1
|
Yamazaki S. The Nuclear NF-κB Regulator IκBζ: Updates on Its Molecular Functions and Pathophysiological Roles. Cells 2024; 13:1467. [PMID: 39273036 PMCID: PMC11393961 DOI: 10.3390/cells13171467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
More than a decade after the discovery of the classical cytoplasmic IκB proteins, IκBζ was identified as an additional member of the IκB family. Unlike cytoplasmic IκB proteins, IκBζ has distinct features, including its nuclear localization, preferential binding to NF-κB subunits, unique expression properties, and specialized role in NF-κB regulation. While the activation of NF-κB is primarily controlled by cytoplasmic IκB members at the level of nuclear entry, IκBζ provides an additional layer of NF-κB regulation in the nucleus, enabling selective gene activation. Human genome-wide association studies (GWAS) and gene knockout experiments in mice have elucidated the physiological and pathological roles of IκBζ. Despite the initial focus to its role in activated macrophages, IκBζ has since been recognized as a key player in the IL-17-triggered production of immune molecules in epithelial cells, which has garnered significant clinical interest. Recent research has also unveiled a novel molecular function of IκBζ, linking NF-κB and the POU transcription factors through its N-terminal region, whose role had remained elusive for many years.
Collapse
Affiliation(s)
- Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
2
|
Baek J, Shin H, Suk K, Lee W. LINC01686 affects LPS-induced cytokine expression via the miR-18a-5p/A20/STAT1 axis in THP-1 cells. Immun Inflamm Dis 2024; 12:e1234. [PMID: 38578001 PMCID: PMC10996380 DOI: 10.1002/iid3.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Long noncoding RNAs (lncRNAs) are crucial in regulating various physiological and pathological processes, including immune responses. LINC01686 is a lncRNA with previously uncharacterized functions in immune regulation. This study aims to investigate the function of LINC01686 in lipopolysaccharide (LPS)-induced inflammatory responses in the human monocytic leukemia cell line THP-1 and its potential regulatory mechanisms involving miR-18a-5p and the anti-inflammatory protein A20. METHOD THP-1 cells were stimulated with LPS to induce inflammatory responses, followed by analysis of LINC01686 expression levels. The role of LINC01686 in regulating the expression of interleukin (IL)-6, IL-8, A20, and signal transducer and activator of transcription 1 (STAT1) was examined using small interfering RNA-mediated knockdown. Additionally, the involvement of miR-18a-5p in LINC01686-mediated regulatory pathways was assessed by transfection with decoy RNAs mimicking the miR-18a-5p binding sites of LINC01686 or A20 messenger RNA. RESULTS LINC01686 expression was upregulated in THP-1 cells following LPS stimulation. Suppression of LINC01686 enhanced LPS-induced expression of IL-6 and IL-8, mediated through increased production of reactive oxygen species. Moreover, LINC01686 knockdown upregulated the expression and activation of IκB-ζ, STAT1, and downregulated A20 expression. Transfection with decoy RNAs reversed the effects of LINC01686 suppression on A20, STAT1, IL-6, and IL-8 expression, highlighting the role of LINC01686 in sponging miR-18a-5p and regulating A20 expression. CONCLUSION This study provides the first evidence that LINC01686 plays a critical role in modulating LPS-induced inflammatory responses in THP-1 cells by sponging miR-18a-5p, thereby regulating the expression and activation of A20 and STAT1. These findings shed light on the complex regulatory mechanisms involving lncRNAs in immune responses and offer potential therapeutic targets for inflammatory diseases.
Collapse
Affiliation(s)
- Jongwon Baek
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch GroupKyungpook National UniversityDaeguSouth Korea
| | - Hyeung‐Seob Shin
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch GroupKyungpook National UniversityDaeguSouth Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 FOUR KNU Biomedical Convergence ProgramKyungpook National University School of MedicineDaeguSouth Korea
| | - Won‐Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch GroupKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
3
|
Feng Y, Chen Z, Xu Y, Han Y, Jia X, Wang Z, Zhang N, Lv W. The central inflammatory regulator IκBζ: induction, regulation and physiological functions. Front Immunol 2023; 14:1188253. [PMID: 37377955 PMCID: PMC10291074 DOI: 10.3389/fimmu.2023.1188253] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
IκBζ (encoded by NFKBIZ) is the most recently identified IkappaB family protein. As an atypical member of the IkappaB protein family, NFKBIZ has been the focus of recent studies because of its role in inflammation. Specifically, it is a key gene in the regulation of a variety of inflammatory factors in the NF-KB pathway, thereby affecting the progression of related diseases. In recent years, investigations into NFKBIZ have led to greater understanding of this gene. In this review, we summarize the induction of NFKBIZ and then elucidate its transcription, translation, molecular mechanism and physiological function. Finally, the roles played by NFKBIZ in psoriasis, cancer, kidney injury, autoimmune diseases and other diseases are described. NFKBIZ functions are universal and bidirectional, and therefore, this gene may exert a great influence on the regulation of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Yanpeng Feng
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Zhiyuan Chen
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yi Xu
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yuxuan Han
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiujuan Jia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zixuan Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nannan Zhang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Lv
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Gautam P, Maenner S, Cailotto F, Reboul P, Labialle S, Jouzeau J, Bourgaud F, Moulin D. Emerging role of IκBζ in inflammation: Emphasis on psoriasis. Clin Transl Med 2022; 12:e1032. [PMID: 36245291 PMCID: PMC9574490 DOI: 10.1002/ctm2.1032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/28/2023] Open
Abstract
Psoriasis is a chronic inflammatory disorder affecting skin and joints that results from immunological dysfunction such as enhanced IL-23 induced Th-17 differentiation. IkappaB-Zeta (IκBζ) is an atypical transcriptional factor of the IκB protein family since, contrary to the other family members, it positively regulates NF-κB pathway by being exclusively localized into the nucleus. IκBζ deficiency reduces visible manifestations of experimental psoriasis by diminishing expression of psoriasis-associated genes. It is thus tempting to consider IκBζ as a potential therapeutic target for psoriasis as well as for other IL23/IL17-mediated inflammatory diseases. In this review, we will discuss the regulation of expression of NFKBIZ and its protein IκBζ, its downstream targets, its involvement in pathogenesis of multiple disorders with emphasis on psoriasis and evidences supporting that inhibition of IκBζ may be a promising alternative to current therapeutic managements of psoriasis.
Collapse
Affiliation(s)
- Preeti Gautam
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Sylvain Maenner
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Frédéric Cailotto
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Pascal Reboul
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Stéphane Labialle
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Jean‐Yves Jouzeau
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | | | - David Moulin
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| |
Collapse
|
5
|
Sasaki T, Nagashima H, Okuma A, Yamauchi T, Yamasaki K, Aiba S, So T, Ishii N, Owada Y, MaruYama T, Kobayashi S. Functional Analysis of the Transcriptional Regulator IκB-ζ in Intestinal Homeostasis. Dig Dis Sci 2022; 67:1252-1259. [PMID: 33818662 DOI: 10.1007/s10620-021-06958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/12/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The Toll-like receptor signaling pathway contributes to the regulation of intestinal homeostasis through interactions with commensal bacteria. Although the transcriptional regulator IκB-ζ can be induced by Toll-like receptor signaling, its role in intestinal homeostasis is still unclear. AIMS To investigate the role of IκB-ζ in gut homeostasis. METHODS DSS-administration induced colitis in control and IκB-ζ-deficient mice. The level of immunoglobulins in feces was detected by ELISA. The immunological population in lamina propria (LP) was analyzed by FACS. RESULTS IκB-ζ-deficient mice showed severe inflammatory diseases with DSS administration in the gut. The level of IgM in the feces after DSS administration was less in IκB-ζ-deficient mice compared to control mice. Upon administration of DSS, IκB-ζ-deficient mice showed exaggerated intestinal inflammation (more IFN-g-producing CD4+ T cells in LP), and antibiotic treatment canceled this inflammatory phenotype. CONCLUSION IκB-ζ plays a crucial role in maintaining homeostasis in the gut.
Collapse
Affiliation(s)
- Tomoki Sasaki
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Nagashima
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Okuma
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, Japan
| | - Takashi MaruYama
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Mucosal Immunology Unit, NIDCR, NIH, Bethesda, MD, USA
| | - Shuhei Kobayashi
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan. .,Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, Japan.
| |
Collapse
|
6
|
Ahn JH, Cho J, Kwon BE, Lee GS, Yoon SI, Kang SG, Kim PH, Kweon MN, Yang H, Vallance BA, Kim YI, Chang SY, Ko HJ. IκBζ facilitates protective immunity against Salmonella infection via Th1 differentiation and IgG production. Sci Rep 2019; 9:8397. [PMID: 31182790 PMCID: PMC6557891 DOI: 10.1038/s41598-019-44019-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/23/2019] [Indexed: 01/12/2023] Open
Abstract
Inhibitor of kappa B (IκB)-ζ transcription is rapidly induced by stimulation with TLR ligands and IL-1. Despite high IκBζ expression in inflammation sites, the association of IκBζ with host defence via systemic immune responses against bacterial infection remains unclear. Oral immunisation with a recombinant attenuated Salmonella vaccine (RASV) strain did not protect IκBζ-deficient mice against a lethal Salmonella challenge. IκBζ-deficient mice failed to produce Salmonella LPS-specific IgG, especially IgG2a, although inflammatory cytokine production and immune cell infiltration into the liver increased after oral RASV administration. Moreover, IκBζ-deficient mice exhibited enhanced splenic germinal centre reactions followed by increased total IgG production, despite IκBζ-deficient B cells having an intrinsic antibody class switching defect. IκBζ-deficient CD4+ T cells poorly differentiated into Th1 cells. IFN-γ production by CD4+ T cells from IκBζ-deficient mice immunised with RASV significantly decreased after restimulation with heat-killed RASV in vitro, suggesting that IκBζ-deficient mice failed to mount protective immune responses against Salmonella infection because of insufficient Th1 and IgG production. Therefore, IκBζ is crucial in protecting against Salmonella infection by inducing Th1 differentiation followed by IgG production.
Collapse
Affiliation(s)
- Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jaewon Cho
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Hyungjun Yang
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Young-In Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea.
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. Nat Commun 2018; 9:4001. [PMID: 30275490 PMCID: PMC6167379 DOI: 10.1038/s41467-018-06354-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-cells. Prognosis is strongly associated with molecular subgroup, although the driver mutations that distinguish the two main subgroups remain poorly defined. Through an integrative analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-coding loci that are commonly mutated in DLBCL. Our analysis has identified novel cis-regulatory sites, and implicates recurrent mutations in the 3′ UTR of NFKBIZ as a novel mechanism of oncogene deregulation and NF-κB pathway activation in the activated B-cell (ABC) subgroup. Small amplifications associated with over-expression of FCGR2B (the Fcγ receptor protein IIB), primarily in the germinal centre B-cell (GCB) subgroup, correlate with poor patient outcomes suggestive of a novel oncogene. These results expand the list of subgroup driver mutations that may facilitate implementation of improved diagnostic assays and could offer new avenues for the development of targeted therapeutics. The driver mutations for the two main molecular subgroups of diffuse large B-cell lymphoma (DLBCL) are poorly defined. Here, an integrative genomics analysis identifies 3′ UTR NFKBIZ mutations within the activated B-cell DLBCL subgroup and small FCGR2B amplifications in the germinal centre B-cell DLBCL subgroup.
Collapse
|