neuroligin 1 mediates synapse damage and memory loss in mice. J Biol Chem 2017; 292:7327-7337. [PMID: 28283575 DOI: 10.1074/jbc.m116.761189] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/26/2017] [Indexed: 11/06/2022] Open
Abstract
Brain accumulation of the amyloid-β protein (Aβ) and synapse loss are neuropathological hallmarks of Alzheimer disease (AD). Aβ oligomers (AβOs) are synaptotoxins that build up in the brains of patients and are thought to contribute to memory impairment in AD. Thus, identification of novel synaptic components that are targeted by AβOs may contribute to the elucidation of disease-relevant mechanisms. Trans-synaptic interactions between neurexins (Nrxs) and neuroligins (NLs) are essential for synapse structure, stability, and function, and reduced NL levels have been associated recently with AD. Here we investigated whether the interaction of AβOs with Nrxs or NLs mediates synapse damage and cognitive impairment in AD models. We found that AβOs interact with different isoforms of Nrx and NL, including Nrx2α and NL1. Anti-Nrx2α and anti-NL1 antibodies reduced AβO binding to hippocampal neurons and prevented AβO-induced neuronal oxidative stress and synapse loss. Anti-Nrx2α and anti-NL1 antibodies further blocked memory impairment induced by AβOs in mice. The results indicate that Nrx2α and NL1 are targets of AβOs and that prevention of this interaction reduces the deleterious impact of AβOs on synapses and cognition. Identification of Nrx2α and NL1 as synaptic components that interact with AβOs may pave the way for development of novel approaches aimed at halting synapse failure and cognitive loss in AD.
Collapse
Affiliation(s)
| | - Mychael V Lourenco
- From the Institute of Medical Biochemistry Leopoldo de Meis.,Institute of Biophysics Carlos Chagas Filho
| | - Mauricio M Oliveira
- From the Institute of Medical Biochemistry Leopoldo de Meis.,Institute of Biophysics Carlos Chagas Filho
| | - Felipe C Ribeiro
- From the Institute of Medical Biochemistry Leopoldo de Meis.,Institute of Biophysics Carlos Chagas Filho
| | | | | | | | | | - Helen M Melo
- From the Institute of Medical Biochemistry Leopoldo de Meis
| | | | - Jorge M de Souza
- Division of Neurosurgery and Division of Neurology/Epilepsy Program, Clementino Fraga Filho University Hospital, and
| | - Soniza V Alves-Leon
- Division of Neurosurgery and Division of Neurology/Epilepsy Program, Clementino Fraga Filho University Hospital, and
| | | | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil and
| | - Cláudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil and
| | - Fernanda G De Felice
- From the Institute of Medical Biochemistry Leopoldo de Meis.,the Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sergio T Ferreira
- From the Institute of Medical Biochemistry Leopoldo de Meis, .,Institute of Biophysics Carlos Chagas Filho
| |
Collapse
|
19
|
Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural Plast 2017; 2017:8081758. [PMID: 28331639 PMCID: PMC5346360 DOI: 10.1155/2017/8081758] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype.
Collapse
|
20
|
Franco R, Martínez-Pinilla E, Navarro G, Zamarbide M. Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer's disease. Prog Neurobiol 2017; 149-150:21-38. [PMID: 28189739 DOI: 10.1016/j.pneurobio.2017.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 02/08/2023]
Abstract
Despite efforts to understand the mechanism of neuronal cell death, finding effective therapies for neurodegenerative diseases is still a challenge. Cognitive deficits are often associated with neurodegenerative diseases. Remarkably, in the absence of consensus biomarkers, diagnosis of diseases such as Alzheimer's still relies on cognitive tests. Unfortunately, all efforts to translate findings in animal models to the patients have been unsuccessful. Alzheimer's disease may be addressed from two different points of view, neuroprotection or cognitive enhancement. Based on recent data, the mammalian target of rapamycin (mTOR) pathway arises as a versatile player whose modulation may impact on mechanisms of both neuroprotection and cognition. Whereas direct targeting of mTOR does not seem to constitute a convenient approach in drug discovery, its indirect modulation by other signaling pathways seems promising. In fact, G-protein-coupled receptors (GPCRs) remain the most common 'druggable' targets and as such pharmacological manipulation of GPCRs with selective ligands may modulate phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), mitogen-activated protein (MAP) kinase and mTOR signaling pathways. Thus, GPCRs become important targets for potential drug treatments in different neurodegenerative disorders including, but not limited to, Alzheimer's disease. GPCR-mediated modulation of mTOR may take advantage of different GPCRs coupled to different G-dependent and G-independent signal transduction routes, of functional selectivity and/or of biased agonism. Signals mediated by GPCRs may act as coincidence detectors to achieve different benefits in different stages of the neurodegenerative disease.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | | |
Collapse
|
21
|
Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A. Huperzine A: A promising anticonvulsant, disease modifying, and memory enhancing treatment option in Alzheimer's disease. Med Hypotheses 2016; 99:57-62. [PMID: 28110700 DOI: 10.1016/j.mehy.2016.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia. Besides cognitive deterioration, patients with AD are prone to seizures - more than 20% of patients diagnosed with AD experience at least one unprovoked seizure and up to 7% have recurrent seizures. Although available antiepileptic drugs (AEDs) may suppress seizures in patients with AD, they may also worsen cognitive dysfunction and increase the risk of falls. On the basis of preclinical studies, we hypothesize that Huperzine A (HupA), a safe and potent acetylcholinesterase (AChE) inhibitor with potentially disease-modifying qualities in AD, may have a realistic role as an anticonvulsant in AD.
Collapse
Affiliation(s)
- Ugur Damar
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roman Gersner
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Steven Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Synaptic Cell Adhesion Molecules in Alzheimer's Disease. Neural Plast 2016; 2016:6427537. [PMID: 27242933 PMCID: PMC4868906 DOI: 10.1155/2016/6427537] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD.
Collapse
|
23
|
Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95. Mol Neurobiol 2016; 54:1759-1776. [PMID: 26884267 DOI: 10.1007/s12035-016-9745-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/22/2016] [Indexed: 01/08/2023]
Abstract
The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes synaptic receptors, ion channels, structural proteins, and signaling molecules required for normal synaptic transmission and synaptic function. The scaffolding and hub protein postsynaptic density protein-95 (PSD-95) is a major element of central chemical synapses and interacts with glutamate receptors, cell adhesion molecules, and cytoskeletal elements. In fact, PSD-95 can regulate basal synaptic stability as well as the activity-dependent structural plasticity of the PSD and, therefore, of the excitatory chemical synapse. Several studies have shown that PSD-95 is highly enriched at excitatory synapses and have identified multiple protein structural domains and protein-protein interactions that mediate PSD-95 function and trafficking to the postsynaptic region. PSD-95 is also a target of several signaling pathways that induce posttranslational modifications, including palmitoylation, phosphorylation, ubiquitination, nitrosylation, and neddylation; these modifications determine the synaptic stability and function of PSD-95 and thus regulate the fates of individual dendritic spines in the nervous system. In the present work, we review the posttranslational modifications that regulate the synaptic localization of PSD-95 and describe their functional consequences. We also explore the signaling pathways that induce such changes.
Collapse
|