1
|
Ma K, Zhang P, Zhao J, Qin Y. Discovery of a novel translation-machinery-associated protein that positively correlates with cellulase production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:20. [PMID: 39987148 PMCID: PMC11847360 DOI: 10.1186/s13068-025-02624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND The production of cellulases by filamentous fungi is a crucial aspect of sustainable bioproduction from renewable lignocellulosic biomass. Following the transcription of cellulase genes in the nucleus, a complex pathway involving translation, folding, and secretion is required to produce extracellular cellulases. Most studies about cellulase production have focused on examining transcriptional regulatory mechanisms and enhancement of enzyme gene levels; comparatively, little is known about protein translation and secretion for cellulase production. RESULTS A translation-machinery-associated (TMA) protein PoTma15 was identified in cellulosic Penicillium oxalicum. The PoTma15 is conserved in various filamentous fungi, but not in yeast, plants, or animals. All homologous proteins of PoTma15 have previously been uncharacterized. PoTma15 was initially thought to be one of the putative interactors of transcription factor PoXlnR, as it was preyed by tandem affinity purification (TAP) coupled with the mass spectrometry (TAP-MS) technique using PoXlnR as the bait. Subsequent research revealed that PoTma15 is associated with the translation machinery. The top three proteins associated with PoTma15 are orthologs of Saccharomyces cerevisiae translation-machinery-associated protein (Tma19), translation elongation factor eIF5A, and ribosomal protein S28, respectively. PoTma15 is widely distributed in fungal hyphae and positively correlates with the production of cellulases and extracellular proteins. Deleting the Potma15 gene (Δtma15) decreased cellulase production, while overexpressing the Potma15 gene (OEtma15) increased cellulase production. However, the Δtma15 mutant was not observed to have downregulated transcript levels of major (hemi)cellulase and amylase genes, compared to the P. oxalicum wild type (WT). The production of extracellular cellulases and extracellular proteins of the Δtma15 mutant was less affected by cycloheximide, an inhibitor of eukaryotic translation elongation, compared to the WT strain and OEtma15 mutant, suggesting a stronger resistance to the translation-inhibiting effects of cycloheximide in the Δtma15 mutant. The results demonstrate that PoTma15 is a translation-machinery-associated protein that affects translation elongation and, consequently, the production of enzyme proteins. CONCLUSIONS PoTma15 is the first TMA protein characterized in cellulosic filamentous fungi and the first TMA protein used in fungi to increase cellulase production. PoTma15's role in the production of cellulases and total extracellular proteins suggests that not only can it be used to widen the cellulase production pathway, but can even be engineered as a target to improve the production of other heterologous protein or bioproducts using filamentous fungi as cell factories in the future.
Collapse
Affiliation(s)
- Kexuan Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Panpan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- National Glycoengineering Research Center, Shandong University, Qingdao, China.
| |
Collapse
|
2
|
Timsit Y. The Expanding Universe of Extensions and Tails: Ribosomal Proteins and Histones in RNA and DNA Complex Signaling and Dynamics. Genes (Basel) 2025; 16:45. [PMID: 39858592 PMCID: PMC11764897 DOI: 10.3390/genes16010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
This short review bridges two biological fields: ribosomes and nucleosomes-two nucleoprotein assemblies that, along with many viruses, share proteins featuring long filamentous segments at their N- or C-termini. A central hypothesis is that these extensions and tails perform analogous functions in both systems. The evolution of these structures appears closely tied to the emergence of regulatory networks and signaling pathways, facilitating increasingly complex roles for ribosomes and nucleosome alike. This review begins by summarizing the structures and functions of ribosomes and nucleosomes, followed by a detailed comparison highlighting their similarities and differences, particularly in light of recent findings on the roles of ribosomal proteins in signaling and ribosome dynamics. The analysis seeks to uncover whether these systems operate based on shared principles and mechanisms. The nucleosome-ribosome analogy may offer valuable insights into unresolved questions in both fields. For instance, new structural insights from ribosomes might shed light on potential motifs formed by histone tails. From an evolutionary perspective, this study revisits the origins of signaling and regulation in ancient nucleoprotein assemblies, suggesting that tails and extensions may represent remnants of the earliest network systems governing signaling and dynamic control.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France;
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
3
|
Walukiewicz HE, Farris Y, Burnet MC, Feid SC, You Y, Kim H, Bank T, Christensen D, Payne SH, Wolfe AJ, Rao CV, Nakayasu ES. Regulation of bacterial stringent response by an evolutionarily conserved ribosomal protein L11 methylation. mBio 2024; 15:e0177324. [PMID: 39189746 PMCID: PMC11481523 DOI: 10.1128/mbio.01773-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Lysine and arginine methylation is an important regulator of enzyme activity and transcription in eukaryotes. However, little is known about this covalent modification in bacteria. In this work, we investigated the role of methylation in bacteria. By reanalyzing a large phyloproteomics data set from 48 bacterial strains representing six phyla, we found that almost a quarter of the bacterial proteome is methylated. Many of these methylated proteins are conserved across diverse bacterial lineages, including those involved in central carbon metabolism and translation. Among the proteins with the most conserved methylation sites is ribosomal protein L11 (bL11). bL11 methylation has been a mystery for five decades, as the deletion of its methyltransferase PrmA causes no cell growth defects. Comparative proteomics analysis combined with inorganic polyphosphate and guanosine tetra/pentaphosphate assays of the ΔprmA mutant in Escherichia coli revealed that bL11 methylation is important for stringent response signaling. In the stationary phase, we found that the ΔprmA mutant has impaired guanosine tetra/pentaphosphate production. This leads to a reduction in inorganic polyphosphate levels, accumulation of RNA and ribosomal proteins, and an abnormal polysome profile. Overall, our investigation demonstrates that the evolutionarily conserved bL11 methylation is important for stringent response signaling and ribosomal activity regulation and turnover. IMPORTANCE Protein methylation in bacteria was first identified over 60 years ago. Since then, its functional role has been identified for only a few proteins. To better understand the functional role of methylation in bacteria, we analyzed a large phyloproteomics data set encompassing 48 diverse bacteria. Our analysis revealed that ribosomal proteins are often methylated at conserved residues, suggesting that methylation of these sites may have a functional role in translation. Further analysis revealed that methylation of ribosomal protein L11 is important for stringent response signaling and ribosomal homeostasis.
Collapse
Affiliation(s)
- Hanna E. Walukiewicz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Meagan C. Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sarah C. Feid
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Youngki You
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Hyeyoon Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Thomas Bank
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - David Christensen
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Samuel H. Payne
- Department of Biology, Brigham Young University, Provo, Utah, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
4
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Jagadeesan SK, Kazmirchuk TDD, Arnoczki C, Moteshareie H, Said KB, Azad T, Holcik M, Samanfar B, Smith M, Golshani A. Oxidative stress-induced YAP1 expression is regulated by NCE102, CDA2, and BCS1. FEBS J 2024; 291:4602-4618. [PMID: 39102301 DOI: 10.1111/febs.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Maintaining cellular homeostasis in the face of stress conditions is vital for the overall well-being of an organism. Reactive oxygen species (ROS) are among the most potent cellular stressors and can disrupt the internal redox balance, giving rise to oxidative stress. Elevated levels of ROS can severely affect biomolecules and have been associated with a range of pathophysiological conditions. In response to oxidative stress, yeast activator protein-1 (Yap1p) undergoes post-translation modification that results in its nuclear accumulation. YAP1 has a key role in oxidative detoxification by promoting transcription of numerous antioxidant genes. In this study, we identified previously undescribed functions for NCE102, CDA2, and BCS1 in YAP1 expression in response to oxidative stress induced by hydrogen peroxide (H2O2). Deletion mutant strains for these candidates demonstrated increased sensitivity to H2O2. Our follow-up investigation linked the activity of these genes to YAP1 expression at the level of translation. Under oxidative stress, global cap-dependent translation is inhibited, prompting stress-responsive genes like YAP1 to employ alternative modes of translation. We provide evidence that NCE102, CDA2, and BCS1 contribute to cap-independent translation of YAP1 under oxidative stress.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | | | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Kamaledin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Saudi Arabia
| | - Taha Azad
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
5
|
Yeh MC, Hsu NH, Chu HY, Yang CH, Hsu PH, Chou CC, Shie JT, Lee WM, Ho MC, Lo KY. Dual protection by Bcp1 and Rkm1 ensures incorporation of uL14 into pre-60S ribosomal subunits. J Cell Biol 2024; 223:e202306117. [PMID: 39007857 PMCID: PMC11248248 DOI: 10.1083/jcb.202306117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/13/2024] [Accepted: 04/19/2024] [Indexed: 07/16/2024] Open
Abstract
Eukaryotic ribosomal proteins contain extended regions essential for translation coordination. Dedicated chaperones stabilize the associated ribosomal proteins. We identified Bcp1 as the chaperone of uL14 in Saccharomyces cerevisiae. Rkm1, the lysine methyltransferase of uL14, forms a ternary complex with Bcp1 and uL14 to protect uL14. Rkm1 is transported with uL14 by importins to the nucleus, and Bcp1 disassembles Rkm1 and importin from uL14 simultaneously in a RanGTP-independent manner. Molecular docking, guided by crosslinking mass spectrometry and validated by a low-resolution cryo-EM map, reveals the correlation between Bcp1, Rkm1, and uL14, demonstrating the protection model. In addition, the ternary complex also serves as a surveillance point, whereas incorrect uL14 is retained on Rkm1 and prevented from loading to the pre-60S ribosomal subunits. This study reveals the molecular mechanism of how uL14 is protected and quality checked by serial steps to ensure its safe delivery from the cytoplasm until its incorporation into the 60S ribosomal subunit.
Collapse
Affiliation(s)
- Min-Chi Yeh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ning-Hsiang Hsu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hao-Yu Chu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, College of Life Science, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jing-Ting Shie
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wei-Ming Lee
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Remines M, Schoonover MG, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling the compendium of changes in Saccharomyces cerevisiae due to mutations that alter availability of the main methyl donor S-Adenosylmethionine. G3 (BETHESDA, MD.) 2024; 14:jkae002. [PMID: 38184845 PMCID: PMC10989883 DOI: 10.1093/g3journal/jkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/17/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
The SAM1 and SAM2 genes encode for S-Adenosylmethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main cellular methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in Saccharomyces cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1Δ/sam1Δ, and sam2Δ/sam2Δ strains in 15 different Phenotypic Microarray plates with different components and measured growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. We explored how the phenotypic growth differences are linked to the altered gene expression, and hypothesize mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact pathways and processes. We present 6 stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role in production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Makailyn G Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Kellyn M Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | - Erin D Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| |
Collapse
|
7
|
Hayashi T, Daitoku H, Uetake T, Kako K, Fukamizu A. Histidine Nτ-methylation identified as a new posttranslational modification in histone H2A at His-82 and H3 at His-39. J Biol Chem 2023; 299:105131. [PMID: 37543365 PMCID: PMC10485160 DOI: 10.1016/j.jbc.2023.105131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
Histone posttranslational modifications play critical roles in a variety of eukaryotic cellular processes. In particular, methylation at lysine and arginine residues is an epigenetic mark that determines the chromatin state. In addition, histone "histidine" methylation was initially reported over 50 years ago; however, further studies in this area were not conducted, leaving a gap in our understanding. Here, we aimed to investigate the occurrence of histidine methylation in histone proteins using highly sensitive mass spectrometry. We found that acid hydrolysates of whole histone fraction from calf thymus contained Nτ-methylhistidine, but not Nπ-methylhistidine. Both core and linker histones carried a Nτ-methylhistidine modification, and methylation levels were relatively high in histone H3. Furthermore, through MALDI-TOF MS, we identified two histidine methylation sites at His-82 in the structured globular domain of histone H2A and His-39 in the N-terminal tail of histones H3. Importantly, these histidine methylation signals were also detected in histones purified from a human cell line HEK293T. Moreover, we revealed the overall methylation status of histone H3, suggesting that methylation is enriched primarily at lysine residues and to a lesser extent at arginine and histidine residues. Thus, our findings established histidine Nτ-methylation as a new histone modification, which may serve as a chemical flag that mediates the epigenetic mark of adjacent residues of the N-terminal tail and the conformational properties of the globular domain.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Doctoral Program in Life and Agricultural Sciences, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Toru Uetake
- Doctoral Program in Life and Agricultural Sciences, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Koichiro Kako
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Bartolec TK, Hamey JJ, Keller A, Chavez JD, Bruce JE, Wilkins MR. Differential Proteome and Interactome Analysis Reveal the Basis of Pleiotropy Associated With the Histidine Methyltransferase Hpm1p. Mol Cell Proteomics 2022; 21:100249. [PMID: 35609787 PMCID: PMC9234706 DOI: 10.1016/j.mcpro.2022.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 10/31/2022] Open
Abstract
The methylation of histidine is a post-translational modification whose function is poorly understood. Methyltransferase histidine protein methyltransferase 1 (Hpm1p) monomethylates H243 in the ribosomal protein Rpl3p and represents the only known histidine methyltransferase in Saccharomyces cerevisiae. Interestingly, the hpm1 deletion strain is highly pleiotropic, with many extraribosomal phenotypes including improved growth rates in alternative carbon sources. Here, we investigate how the loss of histidine methyltransferase Hpm1p results in diverse phenotypes, through use of targeted mass spectrometry (MS), growth assays, quantitative proteomics, and differential crosslinking MS. We confirmed the localization and stoichiometry of the H243 methylation site, found unreported sensitivities of Δhpm1 yeast to nonribosomal stressors, and identified differentially abundant proteins upon hpm1 knockout with clear links to the coordination of sugar metabolism. We adapted the emerging technique of quantitative large-scale stable isotope labeling of amino acids in cell culture crosslinking MS for yeast, which resulted in the identification of 1267 unique in vivo lysine-lysine crosslinks. By reproducibly monitoring over 350 of these in WT and Δhpm1, we detected changes to protein structure or protein-protein interactions in the ribosome, membrane proteins, chromatin, and mitochondria. Importantly, these occurred independently of changes in protein abundance and could explain a number of phenotypes of Δhpm1, not addressed by expression analysis. Further to this, some phenotypes were predicted solely from changes in protein structure or interactions and could be validated by orthogonal techniques. Taken together, these studies reveal a broad role for Hpm1p in yeast and illustrate how crosslinking MS will be an essential tool for understanding complex phenotypes.
Collapse
Affiliation(s)
- Tara K Bartolec
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, New South Wales, Australia
| | - Joshua J Hamey
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, New South Wales, Australia
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, New South Wales, Australia.
| |
Collapse
|
9
|
Lacoux C, Wacheul L, Saraf K, Pythoud N, Huvelle E, Figaro S, Graille M, Carapito C, Lafontaine DLJ, Heurgué-Hamard V. The catalytic activity of the translation termination factor methyltransferase Mtq2-Trm112 complex is required for large ribosomal subunit biogenesis. Nucleic Acids Res 2020; 48:12310-12325. [PMID: 33166396 PMCID: PMC7708063 DOI: 10.1093/nar/gkaa972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.
Collapse
Affiliation(s)
- Caroline Lacoux
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Kritika Saraf
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Emmeline Huvelle
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sabine Figaro
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Valérie Heurgué-Hamard
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
10
|
Clarke SG. The ribosome: A hot spot for the identification of new types of protein methyltransferases. J Biol Chem 2018; 293:10438-10446. [PMID: 29743234 DOI: 10.1074/jbc.aw118.003235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular physiology depends on the alteration of protein structures by covalent modification reactions. Using a combination of bioinformatic, genetic, biochemical, and mass spectrometric approaches, it has been possible to probe ribosomal proteins from the yeast Saccharomyces cerevisiae for post-translationally methylated amino acid residues and for the enzymes that catalyze these modifications. These efforts have resulted in the identification and characterization of the first protein histidine methyltransferase, the first N-terminal protein methyltransferase, two unusual types of protein arginine methyltransferases, and a new type of cysteine methylation. Two of these enzymes may modify their substrates during ribosomal assembly because the final methylated histidine and arginine residues are buried deep within the ribosome with contacts only with RNA. Two of these modifications occur broadly in eukaryotes, including humans, whereas the others demonstrate a more limited phylogenetic range. Analysis of strains where the methyltransferase genes are deleted has given insight into the physiological roles of these modifications. These reactions described here add diversity to the modifications that generate the typical methylated lysine and arginine residues previously described in histones and other proteins.
Collapse
Affiliation(s)
- Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
11
|
Hamey JJ, Wilkins MR. Methylation of Elongation Factor 1A: Where, Who, and Why? Trends Biochem Sci 2018; 43:211-223. [PMID: 29398204 DOI: 10.1016/j.tibs.2018.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/17/2022]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is an essential and highly conserved protein involved in diverse cellular processes, including translation, cytoskeleton organisation, nuclear export, and proteasomal degradation. Recently, nine novel and site-specific methyltransferases were discovered that target eEF1A, five in yeast and four in human, making it the eukaryotic protein with the highest number of independent methyltransferases. Some of these methyltransferases show striking evolutionary conservation. Yet, they come from diverse methyltransferase families, indicating they confer competitive advantage through independent origins. As might be expected, the first functional studies of specific methylation sites found them to have distinct effects, notably on eEF1A-related processes of translation and tRNA aminoacylation. Further functional studies of sites will likely reveal other unique roles for this interesting modification.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia.
| |
Collapse
|