1
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
2
|
Mosconi M, Carlotto E, Caliogna L, Berni M, Gastaldi G, Conti M, Brancato AM, Bina V, Minervini D, Malpede S, Stellato AC, Lazzerini F, Bruschini L, Benazzo M, Canzi P. Titanium Biohybrid Middle Ear Prostheses: A Preliminary In Vitro Study. J Funct Biomater 2023; 14:561. [PMID: 38132815 PMCID: PMC10743766 DOI: 10.3390/jfb14120561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
Ossiculoplasty is a surgical operation performed to restore auditory transmission through the reconstruction of the ossicular chain using prosthetics. Tissue bioengineering has assumed a pivotal role in implementing alternatives to conventional ossicular middle ear replacement prostheses, to overcome extrusion while preserving acoustic properties. This in vitro study aims to explore, for the first time in current literature, the feasibility of a biohybrid middle ear prosthesis, composed of titanium surrounded by a bone extracellular matrix as bio-coating. We have hereby studied the adhesion and proliferation of human adipose-derived mesenchymal stem cells (hASC) on titanium scaffolds in vitro. Moreover, we identified the osteogenic differentiation of hASC using an immunofluorescence assay to analyze osteoblasts' gene expression profiles (Alp, Runx2, Col1a1, Osx, and Bglap), and we counted the presence of collagen as a marker of hASC's ability to secrete an extracellular matrix. We utilized scanning electron microscopy to evaluate the presence of an extracellular matrix on the scaffolds. Our preliminary data demonstrated the titanium's ability to support human adipose-derived mesenchymal stem cell colonization, proliferation, and osteoblastic differentiation, in order to obtain a biohybrid device. Our experience seems encouraging; thus, we advocate for further in vivo research to corroborate our results regarding bone transplantation.
Collapse
Affiliation(s)
- Mario Mosconi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Elena Carlotto
- Department of Otorhinolaryngology, University of Pavia, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Micaela Berni
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Alice Maria Brancato
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Valentina Bina
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Domenico Minervini
- Department of Otorhinolaryngology, University of Pavia, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Stefano Malpede
- Department of Otorhinolaryngology, University of Pavia, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Anna Chiara Stellato
- Department of Otorhinolaryngology, University of Pavia, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Francesco Lazzerini
- Otolaryngology, ENT Audiology and Phoniatrics Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - Luca Bruschini
- Otolaryngology, ENT Audiology and Phoniatrics Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - Marco Benazzo
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Department of Otorhinolaryngology, University of Pavia, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Pietro Canzi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Department of Otorhinolaryngology, University of Pavia, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|
3
|
Wu J, Xu L, Li C, Wang X, Jiang J. Exploration of key factors in Gingival Crevicular fluids from patients undergoing Periodontally Accelerated Osteogenic Orthodontics (PAOO) using proteome analysis. BMC Oral Health 2023; 23:934. [PMID: 38012627 PMCID: PMC10683118 DOI: 10.1186/s12903-023-03606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The aims of this study are to explore protein changes in gingival crevicular fluid at different time points after PAOO by proteomics method and to select significant bone metabolization-related biomarkers. METHODS This study included 10 adult patients experiencing PAOO. After orthodontic alignment and leveling, the maxillary anterior teeth were treated with PAOO, which is classified as the experimental area. The traditional orthodontic treatment was performed in the mandibular dentition as the control. Gingival crevicular fluid samples were collected at the following time points: the day before the PAOO (T1) and at 1 week, 2 weeks, 1 month, 2 months and 6 months after PAOO (T2, T3, T4, T5 and T6, respectively). The label-free quantitative proteomic assay was used to evaluate the gingival crevicular fluid in PAOO and control areas at time point T1, T2, and T4. Bioinformatics analysis was carried out to categorize proteins based on biological processes, cellular component and molecular function, which is in compliance with gene ontology (GO) standards. The changes of proteins were confirmed by ELISA. RESULTS A total of 134 proteins were selected by keywords (Osteoblast markers, Osteoclast markers, Osteoclastogenesis regulating genes and inflammatory marker). 33 of them were statistically different between groups, and 12 were related to bone metabolism. 5 proteins selected by label-free quantitative proteomics were KLF10, SYT7, APOA1, FBN1 and NOTCH1. KLF10 decreased after PAOO, hitting a trough at T4, and then leveled off. SYT7 increased after PAOO, reaching a peak at T3, and then stabilized until T6. APOA1 ascended to a peak at T4 after PAOO, and then remained stable until T6. The FBN1 rose after PAOO, reaching a peak at T4, and then went down slowly. NOTCH1 ascended rapidly in the first two weeks after PAOO and continued its slow growth trend. CONCLUSION In this study, protein changes in gingival crevicular fluid were detected by proteomics method, and significant bone metabolization-related proteins were selected. It is speculated that APOA1, FBN1, NOTCH1, SYT7 and KLF10 played key roles in regulating bone metabolic balance and in reversible osteopenia after PAOO, which might be involved in the accelerated tooth movement. TRIAL REGISTRATION This study was registered in the Chinese Clinical Trial Registry (Clinical trial registration number: ChiCTR-ONRC-13,004,129) (26/04/2013).
Collapse
Affiliation(s)
- Jiaqi Wu
- First Clinical Division, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China
| | - Li Xu
- Department of Periodontology, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China
| | - Xiujing Wang
- First Clinical Division, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China.
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, 100081, Beijing, PR China.
| |
Collapse
|
4
|
Emch MJ, Wicik Z, Aspros KG, Vukajlovic T, Pitel KS, Narum AK, Weivoda MM, Tang X, Kalari KR, Turner RT, Iwaniec UT, Monroe DG, Subramaniam M, Hawse JR. Estrogen-regulated miRs in bone enhance osteoblast differentiation and matrix mineralization. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:28-41. [PMID: 37359348 PMCID: PMC10285552 DOI: 10.1016/j.omtn.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Estrogen signaling is critical for the development and maintenance of healthy bone, and age-related decline in estrogen levels contributes to the development of post-menopausal osteoporosis. Most bones consist of a dense cortical shell and an internal mesh-like network of trabecular bone that respond differently to internal and external cues such as hormonal signaling. To date, no study has assessed the transcriptomic differences that occur specifically in cortical and trabecular bone compartments in response to hormonal changes. To investigate this, we employed a mouse model of post-menopausal osteoporosis (ovariectomy, OVX) and estrogen replacement therapy (ERT). mRNA and miR sequencing revealed distinct transcriptomic profiles between cortical and trabecular bone in the setting of OVX and ERT. Seven miRs were identified as likely contributors to the observed estrogen-mediated mRNA expression changes. Of these, four miRs were prioritized for further study and decreased predicted target gene expression in bone cells, enhanced the expression of osteoblast differentiation markers, and altered the mineralization capacity of primary osteoblasts. As such, candidate miRs and miR mimics may have therapeutic relevance for bone loss resulting from estrogen depletion without the unwanted side effects of hormone replacement therapy and therefore represent novel therapeutic approaches to combat diseases of bone loss.
Collapse
Affiliation(s)
- Michael J. Emch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zofia Wicik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957 Warsaw, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, 02-097 Warsaw, Poland
| | - Kirsten G.M. Aspros
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Tanja Vukajlovic
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin S. Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Megan M. Weivoda
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaojia Tang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishna R. Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - David G. Monroe
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - John R. Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cancer Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Andrietti ALP, Durgam SS, Naumann B, Stewart M. Basal and inducible Osterix expression reflect equine mesenchymal progenitor cell osteogenic capacity. Front Vet Sci 2023; 10:1125893. [PMID: 37035801 PMCID: PMC10076790 DOI: 10.3389/fvets.2023.1125893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Mesenchymal stem cells are characterized by their capacities for extensive proliferation through multiple passages and, classically, tri-lineage differentiation along osteogenic, chondrogenic and adipogenic lineages. This study was carried out to compare osteogenesis in equine bone marrow-, synovium- and adipose-derived cells, and to determine whether osteogenic capacity is reflected in the basal expression of the critical osteogenic transcription factors Runx2 and Osterix. Methods Bone marrow, synovium and adipose tissue was collected from six healthy 2-year-old horses. Cells were isolated from these sources and expanded through two passages. Basal expression of Runx2 and Osterix was assessed in undifferentiated third passage cells, along with their response to osteogenic culture conditions. Results Bone marrow-derived cells had significantly higher basal expression of Osterix, but not Runx2. In osteogenic medium, bone-marrow cells rapidly developed dense, multicellular aggregates that stained strongly for mineral and alkaline phosphatase activity. Synovial and adipose cell cultures showed far less matrix mineralization. Bone marrow cells significantly up-regulated alkaline phosphatase mRNA expression and enzymatic activity at 7 and 14 days. Alkaline phosphatase expression and activity were increased in adipose cultures after 14 days, although these values were less than in bone marrow cultures. There was no change in alkaline phosphatase in synovial cultures. In osteogenic medium, bone marrow cultures increased both Runx2 and Osterix mRNA expression significantly at 7 and 14 days. Expression of both transcription factors did not change in synovial or adipose cultures. Discussion These results demonstrate that basal Osterix expression differs significantly in progenitor cells derived from different tissue sources and reflects the osteogenic potential of the cell populations.
Collapse
|
6
|
Franco RAG, McKenna E, Robey PG, Crawford RW, Doran MR, Futrega K. SP7 gene silencing dampens bone marrow stromal cell hypertrophy, but it also dampens chondrogenesis. J Tissue Eng 2023; 14:20417314231177136. [PMID: 37362901 PMCID: PMC10288420 DOI: 10.1177/20417314231177136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023] Open
Abstract
For bone marrow stromal cells (BMSC) to be useful in cartilage repair their propensity for hypertrophic differentiation must be overcome. A single day of TGF-β1 stimulation activates intrinsic signaling cascades in BMSCs which subsequently drives both chondrogenic and hypertrophic differentiation. TGF-β1 stimulation upregulates SP7, a transcription factor known to contribute to hypertrophic differentiation, and SP7 remains upregulated even if TGF-β1 is subsequently withdrawn from the chondrogenic induction medium. Herein, we stably transduced BMSCs to express an shRNA designed to silence SP7, and assess the capacity of SP7 silencing to mitigate hypertrophy. SP7 silencing dampened both hypertrophic and chondrogenic differentiation processes, resulting in diminished microtissue size, impaired glycosaminoglycan production and reduced chondrogenic and hypertrophic gene expression. Thus, while hypertrophic features were dampened by SP7 silencing, chondrogenic differentation was also compromised. We further investigated the role of SP7 in monolayer osteogenic and adipogenic cultures, finding that SP7 silencing dampened characteristic mineralization and lipid vacuole formation, respectively. Overall, SP7 silencing affects the trilineage differentiation of BMSCs, but is insufficient to decouple BMSC hypertrophy from chondrogenesis. These data highlight the challenge of promoting BMSC chondrogenesis whilst simultaneously reducing hypertrophy in cartilage tissue engineering strategies.
Collapse
Affiliation(s)
- Rose Ann G Franco
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Translational Research Institute (TRI), Brisbane, QLD, Australia
- Center for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Eamonn McKenna
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Translational Research Institute (TRI), Brisbane, QLD, Australia
- Center for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Pamela G Robey
- Skeletal Biology Section (SBS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD, USA
| | - Ross W Crawford
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Center for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Michael R Doran
- Translational Research Institute (TRI), Brisbane, QLD, Australia
- Center for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Skeletal Biology Section (SBS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD, USA
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- AstraZeneca, Biologics Engineering, Oncology R&D, One MedImmune Way, Gaithersburg, MD, USA
| | - Kathryn Futrega
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Translational Research Institute (TRI), Brisbane, QLD, Australia
- Center for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Skeletal Biology Section (SBS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD, USA
| |
Collapse
|
7
|
Kruppel-like Factors in Skeletal Physiology and Pathologies. Int J Mol Sci 2022; 23:ijms232315174. [PMID: 36499521 PMCID: PMC9741390 DOI: 10.3390/ijms232315174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Kruppel-like factors (KLFs) belong to a large group of zinc finger-containing transcription factors with amino acid sequences resembling the Drosophila gap gene Krüppel. Since the first report of molecular cloning of the KLF family gene, the number of KLFs has increased rapidly. Currently, 17 murine and human KLFs are known to play crucial roles in the regulation of transcription, cell proliferation, cellular differentiation, stem cell maintenance, and tissue and organ pathogenesis. Recent evidence has shown that many KLF family molecules affect skeletal cells and regulate their differentiation and function. This review summarizes the current understanding of the unique roles of each KLF in skeletal cells during normal development and skeletal pathologies.
Collapse
|
8
|
Zhu X, Niu C, Chen J, Yuan K, Jin Q, Hou L, Huang Z. The Role of ZBTB16 in Odontogenic Differentiation of Dental Pulp Stem Cells. Arch Oral Biol 2022; 135:105366. [DOI: 10.1016/j.archoralbio.2022.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
|
9
|
Zhang R, Song YN, Duo X, Guo Z, Sun Y, Zhang Z, Lu Y, Miao B, Yang PC, Nie G. Retinoblastoma cell-derived Twist protein promotes regulatory T cell development. Cancer Immunol Immunother 2021; 70:1037-1048. [PMID: 33108472 PMCID: PMC10992014 DOI: 10.1007/s00262-020-02744-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/12/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The development of tumor tissue-infiltrating regulatory T cell (Treg) is incompletely understood. This study investigates the role of retinoblastoma cell (Rbc)-derived Twist‑related protein 1 (Twist) in the Treg development. METHODS The surgically removed Rb tissues were collected. Rbcs were cultured with CD4+ T cells to assess the role of Rbc-derived Twist in the Treg generation. RESULTS We found that more than 90% Rbcs expressed Twist. Foxp3+ Tregs were detected in the Rb tissues that were positively correlated with the Twist expression in Rbcs, negatively associated with Rb patient survival and sight survival. Treating Rbcs with hypoxia promoted the Twist expression that could be detected in the cytoplasm, nuclei and on the cell surface. Twist activated CD4+ T cells by binding the TLR4/myeloid differentiation factor 2 complex and promoted the transforming growth factor-β-inducible early gene 1 product and Foxp3 expression. These Rbc-induced Foxp3+ Tregs showed immune-suppressive function on CD8+ T cell proliferation. CONCLUSIONS Rbcs express Twist, that induces IL-4+ Foxp3+ Tregs; the latter can inhibit CD8+ cytotoxic T cell activities. Therefore, Twist may play an important role in the pathogenesis of Rb.
Collapse
Affiliation(s)
- Ruishi Zhang
- Department of Ophthalmology, Shenzhen Secondary Hospital and First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yan-Nan Song
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Room A7-509, Lihu Campus, 1066 Xueyuan Blvd, Shenzhen, 518055, China
| | - Xiaoyan Duo
- Department of Ophthalmology, Shenzhen Secondary Hospital and First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhihong Guo
- Shenzhen Luohu Medical Group, Shenzhen, China
| | - Yanhua Sun
- Department of Pathology, Shenzhen Secondary Hospital and First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhixiong Zhang
- Department of Pathology, Shenzhen Secondary Hospital and First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yongtian Lu
- Department of Otolaryngology, Head and Neck Surgery, Shenzhen Secondary Hospital and First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Beiping Miao
- Department of Otolaryngology, Head and Neck Surgery, Shenzhen Secondary Hospital and First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Ping-Chang Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Room A7-509, Lihu Campus, 1066 Xueyuan Blvd, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China.
| | - Guohui Nie
- Department of Otolaryngology, Head and Neck Surgery, Shenzhen Secondary Hospital and First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
10
|
Liu Q, Li M, Wang S, Xiao Z, Xiong Y, Wang G. Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2020; 8:601224. [PMID: 33384998 PMCID: PMC7769847 DOI: 10.3389/fcell.2020.601224] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing life expectations, more and more patients suffer from fractures either induced by intensive sports or other bone-related diseases. The balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption is the basis for maintaining bone health. Osterix (Osx) has long been known to be an essential transcription factor for the osteoblast differentiation and bone mineralization. Emerging evidence suggests that Osx not only plays an important role in intramembranous bone formation, but also affects endochondral ossification by participating in the terminal cartilage differentiation. Given its essentiality in skeletal development and bone formation, Osx has become a new research hotspot in recent years. In this review, we focus on the progress of Osx's function and its regulation in osteoblast differentiation and bone mass. And the potential role of Osx in developing new therapeutic strategies for osteolytic diseases was discussed.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Mao Li
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Shiyi Wang
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuanyuan Xiong
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangwei Wang
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
11
|
Wang X, Xu J, Kang Q. Neuromodulation of bone: Role of different peptides and their interactions (Review). Mol Med Rep 2020; 23:32. [PMID: 33179112 PMCID: PMC7684869 DOI: 10.3892/mmr.2020.11670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the skeletal system has been expanded upon the recognition of several neural pathways that serve important roles in bone metabolism and skeletal homeostasis, as bone tissue is richly innervated. Considerable evidence provided by in vitro, animal and human studies have further elucidated the importance of a host of hormones and local factors, including neurotransmitters, in modulating bone metabolism and osteo-chondrogenic differentiation, both peripherally and centrally. Various cells of the musculoskeletal system not only express receptors for these neurotransmitters, but also influence their endogenous levels in the skeleton. As with a number of physiological systems in nature, a neuronal pathway regulating bone turnover will be neutralized by another pathway exerting an opposite effect. These neuropeptides are also critically involved in articular cartilage homeostasis and pathogenesis of degenerative joint disorders, such as osteoarthritis. In the present Review, data on the role of several neuronal populations in nerve-dependent skeletal metabolism is examined, and the molecular events involved are explored, which may reveal broader relationships between two apparently unrelated organs.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
12
|
Lee JM, Ko JY, Park JW, Lee WK, Song SU, Im GI. KLF10 is a modulatory factor of chondrocyte hypertrophy in developing skeleton. J Orthop Res 2020; 38:1987-1995. [PMID: 32144802 DOI: 10.1002/jor.24653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/17/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
To define the functional role of Krüppel-like factor (KLF) 10 as a modulator of chondrocyte hypertrophy in developing skeleton, the developmental features in the long bone of KLF10 knockout (KO) mice were investigated and the mesenchymal stem cells (MSCs) from KLF10 KO mice were characterized regarding chondrogenesis and osteogenesis. Delayed long bone growth and delayed formation of primary ossification center were observed in an early embryonic stage in KLF10 KO mouse along with very low Indian hedgehog expression in epiphyseal plate. While the chondrogenic potential of mouse MSCs from KLF10 KO mice appeared normal or slight decreased, hypertrophy and osteogenesis were extensively suppressed. These findings suggest that KLF10 is a mediator of chondrocyte hypertrophy in developing skeleton, and that suppression of KLF10 may be employed as a new strategy for preventing hypertrophy in cartilage regeneration using MSCs.
Collapse
Affiliation(s)
- Jong Min Lee
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea.,Bio Research Center, Lugen Sci Co, Bucheon, Republic of Korea
| | - Ji-Yun Ko
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Jeong-Won Park
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Woon Kyu Lee
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Sun U Song
- Department of Integrated Biomedical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Gun-Il Im
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
13
|
Kammoun M, Piquereau J, Nadal‐Desbarats L, Même S, Beuvin M, Bonne G, Veksler V, Le Fur Y, Pouletaut P, Même W, Szeremeta F, Constans J, Bruinsma ES, Nelson Holte MH, Najafova Z, Johnsen SA, Subramaniam M, Hawse JR, Bensamoun SF. Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities. Acta Physiol (Oxf) 2020; 228:e13394. [PMID: 31560161 DOI: 10.1111/apha.13394] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022]
Abstract
AIM Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.
Collapse
Affiliation(s)
- Malek Kammoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - Jerome Piquereau
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | | | - Sandra Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | - Maud Beuvin
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Gisèle Bonne
- Inserm U974 Centre de Recherche en Myologie Sorbonne Université Paris France
| | - Vladimir Veksler
- Signalling and Cardiovascular Pathophysiology ‐ UMR‐S 1180 Université Paris‐Sud INSERM Université Paris‐Saclay Châtenay‐Malabry France
| | - Yann Le Fur
- Aix‐Marseille University CNRS CRMBM Marseille France
| | - Philippe Pouletaut
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| | - William Même
- CNRS UPR4301 Centre de Biophysique Moléculaire Orléans France
| | | | - Jean‐Marc Constans
- Institut Faire Faces EA Chimère Imagerie et Radiologie Médicale CHU Amiens Amiens France
| | | | | | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | - Steven A. Johnsen
- Department of General, Visceral and Pediatric Surgery University Medical Center Göttingen Göttingen Germany
| | | | - John R. Hawse
- Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| | - Sabine F. Bensamoun
- Biomechanics and Bioengineering Laboratory Alliance Sorbonne Universités Université de Technologie de Compiègne UMR CNRS 7338 Compiègne France
| |
Collapse
|
14
|
Gingery A, Subramaniam M, Pitel KS, Li X, Ke HZ, Turner RT, Iwaniec UT, Hawse JR. Sclerostin antibody treatment rescues the osteopenic bone phenotype of TGFβ inducible early gene-1 knockout female mice. J Cell Physiol 2020; 235:5679-5688. [PMID: 31975377 DOI: 10.1002/jcp.29500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Deletion of TGFβ inducible early gene-1 (TIEG) in mice results in an osteopenic phenotype that exists only in female animals. Molecular analyses on female TIEG knockout (KO) mouse bones identified increased expression of sclerostin, an effect that was confirmed at the protein level in serum. Sclerostin antibody (Scl-Ab) therapy has been shown to elicit bone beneficial effects in multiple animal model systems and human clinical trials. For these reasons, we hypothesized that Scl-Ab therapy would reverse the low bone mass phenotype of female TIEG KO mice. In this study, wildtype (WT) and TIEG KO female mice were randomized to either vehicle control (Veh, n = 12/group) or Scl-Ab therapy (10 mg/kg, 1×/wk, s.c.; n = 12/group) and treated for 6 weeks. Following treatment, bone imaging analyses revealed that Scl-Ab therapy significantly increased cancellous and cortical bone in the femur of both WT and TIEG KO mice. Similar effects also occurred in the vertebra of both WT and TIEG KO animals. Additionally, histomorphometric analyses revealed that Scl-Ab therapy resulted in increased osteoblast perimeter/bone perimeter in both WT and TIEG KO animals, with a concomitant increase in P1NP, a serum marker of bone formation. In contrast, osteoclast perimeter/bone perimeter and CTX-1 serum levels were unaffected by Scl-Ab therapy, irrespective of mouse genotype. Overall, our findings demonstrate that Scl-Ab therapy elicits potent bone-forming effects in both WT and TIEG KO mice and effectively increases bone mass in female TIEG KO mice.
Collapse
Affiliation(s)
- Anne Gingery
- Department of Orthopedics, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | | | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Xiaodong Li
- Department of Metabolic Disorders, Amgen, Inc., Thousand Oaks, California
| | | | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
Chan WL, Steiner M, Witkos T, Egerer J, Busse B, Mizumoto S, Pestka JM, Zhang H, Hausser I, Khayal LA, Ott CE, Kolanczyk M, Willie B, Schinke T, Paganini C, Rossi A, Sugahara K, Amling M, Knaus P, Chan D, Lowe M, Mundlos S, Kornak U. Impaired proteoglycan glycosylation, elevated TGF-β signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica. PLoS Genet 2018; 14:e1007242. [PMID: 29561836 PMCID: PMC5880397 DOI: 10.1371/journal.pgen.1007242] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/02/2018] [Accepted: 02/05/2018] [Indexed: 02/02/2023] Open
Abstract
Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. GORAB, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the GorabNull full knockout, Gorab was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only GorabPrx1 and GorabRunx2 mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of GorabNull mutants and in bone of GorabPrx1 mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from GorabNull mutants. In bone from GorabPrx1 mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured GORAB-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-β in GorabPrx1 bone tissue leading to enhanced downstream signalling, which was reproduced in GORAB-deficient fibroblasts. Our data suggest that the loss of Gorab primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment. Gerodermia osteodysplastica (GO) is segmental progeroid disorder affecting connective tissues and bone, leading to extreme bone fragility. The cause are loss-of-function mutations in the Golgi protein GORAB, whose function has been only partially unravelled. Using several mouse models and patient-derived primary cells we elucidate that loss of Gorab elicits a defect in proteoglycan glycanation, which is associated with collagen disorganization in dermis and bone. We also found evidence for TGF-β upregulation and enhanced downstream signalling. If these changes occur in mesenchymal stem cells or early osteoblasts they impair osteoblast differentiation resulting in cortical thinning and spontaneous fractures. We thus match GO mechanistically with also phenotypically overlapping progeroid connective tissue disorders with glycanation defects.
Collapse
Affiliation(s)
- Wing Lee Chan
- Institut für Medizinische Genetik und Humangenetik, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- FG Development & Disease, Max-Planck-Institut fuer Molekulare Genetik, Berlin, Germany
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam Road, Hong Kong
| | - Magdalena Steiner
- Institut für Medizinische Genetik und Humangenetik, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin School for Regenerative Therapies (BSRT), Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tomasz Witkos
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Johannes Egerer
- Institut für Medizinische Genetik und Humangenetik, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuji Mizumoto
- Lab. of Proteoglycan Signaling and Therapeutics, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Jan M. Pestka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Haikuo Zhang
- Institut für Medizinische Genetik und Humangenetik, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingrid Hausser
- Institute of Pathology, University Clinic Heidelberg, Heidelberg, Germany
| | - Layal Abo Khayal
- Institut für Medizinische Genetik und Humangenetik, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claus-Eric Ott
- Institut für Medizinische Genetik und Humangenetik, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mateusz Kolanczyk
- FG Development & Disease, Max-Planck-Institut fuer Molekulare Genetik, Berlin, Germany
| | - Bettina Willie
- Julius Wolff Institute, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Kazuyuki Sugahara
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität, Berlin, Germany
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam Road, Hong Kong
- The University of Hong Kong—Shenzhen Institute of Research and Innovation (HKU- SIRI), Hi-Tech Industrial Park, Nanshan, Shenzhen, China
| | - Martin Lowe
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stefan Mundlos
- Institut für Medizinische Genetik und Humangenetik, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- FG Development & Disease, Max-Planck-Institut fuer Molekulare Genetik, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- * E-mail: (UK); (SM)
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- FG Development & Disease, Max-Planck-Institut fuer Molekulare Genetik, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- * E-mail: (UK); (SM)
| |
Collapse
|
16
|
Subramaniam M, Pitel KS, Bruinsma ES, Monroe DG, Hawse JR. TIEG and estrogen modulate SOST expression in the murine skeleton. J Cell Physiol 2017; 233:3540-3551. [PMID: 29044507 DOI: 10.1002/jcp.26211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 01/02/2023]
Abstract
TIEG knockout (KO) mice exhibit a female-specific osteopenic phenotype and altered expression of TIEG in humans is associated with osteoporosis. Gene expression profiling studies identified sclerostin as one of the most highly up-regulated transcripts in the long bones of TIEG KO mice relative to WT littermates suggesting that TIEG may regulate SOST expression. TIEG was shown to substantially suppress SOST promoter activity and the regulatory elements through which TIEG functions were identified using promoter deletion and chromatin immunoprecipitation assays. Knockdown of TIEG in IDG-SW3 osteocyte cells using shRNA and CRISPR-Cas9 technology resulted in increased SOST expression and delayed mineralization, mimicking the results obtained from TIEG KO mouse bones. Given that TIEG is an estrogen regulated gene, and as changes in the hormonal milieu affect SOST expression, we performed ovariectomy (OVX) and estrogen replacement therapy (ERT) studies in WT and TIEG KO mice followed by miRNA and mRNA sequencing of cortical and trabecular compartments of femurs. SOST expression levels were considerably higher in cortical bone compared to trabecular bone. In cortical bone, SOST expression was increased following OVX only in WT mice and was suppressed following ERT in both genotypes. In contrast, SOST expression in trabecular bone was decreased following OVX and significantly increased following ERT. Interestingly, a number of miRNAs that are predicted to target sclerostin exhibited inverse expression levels in response to OVX and ERT. These data implicate important roles for TIEG and estrogen-regulated miRNAs in modulating SOST expression in bone.
Collapse
Affiliation(s)
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - David G Monroe
- Robert and Arlene Kogod Center on Aging and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Subramaniam M, Cicek M, Pitel KS, Bruinsma ES, Nelson Holte MH, Withers SG, Rajamannan NM, Secreto FJ, Venuprasad K, Hawse JR. TIEG1 modulates β-catenin sub-cellular localization and enhances Wnt signaling in bone. Nucleic Acids Res 2017; 45:5170-5182. [PMID: 28201653 PMCID: PMC5435970 DOI: 10.1093/nar/gkx118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/08/2017] [Indexed: 11/15/2022] Open
Abstract
We have previously demonstrated that TGFβ Inducible Early Gene-1 (TIEG1), also known as KLF10, plays important roles in mediating skeletal development and homeostasis in mice. TIEG1 has also been identified in clinical studies as one of a handful of genes whose altered expression levels or allelic variations are associated with decreased bone mass and osteoporosis in humans. Here, we provide evidence for the first time that TIEG1 is involved in regulating the canonical Wnt signaling pathway in bone through multiple mechanisms of action. Decreased Wnt signaling in the absence of TIEG1 expression is shown to be in part due to impaired β-catenin nuclear localization resulting from alterations in the activity of AKT and GSK-3β. We also provide evidence that TIEG1 interacts with, and serves as a transcriptional co-activator for, Lef1 and β-catenin. Changes in Wnt signaling in the setting of altered TIEG1 expression and/or activity may in part explain the observed osteopenic phenotype of TIEG1 KO mice as well as the known links between TIEG1 expression levels/allelic variations and patients with osteoporosis.
Collapse
Affiliation(s)
| | - Muzaffer Cicek
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Molly H Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah G Withers
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nalini M Rajamannan
- Division of Cardiology, Most Sacred Heart of Jesus Cardiology and Valvular Institute, Sheboygan, WI 53081, USA
| | - Frank J Secreto
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Kang H, Aryal A C S, Marini JC. Osteogenesis imperfecta: new genes reveal novel mechanisms in bone dysplasia. Transl Res 2017; 181:27-48. [PMID: 27914223 DOI: 10.1016/j.trsl.2016.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by fragile bones and short stature and known for its clinical and genetic heterogeneity which is now understood as a collagen-related disorder. During the last decade, research has made remarkable progress in identifying new OI-causing genes and beginning to understand the intertwined molecular and biochemical mechanisms of their gene products. Most cases of OI have dominant inheritance. Each new gene for recessive OI, and a recently identified gene for X-linked OI, has shed new light on its (often previously unsuspected) function in bone biology. Here, we summarize the literature that has contributed to our current understanding of the pathogenesis of OI.
Collapse
Affiliation(s)
- Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md
| | - Smriti Aryal A C
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md.
| |
Collapse
|
19
|
TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med 2017; 39:569-578. [PMID: 28204828 PMCID: PMC5360358 DOI: 10.3892/ijmm.2017.2889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 01/19/2017] [Indexed: 12/15/2022] Open
Abstract
The transforming growth factor (TGF)-β-inducible early gene-1 (TIEG1) plays a crucial role in modulating cell apoptosis and proliferation in a number of diseases, including pancreatic cancer, leukaemia and osteoporosis. However, the functional role of TIEG1 in the heart has not been fully defined. In this study, we first investigated the role of TIEG1 in ischaemic heart disease. For in vitro experiments, cardiomyocytes were isolated from both TIEG1 knockout (KO) and wile-type (WT) mice, and the apoptotic ratios were evaluated after a 48-h ischaemic insult. A cell proliferation assay was performed after 7 days of incubation under normoxic conditions. In addition, the angiogenic capacity of endothelial cells was determined by tube formation assay. For in vivo experiments, a model of myocardial infarction (MI) was established using both TIEG1 KO and WT mice. Echocardiography was performed at 3 and 28 days post-MI, whereas the haemodynamics test was performed 28 days post-MI. Histological analyses of apoptosis, proliferation, angiogenesis and infarct zone assessments were performed using terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling (TUNEL) staining, BrdU immunostaining, α-smooth muscle actin (α-SMA)/CD31 immunostaining and Masson's trichrome staining, respectively. Changes in the expression of related proteins caused by TIEG1 deficiency were confirmed using both reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Our results demonstrated that the absence of TIEG1 prevented cardiomyocytes from undergoing apoptosis and promoted higher proliferation; it stimulated the proliferation of endothelial cells in vitro and in vivo. Improved cardiac function and less scar formation were observed in TIEG1 KO mice, and we also observed the altered expression of phosphatase and tensin homolog (Pten), Akt and Bcl-2/Bax, as well as vascular endothelial growth factor (VEGF). On the whole, our findings indicate that the absence of TIEG1 plays a cardioprotective role in ischaemic heart disease by promoting changes in Pten/Akt signalling.
Collapse
|