1
|
Gu ZY, Zhou R, Hong D, Han Y, Wang LZ, Li J, Zhang ZY, Shi CJ. Fibroblast growth factor receptors 1 and 4 combined with lymph node metastasis predicts poor prognosis in oral cancer. Oral Dis 2024; 30:1004-1017. [PMID: 36938639 DOI: 10.1111/odi.14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
OBJECTIVES The fibroblast growth factor receptor (FGFR) members including FGFR1-4 have been identified as promising novel therapeutic targets and prognostic markers in multiple solid tumors. However, the predictive role of the expression of FGFR proteins in oral squamous cell carcinoma (OSCC) requires further exploration. MATERIALS AND METHODS Immunohistochemical evaluation of FGFR1-4 was performed on 161 paired OSCC samples. The associations of FGFRs with clinicopathologic and prognostic parameters were analyzed. To further assess the contribution of FGFRs to OSCC proliferation, cell lines, and one PDX model was utilized to examine the anti-tumor effect of the pan-FGFR inhibitor AZD4547. RESULTS All FGFR members were found to be overexpressed in OSCC tumors when compared to normal tissues, and their expression was significantly associated with poor overall survival and disease-free survival. Multivariate Cox regression analysis revealed high expression of FGFR1 (p = 0.014) and FGFR4 (p = 0.009) were independent prognostic factors and co-overexpression of FGFR1 and FGFR4 with lymph node metastasis increased HR for death (p = 0.02). The pan-FGFR inhibitor AZD4547 showed anti-tumor activity in cell lines and in a patient-derived xenograft of OSCC. CONCLUSIONS This study highlights the co-overexpression of FGFR1 and FGFR4 as a significantly poor prognosis indicator in OSCC when combined with lymph node metastasis.
Collapse
MESH Headings
- Humans
- Mouth Neoplasms/pathology
- Mouth Neoplasms/metabolism
- Lymphatic Metastasis
- Male
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Female
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Prognosis
- Middle Aged
- Cell Line, Tumor
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Animals
- Pyrazoles/therapeutic use
- Pyrazoles/pharmacology
- Aged
- Piperazines/therapeutic use
- Piperazines/pharmacology
- Mice
- Benzamides/pharmacology
- Adult
- Cell Proliferation
- Aged, 80 and over
Collapse
Affiliation(s)
- Zi-Yue Gu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases,National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases,National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Duo Hong
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases,National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yong Han
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases,National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li-Zhen Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases,National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases,National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Yuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases,National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chao-Ji Shi
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases,National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
3
|
Arora R, Haynes L, Kumar M, McNeil R, Ashkani J, Nakoneshny SC, Matthews TW, Chandarana S, Hart RD, Jones SJM, Dort JC, Itani D, Chanda A, Bose P. NCBP2 and TFRC are novel prognostic biomarkers in oral squamous cell carcinoma. Cancer Gene Ther 2023; 30:752-765. [PMID: 36635327 DOI: 10.1038/s41417-022-00578-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
There are few prognostic biomarkers and targeted therapeutics currently in use for the clinical management of oral squamous cell carcinoma (OSCC) and patient outcomes remain poor in this disease. A majority of mutations in OSCC are loss-of-function events in tumour suppressor genes that are refractory to conventional modes of targeting. Interestingly, the chromosomal segment 3q22-3q29 is amplified in many epithelial cancers, including OSCC. We hypothesized that some of the 468 genes located on 3q22-3q29 might be drivers of oral carcinogenesis and could be exploited as potential prognostic biomarkers and therapeutic targets. Our integrative analysis of copy number variation (CNV), gene expression and clinical data from The Cancer Genome Atlas (TCGA), identified two candidate genes: NCBP2, TFRC, whose expression positively correlates with worse overall survival (OS) in HPV-negative OSCC patients. Expression of NCBP2 and TFRC is significantly higher in tumour cells compared to most normal human tissues. High NCBP2 and TFRC protein abundance is associated with worse overall, disease-specific survival, and progression-free interval in an in-house cohort of HPV-negative OSCC patients. Finally, due to a lack of evidence for the role of NCBP2 in carcinogenesis, we tested if modulating NCBP2 levels in human OSCC cell lines affected their carcinogenic behaviour. We found that NCBP2 depletion reduced OSCC cell proliferation, migration, and invasion. Differential expression analysis revealed the upregulation of several tumour-promoting genes in patients with high NCBP2 expression. We thus propose both NCBP2 and TFRC as novel prognostic and potentially therapeutic biomarkers for HPV-negative OSCC.
Collapse
Affiliation(s)
- Rahul Arora
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Logan Haynes
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Mehul Kumar
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Reid McNeil
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jahanshah Ashkani
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Steven C Nakoneshny
- Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - T Wayne Matthews
- Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery, Section of Otolaryngology-Head & Neck Surgery, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Shamir Chandarana
- Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery, Section of Otolaryngology-Head & Neck Surgery, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Robert D Hart
- Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery, Section of Otolaryngology-Head & Neck Surgery, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Joseph C Dort
- Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery, Section of Otolaryngology-Head & Neck Surgery, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Doha Itani
- Department of Anatomic and Molecular Pathology, Dalhousie University, Saint John, NB, Canada
| | - Ayan Chanda
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Pinaki Bose
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.
| |
Collapse
|
4
|
Li JP, Liu YJ, Zeng SH, Gao HJ, Chen YG, Zou X. Identification of COX4I2 as a hypoxia-associated gene acting through FGF1 to promote EMT and angiogenesis in CRC. Cell Mol Biol Lett 2022; 27:76. [PMID: 36064310 PMCID: PMC9446847 DOI: 10.1186/s11658-022-00380-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Current evidence suggests that the hypoxic tumor microenvironment further aggravates tumor progression, leading to poor therapeutic outcomes. There is as yet no biomarker capable of evaluating the hypoxic state of the tumor. The cytochrome c oxidase (COX) subunit is crucial to the mitochondrial respiratory chain. Methods We investigated the potential oncogenic role of COX subunit 4 isoform 2 gene (COX4I2) in colorectal cancer (CRC) by least absolute shrinkage and selection operator (LASSO) and COX regression analysis to examine whether COX4I2 overexpression can predict colorectal cancer (CRC) prognosis. The association of COX4I2 levels with clinical features and its biological actions were evaluated both in vitro and in vivo. Results Our analysis showed that elevated COX4I2 levels were correlated with poor clinical outcomes. We also observed that that COX4I2 may be involved in epithelial-mesenchymal transition, activation of cancer-related fibroblasts and angiogenesis in relation to fibroblast growth factor 1. Conclusions The COX4I2 level may be a predictor of outcome in CRC and may represent a novel target for treatment development. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00380-2.
Collapse
Affiliation(s)
- Jie-Pin Li
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China.,Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yuan-Jie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Shu-Hong Zeng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Hai-Jian Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Yu-Gen Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China. .,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China. .,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Shree Harini K, Ezhilarasan D, Lakshmi T. Novel fibroblast growth factor receptor inhibitors: Potential therapeutic approach in oral cancer treatment. Oral Oncol 2022; 132:105983. [PMID: 35753264 DOI: 10.1016/j.oraloncology.2022.105983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| | - Thangavelu Lakshmi
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India
| |
Collapse
|
6
|
Abstract
ABSTRACT Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most prevalent cancer worldwide, with an annual incidence of 600,000 new cases. Despite advances in surgery, chemotherapy, and radiotherapy, the overall survival for HNSCC patients has not been significantly improved over the past several decades. Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) genomic alterations are frequently detected in HNSCC, including amplification, activating mutation, and chromosomal rearrangement. Among them, FGFR1 amplification, FGF amplifications, and FGFR3 mutations are the most prevalent. In addition, FGF/FGFR expression has also been observed in most HNSCCs. However, the prognostic value of FGF/FGFR aberrations remains unclear, especially for gene amplification and overexpression. Nonetheless, FGF/FGFR has been a promising target for HNSCC treatment, and recent preclinical studies demonstrate the potential of the combination treatment regimens involving FGFR inhibitors on HNSCC. Therefore, there are a number of FGFR inhibitors currently in clinical trials for the treatment of head and neck cancers.
Collapse
|
7
|
Peng H, Ge P. Long non‑coding RNA HCG18 facilitates the progression of laryngeal and hypopharyngeal squamous cell carcinoma by upregulating FGFR1 via miR‑133b. Mol Med Rep 2021; 25:46. [PMID: 34878161 PMCID: PMC8674708 DOI: 10.3892/mmr.2021.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
It has been reported that long non-coding RNA HLA complex group 18 (HCG18) is involved in the progression of cancer, acting as an oncogenic gene. The aim of the present study was to investigate the mechanism underlying the action of HCG18 in laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC). The expression levels of HCG18, microRNA (miR)-133b and fibroblast growth factor receptor 1 (FGFR1) in LHSCC tissues and transfected LHSCC cells were evaluated by reverse transcription-quantitative PCR or immunohistochemistry. The viability, migration and invasion of transfected LHSCC cells were detected by Cell Counting Kit-8, wound healing and Transwell assays, respectively. The targeting relationships of HCG18, miR-133b and FGFR1 were predicted by bioinformatics analysis and confirmed using a dual-luciferase reporter assay. Moreover, the expression levels of FGFR1, phosphorylated (p)-PI3K, PI3K, p-AKT, AKT, p53, Bax and Bcl-2 in transfected LHSCC cells were measured by western blotting. It was found that the expression levels of HCG18 and FGFR1 were upregulated, but those of miR-133b were downregulated in LHSCC tissues. Short hairpin RNA (sh) HCG18 and miR-133b mimic inhibited LHSCC cell viability, while enhancing miR-133b expression. HCG18 could competitively bind with miR-133b. Moreover, the miR-133b inhibitor promoted cell viability, migration, invasion and the expression levels of Bcl-2, p-PI3K and p-AKT, but inhibited the expression levels of p53 and Bax, which were abrogated by shHCG18. miR-133b could competitively bind with FGFR1, and the miR-133b mimic decreased the expression level of FGFR1 in transfected LHSCC cells. shFGFR1 promoted the expression levels of p53 and Bax, while inhibiting viability, migration, invasion and Bcl-2, p-PI3K and p-AKT expression in LHSCC cells. In conclusion, the current results indicated that HCG18 facilitated the progression of LHSCC by upregulating FGFR1 via miR-133b. The present study evaluated the mechanism with regards to the action of HCG18 in LHSCC, and these experimental results may provide novel evidence for targeted therapy of LHSCC.
Collapse
Affiliation(s)
- Hongbin Peng
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong 528400, P.R. China
| | - Pingjiang Ge
- Department of Otorhinolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
8
|
Hu Y, Ai LS, Zhou LQ. Prognostic value of FGFR1 expression and amplification in patients with HNSCC: A systematic review and meta-analysis. PLoS One 2021; 16:e0251202. [PMID: 33989301 PMCID: PMC8121309 DOI: 10.1371/journal.pone.0251202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) has recently been identified as a promising novel therapeutic target and prognostic marker in different types of cancer. In the present study, a meta-analysis was performed to clarify the correlation between FGFR1 and the survival outcomes of head and neck squamous cell carcinoma (HNSCC) patients. PubMed, Embase, and Web of Science were systematically searched for relevant studies in order to explore the prognostic significance of FGFR1 in HNSCC. Hazards ratios (HR) and 95% confidence intervals (CI) were collected to estimate the correlation between overexpression and amplification of FGFR1 and survival outcomes of HNSCC patients. Nine studies including 2708 patients with HNSCC were finally selected for the meta-analysis. The results indicated that FGFR1 predicted poor overall survival (OS) (HR, 1.97; 95% CI, 1.49–2.61, P<0.001) in HNSCC patients. Futhermore, FGFR1 was related to poor OS in human papillomavirus (HPV) negative HNSCC not in HPV positive HNSCC patients. Subgroup analysis stratified by molecular abnormalities, such as overexpression or amplification showed the similar results. The present study demonstrated that HNSCC patients with FGFR1 overexpression and amplification were more likely to exhibit poorer survival.
Collapse
Affiliation(s)
- Yao Hu
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Wuhan, China
| | - Li-Sha Ai
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu-Qing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
9
|
Yu X, Pan X, Zhang S, Zhang YH, Chen L, Wan S, Huang T, Cai YD. Identification of Gene Signatures and Expression Patterns During Epithelial-to-Mesenchymal Transition From Single-Cell Expression Atlas. Front Genet 2021; 11:605012. [PMID: 33584803 PMCID: PMC7876317 DOI: 10.3389/fgene.2020.605012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Cancer, which refers to abnormal cell proliferative diseases with systematic pathogenic potential, is one of the leading threats to human health. The final causes for patients’ deaths are usually cancer recurrence, metastasis, and drug resistance against continuing therapy. Epithelial-to-mesenchymal transition (EMT), which is the transformation of tumor cells (TCs), is a prerequisite for pathogenic cancer recurrence, metastasis, and drug resistance. Conventional biomarkers can only define and recognize large tissues with obvious EMT markers but cannot accurately monitor detailed EMT processes. In this study, a systematic workflow was established integrating effective feature selection, multiple machine learning models [Random forest (RF), Support vector machine (SVM)], rule learning, and functional enrichment analyses to find new biomarkers and their functional implications for distinguishing single-cell isolated TCs with unique epithelial or mesenchymal markers using public single-cell expression profiling. Our discovered signatures may provide an effective and precise transcriptomic reference to monitor EMT progression at the single-cell level and contribute to the exploration of detailed tumorigenesis mechanisms during EMT.
Collapse
Affiliation(s)
- Xiangtian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - XiaoYong Pan
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| | - ShiQi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Hang Zhang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
| | - Sibao Wan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Wang Y, Wu Y, Li J, Lai Y, Zhou K, Che G. Prognostic and clinicopathological significance of FGFR1 gene amplification in resected esophageal squamous cell carcinoma: a meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:669. [PMID: 31930070 DOI: 10.21037/atm.2019.10.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Previous studies about the prognostic and clinicopathological significance of fibroblast growth factor receptor 1 (FGFR1) amplification in resected esophageal squamous cell carcinoma (ESCC) are controversial. Therefore, the aim of the current meta-analysis was to determine the association of FGFR1 amplification with prognosis and clinicopathological characteristics of resected ESCC patients. Methods The PubMed, EMBASE, Web of Science, The Cochrane Library, CNKI, Wanfang, VIP and SinoMed databases were searched systematically from the establishment date of databases to April 1, 2019 to identify related studies. The correlations of FGFR1 amplification of prognosis and clinicopathological characteristics in ESCC were assessed by the combined hazard ratio (HR) with 95% confidence interval (CI) and combined odds ratio (OR) with 95% CI, respectively. All statistical analyses were performed by the Stata 12.0 software. Results A total of nine retrospective studies involving 2,326 patients who received the surgery were included into the current meta-analysis. The results indicated that FGFR1 amplification was significantly correlated with worse overall survival (OS) (HR =1.50, 95% CI: 1.25-1.81, P<0.001), disease-free survival (DFS) (HR =1.58, 95% CI: 1.27-1.96, P<0.001), lymph node metastasis (OR =1.45, 95% CI: 1.13-1.86, P=0.004), higher TNM stage (OR =1.33, 95% CI: 1.03-1.72, P=0.027) and poorer differentiation (OR =1.10, 95% CI: 1.07-1.13, P<0.001). Conclusions The current meta-analysis strongly demonstrates that FGFR1 amplification is an independent prognostic risk factor for resected ESCC patients and more prevalent among patients with advanced tumor stage and poorer differentiation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanming Wu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jialong Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yutian Lai
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
12
|
Shimizu D, Saito T, Ito S, Masuda T, Kurashige J, Kuroda Y, Eguchi H, Kodera Y, Mimori K. Overexpression of FGFR1 Promotes Peritoneal Dissemination Via Epithelial-to-Mesenchymal Transition in Gastric Cancer. Cancer Genomics Proteomics 2018; 15:313-320. [PMID: 29976636 DOI: 10.21873/cgp.20089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Peritoneal dissemination (PD) is one of the most common causes of cancer-related mortality in gastric cancer (GC). We aimed to identify PD-associated genes and investigate their role in GC. MATERIALS AND METHODS We identified FGFR1 as a putative PD-associated gene using a bioinformatics approach. The biological significance of FGFR1 in epithelial-to-mesenchymal transition (EMT) was evaluated according to the correlation with genes that participated in EMT and FGFR1 knockdown experiments. The associations between FGFR1 expression and the clinicopathological features were examined. RESULTS FGFR1 expression positively correlated with SNAI1, VIM and ZEB1 expression, and negatively correlated with CDH1 expression. Knockdown of FGFR1 suppressed the malignant phenotype of GC cells. High FGFR1 expression significantly correlated with the peritoneal lavage cytology and synchronous PD positivity as well as poor prognosis. CONCLUSION High FGFR1 expression was associated with PD via promotion of EMT and led to a poor prognosis of GC patients.
Collapse
Affiliation(s)
- Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan.,Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Saito
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Junji Kurashige
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan.,Department of Surgery, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Yosuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| |
Collapse
|
13
|
Mariz BALA, Soares CD, de Carvalho MGF, Jorge-Júnior J. FGF-2 and FGFR-1 might be independent prognostic factors in oral tongue squamous cell carcinoma. Histopathology 2018; 74:311-320. [PMID: 30129658 DOI: 10.1111/his.13739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/18/2018] [Indexed: 12/20/2022]
Abstract
AIMS Fibroblast growth factor (FGF)-2 and fibroblast growth factor receptor (FGFR)-1 are associated with tumour invasiveness, cell proliferation, angiogenesis, and metastasis. The aims of this study were to investigate FGF-2 expression and FGFR-1 expression in oral epithelial dysplasia (OED) and oral tongue squamous cell carcinoma (OTSCC), and their correlation with OTSCC patients' prognosis. METHODS AND RESULTS One hundred and sixty-seven cases were retrospectively selected, including 85 surgical specimens of patients with OTSCC, 46 incisional biopsies of OTSCC, and 36 incisional biopsies of OED. Tissue sections were subjected to immunohistochemical staining for FGF-2 and FGFR-1, and digitally scored. Elevated scores of FGF-2 and FGFR-1 immunostaining were associated with high-grade OEDs. FGF-2 positivity in the stroma was associated with vascular invasion and a worse prognosis, in both overall survival (OS) and disease-free survival (DFS) analyses, in univariate and multivariate models. FGFR-1 positivity in the stroma was correlated with lymph node metastasis and distant metastasis. FGFR-1 expression in either the malignant cells or the stroma was strongly correlated with shorter OS and DFS. CONCLUSIONS Taken together, our findings suggest that increased FGF-2 expression and increased FGFR-1 expression are associated with high-grade OEDs, and are correlated with the presence of metastasis and adverse outcomes in OTSCC patients.
Collapse
Affiliation(s)
- Bruno A L A Mariz
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Ciro D Soares
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Jacks Jorge-Júnior
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
14
|
Ryan MR, Sohl CD, Luo B, Anderson KS. The FGFR1 V561M Gatekeeper Mutation Drives AZD4547 Resistance through STAT3 Activation and EMT. Mol Cancer Res 2018; 17:532-543. [PMID: 30257990 DOI: 10.1158/1541-7786.mcr-18-0429] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/06/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
FGFR1 has been implicated in numerous cancer types including squamous cell lung cancer, a subset of non-small cell lung cancer with a dismal 5-year survival rate. Small-molecule inhibitors targeting FGFR1 are currently in clinical trials, with AZD4547 being one of the furthest along; however, the development of drug resistance is a major challenge for targeted therapies. A prevalent mechanism of drug resistance in kinases occurs through mutation of the gatekeeper residue, V561M in FGFR1; however, mechanisms underlying V561M resistance to AZD4547 are not fully understood. Here, the cellular consequences of the V561M gatekeeper mutation were characterized, and it was found that although AZD4547 maintains nanomolar affinity for V561M FGFR1, based on in vitro binding assays, cells expressing V561M demonstrate dramatic resistance to AZD4547 driven by increased STAT3 activation downstream of V561M FGFR1. The data reveal that the V561M mutation biases cells toward a more mesenchymal phenotype, including increased levels of proliferation, migration, invasion, and anchorage-independent growth, which was confirmed using CyTOF, a novel single-cell analysis tool. Using shRNA knockdown, loss of STAT3 restored sensitivity of cancer cells expressing V561M FGFR1 to AZD4547. Thus, the data demonstrate that combination therapies including FGFR and STAT3 may overcome V561M FGFR1-driven drug resistance in the clinic. IMPLICATIONS: The V561M FGFR1 gatekeeper mutation leads to devastating drug resistance through activation of STAT3 and the epithelial-mesenchymal transition; this study demonstrates that FGFR1 inhibitor sensitivity can be restored upon STAT3 knockdown.
Collapse
Affiliation(s)
- Molly R Ryan
- Department of Pharmacology, Yale University, New Haven, Connecticut
| | - Christal D Sohl
- Department of Pharmacology, Yale University, New Haven, Connecticut
| | - BeiBei Luo
- Department of Pharmacology, Yale University, New Haven, Connecticut
| | - Karen S Anderson
- Department of Pharmacology, Yale University, New Haven, Connecticut.
| |
Collapse
|
15
|
Durinikova E, Kozovska Z, Poturnajova M, Plava J, Cierna Z, Babelova A, Bohovic R, Schmidtova S, Tomas M, Kucerova L, Matuskova M. ALDH1A3 upregulation and spontaneous metastasis formation is associated with acquired chemoresistance in colorectal cancer cells. BMC Cancer 2018; 18:848. [PMID: 30143021 PMCID: PMC6109326 DOI: 10.1186/s12885-018-4758-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Background Efficiency of colorectal carcinoma treatment by chemotherapy is diminished as the resistance develops over time in patients. The same holds true for 5-fluorouracil, the drug used in first line chemotherapy of colorectal carcinoma. Methods Chemoresistant derivative of HT-29 cells was prepared by long-term culturing in increasing concentration of 5-fluorouracil. Cells were characterized by viability assays, flow cytometry, gene expression arrays and kinetic imaging. Immunomagnetic separation was used for isolation of subpopulations positive for cancer stem cells-related surface markers. Aldehyde dehydrogenase expression was attenuated by siRNA. In vivo studies were performed on SCID/bg mice. Results The prepared chemoresistant cell line labeled as HT-29/EGFP/FUR is assigned with different morphology, decreased proliferation rate and 135-fold increased IC50 value for 5-fluorouracil in comparison to parental counterparts HT-29/EGFP. The capability of chemoresistant cells to form tumor xenografts, when injected subcutaneously into SCID/bg mice, was strongly compromised, however, they formed distant metastases in mouse lungs spontaneously. Derived cells preserved their resistance in vitro and in vivo even without the 5-fluorouracil selection pressure. More importantly, they were resistant to cisplatin, oxaliplatin and cyclophosphamide exhibiting high cross-resistance along with alterations in expression of cancer-stem cell markers such as CD133, CD166, CD24, CD26, CXCR4, CD271 and CD274. We also detected increased aldehyde dehydrogenase (ALDH) activity associated with overexpression of specific ALDH isoform 1A3. Its inhibition by siRNA approach partially sensitized cells to various agents, thus linking for the first time the ALDH1A3 and chemoresistance in colorectal cancer. Conclusion Our study demonstrated that acquired chemoresistance goes along with metastatic and migratory phenotype and can be accompanied with increased activity of aldehyde dehydrogenase. We describe here the valuable model to study molecular link between resistance to chemotherapy and metastatic dissemination.
Collapse
Affiliation(s)
- Erika Durinikova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Zuzana Kozovska
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Martina Poturnajova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Jana Plava
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Zuzana Cierna
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University, Sasinkova 4, 813 72, Bratislava, Slovakia
| | - Andrea Babelova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Roman Bohovic
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Silvia Schmidtova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Miroslav Tomas
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.,Department of Surgical Oncology of Slovak Medical University, National Cancer Institute, Klenova 1, 831 01, Bratislava, Slovakia
| | - Lucia Kucerova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| | - Miroslava Matuskova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
16
|
Mariz BALA, Soares CD, Morais TML, Fonseca F, Carvalho MGF, Jorge J. Expression of FGF‐2/FGFR‐1 in normal mucosa, salivary gland, preneoplastic, and neoplastic lesions of the oral cavity. J Oral Pathol Med 2018; 47:816-822. [DOI: 10.1111/jop.12773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Bruno A. L. A. Mariz
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Ciro D. Soares
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Thayná M. L. Morais
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | | | | | - Jacks Jorge
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| |
Collapse
|
17
|
Wu C, Zhao Y, Liu Y, Yang X, Yan M, Min Y, Pan Z, Qiu S, Xia S, Yu J, Yang P, Wan B, Shao Q. Identifying miRNA-mRNA regulation network of major depressive disorder in ovarian cancer patients. Oncol Lett 2018; 16:5375-5382. [PMID: 30214617 PMCID: PMC6126176 DOI: 10.3892/ol.2018.9243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Major depression disorder (MDD) has become increasingly common in patients with ovarian cancer, which complicates the treatment course. The microRNA (miRNA)-mRNA regulation network may help elucidate the potential mechanism of MDD in ovarian cancer. The differentially expressed microRNAs (DEmiRs) and mRNAs (DEmRNAs) were therefore identified from the GSE61741, GSE58105 and GSE9116 ovarian cancer datasets using GEO2R. The target genes of the DEmiRs were then obtained using the TargetScan, microRNAorg, microT-CDS, miRDB and miRTarBase prediction tools. The DAVID program was used to identify the KEGG pathways of target genes, and the core genes of major depressive disorder (MDD) were identified using the Kaplan-Meier Plotter for ovarian cancer. A total of 5 DEmiRs (miR-23b-3p, miR-33b-3p, miR-1265, miR-933 and miR-629-5p) were obtained from GSE61741 and GSE58105. The target genes of these DEmiRs were enriched in pathways that were considered high risk for developing MDD in ovarian cancer. A total of 11 risk genes were selected from these pathways as the core genes in the miRNA-mRNA network of MDD in ovarian cancer, and eventually identified the following 12 miRNA-mRNAs pairs: miR-629-5p-FGF1, miR-629-5p-AKT3, miR-629-5p-MAGI2, miR-933-BDNF, miR-933-MEF2A, miR-23b-3p-TJP1, miR-23b-3p-JMJD1, miR-23b-3p-APAF1, miR-23b-3p-CAB39, miR-1265-CDKN1B, miR-33b-3p-CDKN1B, and miR-33b-3p-F2R. These results may provide novel insights into the mechanisms of developing MDD in ovarian cancer patients.
Collapse
Affiliation(s)
- Chengjiang Wu
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China.,Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yangjing Zhao
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuefang Liu
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China.,Department of Medical Genetics and Prenatal Diagnostics, Huaian Maternity and Child Health Care Hospital Affiliated to Yangzhou University, Huaian, Jiangsu 223002, P.R. China
| | - Xinxin Yang
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Meina Yan
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yujiao Min
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zihui Pan
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Shali Qiu
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Sheng Xia
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jun Yu
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Peifang Yang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Bing Wan
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory for Laboratory Medicine of Jiangsu, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
18
|
Guan H, Guo Y, Liu L, Ye R, Liang W, Li H, Xiao H, Li Y. INAVA promotes aggressiveness of papillary thyroid cancer by upregulating MMP9 expression. Cell Biosci 2018; 8:26. [PMID: 29632659 PMCID: PMC5887255 DOI: 10.1186/s13578-018-0224-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/30/2018] [Indexed: 11/22/2022] Open
Abstract
Background Innate immunity activator (INAVA) has been shown to be elevated in lung adenocarcinoma. However, its expression pattern and function in papillary thyroid cancer (PTC) are unknown. This study aimed to identify the clinical, biological, and mechanistic impacts of INAVA on PTC. Methods Using The Cancer Genome Atlas dataset, real time PCR, and immunohistochemistry, the expression of INAVA in PTC was analyzed. Gain- and loss-of-function assays were performed to investigate the role of INAVA in PTC cell invasion, migration, and metastasis. We explored the molecular mechanisms underlying the roles of INAVA in PTC cells using transcriptome resequencing, real time PCR, western blotting and immunohistochemistry. Results We found that INAVA expression was significantly upregulated in PTC and was significantly associated with lymph node metastasis. Loss- and gain-of-function experiments demonstrated that INAVA promoted the aggressive phenotype of PTC cells in vitro and in vivo. Mechanistic study suggested that upregulation of INAVA resulted in elevated fibroblast growth factor 1 (FGF1), which in turn increased the expression level of matrix metalloproteinases 9 (MMP9). We further identified that the level of INAVA was positively correlated with the levels of FGF1 and MMP9 in clinical PTC specimens. Conclusion These data establish a novel role for INAVA in promoting PTC progression and suggest that INAVA may represent a therapeutic target for the disease. Electronic supplementary material The online version of this article (10.1186/s13578-018-0224-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyu Guan
- 1Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China
| | - Yan Guo
- 1Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China
| | - Liehua Liu
- 1Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China
| | - Runyi Ye
- 2Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiwei Liang
- 1Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China
| | - Hai Li
- 1Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China
| | - Haipeng Xiao
- 1Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China
| | - Yanbing Li
- 1Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 Guangdong China
| |
Collapse
|
19
|
Chen B, Liu S, Gan L, Wang J, Hu B, Xu H, Tong R, Yang H, Cristina I, Xue J, Hu X, Lu Y. FGFR1 signaling potentiates tumor growth and predicts poor prognosis in esophageal squamous cell carcinoma patients. Cancer Biol Ther 2017; 19:76-86. [PMID: 29257923 DOI: 10.1080/15384047.2017.1394541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor receptor-1 (FGFR1) over-expression was broadly found in squamous cancer, where it induced cellular proliferation, differentiation, and metastasis by activating various signaling pathway. However, the role of FGFR1 gene expression in predicting prognosis of Esophageal Squamous Cell Carcinoma (ESCC) and its regulatory function in the progression of ESCC are not well understood. Therefore, we performed an analysis of FGFR1 mRNA expression by quantitative RT-PCR in tumor tissue of 145 patients with ESCC. The relationships between FGFR1 gene expression and clinicopathological parameters, also the prognosis were further examined. Results suggested that higher FGFR1 gene expression predicted worse overall survival (HR = 1.502, 95%[CI] = 1.005-2.246, P = 0.045). Disease-free survival tends to be shorter in patients with higher FGFR1 expression but without statistical significance (HR = 1.398, 95%[CI] = 0.942-2.074, P = 0.096). FGFR1 was up regulated in multiple ESCC cell lines. Subsequent in vitro experiments demonstrated that anti-FGFR1 treatment by PD173074 inhibited TE-1 and EC9706 cell viability along with the attenuation of MEK-ERK signaling pathway. In vivo, PD173074 administration also had shown potent ESCC growth arresting effect. Overall, our study suggested that FGFR1 gene expression could be an independent prognosis predictive factor in patients with ESCC. Anti-FGFR1 inhibited ESCC growth and could be a potential strategy in ESCC targeted therapy.
Collapse
Affiliation(s)
- Baoqing Chen
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China.,b Huaxi Student Society of Oncology Research, West China School of Medicine, Sichuan University , Chengdu , Sichuan , China
| | - Shurui Liu
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Lu Gan
- c Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Jingwen Wang
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Binbin Hu
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - He Xu
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Ruizhan Tong
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Hui Yang
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China.,b Huaxi Student Society of Oncology Research, West China School of Medicine, Sichuan University , Chengdu , Sichuan , China
| | - Ivan Cristina
- d Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| | - Jianxin Xue
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Xun Hu
- e Huaxi Biobank, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - You Lu
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China.,b Huaxi Student Society of Oncology Research, West China School of Medicine, Sichuan University , Chengdu , Sichuan , China
| |
Collapse
|
20
|
Li D, Liu K, Li Z, Wang J, Wang X. miR-19a and miR-424 target TGFBR3 to promote epithelial-to-mesenchymal transition and migration of tongue squamous cell carcinoma cells. Cell Adh Migr 2017; 12:236-246. [PMID: 29130787 DOI: 10.1080/19336918.2017.1365992] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies indicate that TGFBR3 (transforming growth factor type III receptor, also known as betaglycan), a novel suppressor of progression in certain cancers, is down-regulated in tongue squamous cell carcinoma (TSCC). However, the role of this factor as an upstream regulator in TSCC cells remains to be elucidated. The present study was designed to elucidate whether TGFBR3 gene expression is regulated by two microRNA molecules, miR-19a and miR-424. The study also aimed to determine if these microRNAs promote migration of CAL-27 human oral squamous cells. Immunohistochemistry (IHC) and western blot analyses demonstrated that TGFBR3 protein levels were dramatically down-regulated in clinical TSCC specimens. Conversely, bioinformatics analyses and qRT-PCR results confirmed that both miR-19a and miR-424 were markedly up-regulated in clinical TSCC specimens. In this study, we observed that transfection of a TGFBR3-containing plasmid dramatically inhibited epithelial-to-mesenchymal transition (EMT) and migration in CAL-27 cells. Co-immunoprecipitation analyses also revealed that TGFBR3 forms a complex with the β-arrestin 2 scaffolding protein and IκBα. Furthermore, overexpression of TGFBR3 decreased p-p65 expression and increased IκBα expression; these effects were subsequently abolished following knockdown of β-arrestin 2. Moreover, over-expression of miR-19a and miR-424 promoted migration and EMT in CAL-27 cells. We also observed that the promotion of EMT by miR-19a and miR-424 was mediated by the inhibition of TGFBR3. Our study provides evidence that miR-19a and miR-424 play important roles in the development of TSCC. These results expand our understanding of TGFBR3 gene expression and regulatory mechanisms pertaining to miRNAs.
Collapse
Affiliation(s)
- Duo Li
- a Department of Oral and Maxillofacial Surgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Ke Liu
- a Department of Oral and Maxillofacial Surgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Zhiyong Li
- a Department of Oral and Maxillofacial Surgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Jian Wang
- b Department of Neurosurgery , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Xiaofeng Wang
- a Department of Oral and Maxillofacial Surgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| |
Collapse
|
21
|
Mutschelknaus L, Azimzadeh O, Heider T, Winkler K, Vetter M, Kell R, Tapio S, Merl-Pham J, Huber SM, Edalat L, Radulović V, Anastasov N, Atkinson MJ, Moertl S. Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep 2017; 7:12423. [PMID: 28963552 PMCID: PMC5622080 DOI: 10.1038/s41598-017-12403-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022] Open
Abstract
Radiation is a highly efficient therapy in squamous head and neck carcinoma (HNSCC) treatment. However, local recurrence and metastasis are common complications. Recent evidence shows that cancer-cell-derived exosomes modify tumour cell movement and metastasis. In this study, we link radiation-induced changes of exosomes to their ability to promote migration of recipient HNSCC cells. We demonstrate that exosomes isolated from irradiated donor cells boost the motility of the HNSCC cells BHY and FaDu. Molecular data identified enhanced AKT-signalling, manifested through increased phospho-mTOR, phospho-rpS6 and MMP2/9 protease activity, as underlying mechanism. AKT-inhibition blocked the pro-migratory action, suggesting AKT-signalling as key player in exosome-mediated migration. Proteomic analysis of exosomes isolated from irradiated and non-irradiated BHY donor cells identified 39 up- and 36 downregulated proteins. In line with the observed pro-migratory effect of exosomes isolated from irradiated cells protein function analysis assigned the deregulated exosomal proteins to cell motility and AKT-signalling. Together, our findings demonstrate that exosomes derived from irradiated HNSCC cells confer a migratory phenotype to recipient cancer cells. This is possibly due to radiation-regulated exosomal proteins that increase AKT-signalling. We conclude that exosomes may act as driver of HNSCC progression during radiotherapy and are therefore attractive targets to improve radiation therapy strategies.
Collapse
Affiliation(s)
- Lisa Mutschelknaus
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Theresa Heider
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Klaudia Winkler
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Marcus Vetter
- Independent Scientist, Hofheimerstraße 6, Munich, Germany
| | - Rosemarie Kell
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Juliane Merl-Pham
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Protein Science, München, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Lena Edalat
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Vanja Radulović
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Michael J Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany.,Chair of Radiation Biology, Technical University of Munich, Munich, Germany
| | - Simone Moertl
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany.
| |
Collapse
|
22
|
Liu P, Zhang R, Yu W, Ye Y, Cheng Y, Han L, Dong L, Chen Y, Wei X, Yu J. FGF1 and IGF1-conditioned 3D culture system promoted the amplification and cancer stemness of lung cancer cells. Biomaterials 2017; 149:63-76. [PMID: 29017078 DOI: 10.1016/j.biomaterials.2017.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Lung cancer stem cells (LCSCs) are considered as the cellular origins of metastasis and relapse of lung cancer. However, routine two-dimensional culture system (2D-culture) hardly mimics the growth and functions of LCSCs in vivo and therefore significantly decreases the stemness activity of LCSCs. In this study, we constructed a special BME-based three-dimensional culture system (3D-culture) to amplify LCSCs in human lung adenocarcinoma cell line A549 cells and found 3D-culture promoted the enrichment and amplification of LCSCs in A549 cells displaying higher proliferation potential and invasion activity, but lower apoptosis. The expression and secretion levels of FGF1 and IGF1 were dramatically elevated in 3D-culture compared to 2D-culture. After growing in FGF1 and IGF1-conditioned 3D-culture, the proportion of LCSCs with specific stemness phenotypes in A549 cells significantly increased compared to that in conventional 3D suspension culture system. Further results indicated that FGF1 and IGF1 promoted the amplification and cancer stemness of LCSCs dependent on MAPK signaling pathway. Our data firstly established a growth factors-conditioned 3D-culture for LCSCs and demonstrated the effects of FGF1 and IGF1 in promoting the enrichment and amplification of LCSCs which might provide a feasible cell model in vitro for both mechanism study and translational research on lung cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanan Cheng
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Li Dong
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yongzi Chen
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiyin Wei
- Public Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China.
| |
Collapse
|
23
|
Sun Y, Fan X, Zhang Q, Shi X, Xu G, Zou C. Cancer-associated fibroblasts secrete FGF-1 to promote ovarian proliferation, migration, and invasion through the activation of FGF-1/FGFR4 signaling. Tumour Biol 2017; 39:1010428317712592. [PMID: 28718374 DOI: 10.1177/1010428317712592] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, due to its high propensity for metastasis. Cancer-associated fibroblasts, as the dominant component of tumor microenvironment, are crucial for tumor progression. However, the mechanisms underlying the regulation of ovarian cancer cells by cancer-associated fibroblasts remain little known. Here, we first isolated cancer-associated fibroblasts from patients' ovarian tissues and found that cancer-associated fibroblasts promoted SKOV3 cells' proliferation, migration, and invasion. Fibroblast growth factor-1 was identified as a highly increased factor in cancer-associated fibroblasts compared with normal fibroblasts by quantitative reverse transcription polymerase chain reaction (~4.6-fold, p < 0.01) and ELISA assays (~4-fold, p < 0.01). High expression of fibroblast growth factor-1 in cancer-associated fibroblasts either naturally or through gene recombination led to phosphorylation of fibroblast growth factor receptor 4 in SKOV3 cells, which is followed by the activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase pathway and epithelial-to-mesenchymal transition-associated gene Snail1 and MMP3 expression. Moreover, treatment of SKOV3 cell with fibroblast growth factor receptor inhibitor PD173074 terminated cellular proliferation, migration, and invasion, reduced the phosphorylation level of fibroblast growth factor receptor 4, and suppressed the activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase pathway. In addition, the expression level of Snail1 and MMP3 was reduced, while the expression level of E-cadherin increased. These observations suggest a crucial role for cancer-associated fibroblasts and fibroblast growth factor-1/fibroblast growth factor receptor 4 signaling in the progression of ovarian cancer. Therefore, this fibroblast growth factor-1/fibroblast growth factor receptor 4 axis may become a potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yuanzhen Sun
- 1 Department of Laboratory, Laiwu Maternal and Child Health Care Hospital, Laiwu, China
| | - Xiaoli Fan
- 2 Department of Occupational Poisoning, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Qing Zhang
- 3 Department of Laboratory, Shandong Provincial Hospital, Jinan, China
| | - Xiaoyu Shi
- 1 Department of Laboratory, Laiwu Maternal and Child Health Care Hospital, Laiwu, China
| | - Guangwei Xu
- 4 Department of Laboratory, Weihaiwei People's Hospital, Weihai, China
| | - Cuimin Zou
- 4 Department of Laboratory, Weihaiwei People's Hospital, Weihai, China
| |
Collapse
|
24
|
Heery R, Finn SP, Cuffe S, Gray SG. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9040038. [PMID: 28430163 PMCID: PMC5406713 DOI: 10.3390/cancers9040038] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype.
Collapse
Affiliation(s)
- Richard Heery
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- Masters in Translational Oncology Program, Department of Surgery, Trinity College Dublin, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
| | - Stephen P Finn
- Department of Histopathology & Morbid Anatomy, Trinity College Dublin, Dublin D08 RX0X, Ireland.
| | - Sinead Cuffe
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, Rm 2.09, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- HOPE Directorate, St. James's Hospital, Dublin D08 RT2X, Ireland.
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin D02 R590, Ireland.
- Labmed Directorate, St. James's Hospital, Dublin D08 K0Y5, Ireland.
| |
Collapse
|
25
|
Wang C, Xu X, Jin H, Liu G. Nicotine may promote tongue squamous cell carcinoma progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways. Oncol Lett 2017; 13:3479-3486. [PMID: 28521453 PMCID: PMC5431205 DOI: 10.3892/ol.2017.5899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
To investigate the effects and the possible underlying mechanisms of nicotine stimulation on tongue squamous cell carcinoma (TSCC) progression, a TSCC cell line Cal27 and 34 samples of paraffin-embedded TSCC were examined. Immunofluorescence, western blot analysis, and TOP/FOP flash, CCK-8, wound healing and Transwell invasion assays were used to evaluate Cal27 in response to nicotine stimulation. We also investigated expression levels of related proteins of Wnt/β-catenin and Wnt/PCP pathways in paraffin-embedded TSCC samples with or without a history of smoking by immunohistochemistry. Nicotine stimulation can promote proliferation, migration, and invasion of TSCC cells in vitro, downregulate E-cadherin, and activate the Wnt/β-catenin and Wnt/PCP pathways, which could be antagonized by the α7 nicotine acetylcholine receptor (α7 nAChR) inhibitor α-BTX. Moreover, the expression levels of β-catenin, Wnt5a and Ror2 were higher in TSCC patients with a history of smoking than those without a history of smoking. Our results suggest nicotine may promote tongue squamous carcinoma cells progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways and may play a significant role in the progression and metastasis of smoking-related TSCC.
Collapse
Affiliation(s)
- Chengze Wang
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hairu Jin
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Gangli Liu
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
26
|
Lu Z, Guo H, Lin Y, Shen L, Yin C, Xie S. Effects of PTEN gene silencing on invasion and EMT in oral squamous carcinoma Tca8113 cells. J Oral Pathol Med 2016; 46:31-38. [PMID: 27591748 DOI: 10.1111/jop.12461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiyuan Lu
- Department of Oral Pathology; Medicine School; Jinan University; Guangzhou China
- Department of Oral and Maxillofacial Surgery; The First Affiliated Hospital; Sun Yat-Sen University; Guangzhou China
| | - Hui Guo
- Clinical Medicine Postdoctoral Mobile Station; Jinan University; Guangzhou China
| | - Yanzhu Lin
- Department of Oral Pathology; Medicine School; Jinan University; Guangzhou China
| | - Lijia Shen
- Department of Oral Pathology; Medicine School; Jinan University; Guangzhou China
| | - Cao Yin
- Department Of Oral Medicine; Guangdong Provincial Stomatological Hospital & the Affiliated Stomatological Hospital of Southern Medical University; Guangzhou China
| | - Siming Xie
- Department of Oral Pathology; Medicine School; Jinan University; Guangzhou China
- Guangdong Province Key Laboratory of Molecule Immunology and Antibody Engineering; Jinan University; Guangzhou China
| |
Collapse
|
27
|
PDGF-D/PDGFRβ promotes tongue squamous carcinoma cell (TSCC) progression via activating p38/AKT/ERK/EMT signal pathway. Biochem Biophys Res Commun 2016; 478:845-51. [PMID: 27507215 DOI: 10.1016/j.bbrc.2016.08.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 01/07/2023]
Abstract
Platelet-derived growth factor D (PDGF-D) signaling plays significant roles during the development and progression of human malignancies via interacting with the receptor of PDGF-D (PDGFR). Meanwhile, the majority of human tumor metastasis is closely associated with epithelial-mesenchymal transition (EMT). However, the underlying mechanism between PDGF-D/PDGFR signaling and EMT which involved in tumor metastasis remain dismal. This study aimed to investigate the role of PDGF-D signaling during EMT process of tongue squamous cell carcinoma (TSCC). In our study, the expression of PDGF-D and PDGFR were examined in primary TSCC samples and the expression of PDGF-D was also determined in TSCC cell lines. In addition, the correlation between PDGF-D expression and TSCC aggressive histopathological features was analyzed. Our results implied that upregulation of PDGFRβ in UM1 cells induced with exogenous PDGF-D can remarkably promote tumor cells invasiveness; conversely, when using small interfering RNA (siRNA), the invasiveness can be severely prohibited. Furthermore, PDGF-D downstream signal molecules p38, AKT, ERK and EMT biomarkers (E-cadherin, N-cadherin, Vimentin and snail) were measured using Western blot. Our results showed that PDGF-D can induce p38, AKT and ERK phosphorylation; downregulate epithelial markers and upregulate mesenchymal markers. On the contrary, PDGFRβ siRNA significantly prohibited p38, AKT and ERK phosphorylation; inhibited EMT process. Function analysis revealed that PDGFRβ siRNA obviously interfered with UM1 cell migration and invasion, according to transwell and wound healing assay. In conclusion, this study suggested that EMT process can be triggered by the PDGF-D/PDGFRβ axis in TSCC, and then involved in the tumor cell invasion via activation of p38/AKT/ERK/EMT pathway.
Collapse
|