1
|
Liao J, Wu X, Zeng Q, Huo Q, Nie G. STM2457 decreases m6A methylation to reduce cisplatin-induced ototoxicity via MAPK signaling. Biochem Pharmacol 2025; 235:116820. [PMID: 39983847 DOI: 10.1016/j.bcp.2025.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Cisplatin, a chemotherapeutic drug used to treat cancerous solid tumors, can result in ototoxicity due to serious toxic side effects resulting in irreversible hearing loss. Here, we investigated the effects of N6-methyladenosine (m6A) methylation on cisplatin-induced ototoxicity by using in vitro cochlear explants as a model system to explore the effect of the Methyltransferase-like 3 (METTL3) inhibitor STM2457 in ameliorating cisplatin-induced ototoxicity. STM2457 pretreatment was shown to significantly reduce reactive oxygen species (ROS) accumulation and the loss of hair cells (HCs) in different regions of the organ of Corti. STM2457 pretreatment led to significant reductions in TUNEL labeling, signifying a reduction in apoptosis. Additionally, expression of the apoptosis-related protein BAX was significantly decreased, while the ratio of BCL-XL was markedly increased. Transcriptomic measurements of the STM2457 + cisplatin group revealed significant enrichment of the Mitogen-Activated Protein Kinases (MAPK) signaling pathway, which when stimulated, could block the protective effect of STM2457 in cisplatin-treated HCs. Thus, we describe a mechanism by which STM2457 decreases cisplatin-related HC death in cochlear explants in vitro through activation of the MAPK pathway. This study reports for the first time that reducing RNA m6A methylation might protects against cisplatin-induced ototoxicity. Our data indicate that STM2457 can serve as an effect anti-apoptotic drug to decrease ototoxicity caused by cisplatin-induced ROS accumulation, effectively preventing cisplatin-induced hair cells loss.
Collapse
Affiliation(s)
- Jiahao Liao
- Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Medical Innovation Technology Transformation Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xingxing Wu
- Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Medical Innovation Technology Transformation Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Qingdong Zeng
- Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Medical Innovation Technology Transformation Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Qin Huo
- Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Medical Innovation Technology Transformation Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Guohui Nie
- Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Medical Innovation Technology Transformation Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| |
Collapse
|
2
|
Elati K, Tajeri S, Obara I, Mhadhbi M, Zweygarth E, Darghouth MA, Nijhof AM. Dual RNA-seq to catalogue host and parasite gene expression changes associated with virulence of T. annulata-transformed bovine leukocytes: towards identification of attenuation biomarkers. Sci Rep 2023; 13:18202. [PMID: 37875584 PMCID: PMC10598219 DOI: 10.1038/s41598-023-45458-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
The apicomplexan parasite Theileria annulata is transmitted by Hyalomma ticks and causes an acute lymphoproliferative disease that is invariably lethal in exotic cattle breeds. The unique ability of the schizont stage of T. annulata to transform infected leukocytes to a cancer-like phenotype and the simplicity of culturing and passaging T. annulata-transformed cells in vitro have been explored for live vaccine development by attenuating the transformed cells using lengthy serial propagation in vitro. The empirical in vivo evaluation of attenuation required for each batch of long-term cultured cells is a major constraint since it is resource intensive and raises ethical issues regarding animal welfare. As yet, the molecular mechanisms underlying attenuation are not well understood. Characteristic changes in gene expression brought about by attenuation are likely to aid in the identification of novel biomarkers for attenuation. We set out to undertake a comparative transcriptome analysis of attenuated (passage 296) and virulent (passage 26) bovine leukocytes infected with a Tunisian strain of T. annulata termed Beja. RNA-seq was used to analyse gene expression profiles and the relative expression levels of selected genes were verified by real-time quantitative PCR (RT-qPCR) analysis. Among the 3538 T. annulata genes analysed, 214 were significantly differentially expressed, of which 149 genes were up-regulated and 65 down-regulated. Functional annotation of differentially expressed T. annulata genes revealed four broad categories of metabolic pathways: carbon metabolism, oxidative phosphorylation, protein processing in the endoplasmic reticulum and biosynthesis of secondary metabolites. It is interesting to note that of the top 40 genes that showed altered expression, 13 were predicted to contain a signal peptide and/or at least one transmembrane domain, suggesting possible involvement in host-parasite interaction. Of the 16,514 bovine transcripts, 284 and 277 showed up-regulated and down-regulated expression, respectively. These were assigned to functional categories relevant to cell surface, tissue morphogenesis and regulation of cell adhesion, regulation of leucocyte, lymphocyte and cell activation. The genetic alterations acquired during attenuation that we have catalogued herein, as well as the accompanying in silico functional characterization, do not only improve understanding of the attenuation process, but can also be exploited by studies aimed at identifying attenuation biomarkers across different cell lines focusing on some host and parasite genes that have been highlighted in this study, such as bovine genes (CD69, ZNF618, LPAR3, and APOL3) and parasite genes such as TA03875.
Collapse
Affiliation(s)
- Khawla Elati
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia.
| | - Shahin Tajeri
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Isaiah Obara
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Moez Mhadhbi
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia
| | - Erich Zweygarth
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mohamed Aziz Darghouth
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia
| | - Ard Menzo Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
| |
Collapse
|
3
|
Rodriguez Torres S, Gresseau L, Benhamida M, Fernandez-Marrero Y, Annabi B. Epigallocatechin-3-Gallate Prevents the Acquisition of a Cancer Stem Cell Phenotype in Ovarian Cancer Tumorspheres through the Inhibition of Src/JAK/STAT3 Signaling. Biomedicines 2023; 11:1000. [PMID: 37189618 PMCID: PMC10135615 DOI: 10.3390/biomedicines11041000] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Three-dimensional tumorsphere cultures recapitulate the expression of several cancer stem cell (CSC) biomarkers and represent an effective in vitro platform to screen the anti-CSC properties of drugs. Whereas ovarian carcinoma is among the leading causes of death for women, ovarian CSC (OvCSC), a highly malignant subpopulation of ovarian cancer cells, is thought to be responsible for therapy resistance, metastasis, and tumor relapse. Epigallocatechin-3-gallate (EGCG), a diet-derived active polyphenol found in green tea leaves, can suppress ovarian cancer cell proliferation and induce apoptosis. However, its capacity to prevent the acquisition of cancer stemness traits in ovarian malignancies remains unclear. Here, we exploited the in vitro three-dimensional tumorsphere culture model to explore the capacity of EGCG to alter CSC biomarkers expression, signal transducing events and cell chemotaxis. Total RNA and protein lysates were isolated from human ES-2 ovarian cancer cell tumorspheres for gene assessment by RT-qPCR and protein expression by immunoblot. Real-time cell chemotaxis was assessed with xCELLigence. Compared with their parental adherent cells, tumorspheres expressed increased levels of the CSC markers NANOG, SOX2, PROM1, and Fibronectin. EGCG treatment reduced dose-dependently tumorspheres size and inhibited the transcriptional regulation of those genes. Src and JAK/STAT3 signaling pathways appeared to be relevant for CSC phenotype and chemotactic response. In conclusion, these data highlight and support the chemopreventive benefits of the diet-derived EGCG and its capacity to target intracellular transducing events that regulate the acquisition of an invasive CSC phenotype.
Collapse
Affiliation(s)
- Sahily Rodriguez Torres
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada
| | - Loraine Gresseau
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada
| | - Meriem Benhamida
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada
| | | | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
4
|
Identifying the Role of Oxidative Stress-Related Genes as Prognostic Biomarkers and Predicting the Response of Immunotherapy and Chemotherapy in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6575534. [PMID: 36561981 PMCID: PMC9764017 DOI: 10.1155/2022/6575534] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
Background Ovarian cancer (OC) is one of the most frequently seen and fatal gynecological malignancies, and oxidative stress (OS) plays a critical role in the development and chemoresistance of OC. Materials and Methods OS-related genes (OSRGs) were obtained from the Molecular Signatures Database. Besides, gene expression profiles and clinical information from The Cancer Genome Atlas (TCGA) were selected to identify the prognostic OSRGs. Moreover, univariate Cox regression, LASSO, and multivariate Cox regression analyses were conducted sequentially to establish a prognostic signature, which was later validated in three independent Gene Expression Omnibus (GEO) datasets. Next, gene set enrichment analysis (GSEA) and tumor mutation burden (TMB) analysis were performed. Afterwards, immune checkpoint genes (ICGs) and the tumor immune dysfunction and exclusion (TIDE) algorithm, together with IMvigor210 and GSE78220 cohorts, were applied to comprehensively explore the role of OSRG signature in immunotherapy. Further, the CellMiner and Genomics of Drug Sensitivity in Cancer (GDSC) databases were also applied in investigating the significance of OSRG signature in chemotherapy. Results Altogether, 34 prognostic OSRGs were identified, among which 14 were chosen to establish the most valuable prognostic signature. The Kaplan-Meier (KM) analysis suggested that patients with lower OS-related risk score had better prognosis. The area under the curve (AUC) values were 0.71, 0.76, and 0.85 in 3, 5, and 7 years separately, and the stability of this prognostic signature was confirmed in three GEO datasets. As revealed by GSEA and TMB analysis results, OC patients in low-risk group might have better immunotherapeutic response, which was consistent with ICG expression and TIDE analyses. Moreover, both IMvigor210 and GSE78220 cohorts demonstrated that patients with lower OS-related risk score were more likely to benefit from anti-PD-1/L1 immunotherapy. In addition, the association between prognostic signature and drug sensitivity was explored. Conclusion According to our results in this work, OSRG signature can act as a powerful prognostic predictor for OC, which contributes to generating more individualized therapeutic strategies for OC patients.
Collapse
|
5
|
Gao S, Zhao T, Meng F, Luo Y, Li Y, Wang Y. Circular RNAs in endometrial carcinoma (Review). Oncol Rep 2022; 48:212. [PMID: 36263622 PMCID: PMC9608256 DOI: 10.3892/or.2022.8427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
As one of the leading causes of death in women in Western developed countries, endometrial carcinoma (EC) is a common gynecological malignant tumor that seriously threatens women's health. In recent years, a trend has emerged of EC being manifested in younger women, and its overall incidence is gradually rising. Circular RNAs (circRNAs) are novel endogenous transcripts that have limited ability to encode proteins due to their covalent closed‑loop structure, which differs from that of other types of RNA. A growing body of evidence has demonstrated that circRNAs fulfill an important role in lung cancer, gastric cancer, breast cancer, EC and other malignant tumor types, and they can affect the occurrence and development of these malignancies through a variety of pathways, further demonstrating the potential of circRNAs as molecular biomarkers for the diagnosis, treatment and prognosis of malignant tumors. The purpose of the present review is to summarize the current understanding of the biogenesis and effects of circRNAs, and to discuss the expression, function and underlying mechanism of circRNAs in EC in order to identify potential novel biomarkers.
Collapse
Affiliation(s)
- Shan Gao
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Tianjun Zhao
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Fangchi Meng
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yan Li
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
6
|
Xiong H, Liu X, Xie Z, Zhu L, Lu H, Wang C, Yao J. Metabolic Symbiosis-Blocking Nano-Combination for Tumor Vascular Normalization Treatment. Adv Healthc Mater 2022; 11:e2102724. [PMID: 35708141 DOI: 10.1002/adhm.202102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/02/2022] [Indexed: 01/27/2023]
Abstract
The clinical anti-vascular endothelial growth factor (anti-VEGF) drugs and metronomic chemotherapy (MET) induced tumor vascular normalization treatment (TVNT) are easily antagonized by tumor microenvironment metabolic cross-talk between tumor cells and endothelial cells (ECs). To overcome this dilemma, nanodrug with the ability of ECs targeted glycolysis inhibition and nanodrug with the ability of tumor cell glycolysis inhibition, anti-VEGF, and MET are combined to prepare Nano-combination the pathways related to angiogenesis, tumor cell proliferation, and immunosuppression and breaking the negative sugar-lipid-protein metabolism balance in tumor microenvironment. Thus, stronger and more lasting normalized tumor vascular network and remarkable antitumor efficacy are obtained after treatment, constructing a positive feedback loop between TVNT and anti-tumor therapy. Above all, this study provides a new insight for solving the bottleneck of clinical TVNT.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiaoyan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Zuohan Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Linyuan Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Haipeng Lu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Changzhou, 213164, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
7
|
Anton DB, Ducati RG, Timmers LFSM, Laufer S, Goettert MI. A Special View of What Was Almost Forgotten: p38δ MAPK. Cancers (Basel) 2021; 13:2077. [PMID: 33923030 PMCID: PMC8123357 DOI: 10.3390/cancers13092077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
The p38δ mitogen-activated protein kinase is an important signal transduction enzyme. p38δ has recently emerged as a drug target due to its tissue-specific expression patterns and its critical roles in regulation of cellular processes related to cancer and inflammatory diseases, such as cell proliferation, cell migration, apoptosis, and inflammatory responses. However, potent and specific p38δ inhibitors have not been defined so far. Moreover, in cancer disease, p38δ appears to act as a tumor suppressor or tumor promoter according to cancer and cell type studied. In this review, we outline the current understanding of p38δ roles in each cancer type, to define whether it is possible to delineate new cancer therapies based on small-molecule p38δ inhibitors. We also highlight recent advances made in the design of molecules with potential to inhibit p38 isoforms and discuss structural approaches to guide the search for p38δ inhibitors.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
| | - Rodrigo Gay Ducati
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
| | - Luís Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Márcia Inês Goettert
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil
| |
Collapse
|
8
|
Li Q, Wu R, Wu F, Chen Q. KMT2D promotes proliferation of gastric cancer cells: evidence from ctDNA sequencing. J Clin Lab Anal 2021; 35:e23721. [PMID: 33793001 PMCID: PMC8059714 DOI: 10.1002/jcla.23721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND ctDNA sequencing could be used for early cancer screening, prognosis prediction, and medication guidance. However, data of its application in gastric cancer are still lacking. In this study, using ctDNA sequencing, we aimed to screen the mutant genes closely associated with gastric cancer and to explore the impact of these genes on gastric cancer development. METHODS ctDNA for high-throughput sequencing was obtained from gastric cancer patients, and the high-frequency mutant gene KMT2D was identified. Immunohistochemical examination was conducted to assess the expression of KMT2D in gastric cancer tissues. KMT2D knockdown was performed to establish the stably transfected gastric cancer cells. Then, CCK8, plate clone formation assay, and Transwell assay were conducted, and a subcutaneous tumor-bearing model was induced in nude mice to investigate the changes in cell proliferation and invasion capability. Transcriptome sequencing was also performed to investigate the differences in cellular gene expression. RESULTS Detection of ctDNA found 113 gastric cancer-related mutations, 11 of which are the top 20 high-frequency mutations of gastric cancer recorded by COSMIC (Catalogue of Somatic Mutations in Cancer, COSMIC). They are TP53, ARID1A, CDH1, PIK3CA, KMT2C, KMT2D, APC, SPEN, CTNNB1, SETBP1, and KMT2A. The gene closely related to the clinical characteristics of the patient is KMT2D. The high-frequency mutant gene KMT2D was identified in gastric cancer tissues. The positive rate of KMT2D expression in cancer tissues was 74.3%, which was higher than that in para-carcinoma tissues (56.8%). The knockdown of KMT2D inhibited the proliferation, invasion, and tumor formation capacity of the gastric cancer cells, causing differences in the gene expression profiles, and the expression of different functional gene clusters was up- or downregulated. CONCLUSION The findings of this study revealed that KMT2D could be an oncogene capable of promoting gastric cancer proliferation.
Collapse
Affiliation(s)
- Qiaolian Li
- Fujian Medical University Union HospitalFuzhouChina
- Fujian Provincial Geriatric HospitalFuzhouChina
| | - Riping Wu
- Fujian Medical University Union HospitalFuzhouChina
| | - Fan Wu
- Fujian Medical University Union HospitalFuzhouChina
- Fujian Provincial Cancer HospitalFuzhouChina
| | - Qiang Chen
- Fujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
9
|
Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. eLife 2021; 10:e59629. [PMID: 33427197 PMCID: PMC7877913 DOI: 10.7554/elife.59629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.
Collapse
Affiliation(s)
- László Bányai
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Maria Trexler
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of OncologyBudapestHungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
10
|
Etzerodt A, Moulin M, Doktor TK, Delfini M, Mossadegh-Keller N, Bajenoff M, Sieweke MH, Moestrup SK, Auphan-Anezin N, Lawrence T. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J Exp Med 2020; 217:133611. [PMID: 31951251 PMCID: PMC7144521 DOI: 10.1084/jem.20191869] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/23/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Experimental and clinical evidence suggests that tumor-associated macrophages (TAMs) play important roles in cancer progression. Here, we have characterized the ontogeny and function of TAM subsets in a mouse model of metastatic ovarian cancer that is representative for visceral peritoneal metastasis. We show that the omentum is a critical premetastatic niche for development of invasive disease in this model and define a unique subset of CD163+ Tim4+ resident omental macrophages responsible for metastatic spread of ovarian cancer cells. Transcriptomic analysis showed that resident CD163+ Tim4+ omental macrophages were phenotypically distinct and maintained their resident identity during tumor growth. Selective depletion of CD163+ Tim4+ macrophages in omentum using genetic and pharmacological tools prevented tumor progression and metastatic spread of disease. These studies describe a specific role for tissue-resident macrophages in the invasive progression of metastatic ovarian cancer. The molecular pathways of cross-talk between tissue-resident macrophages and disseminated cancer cells may represent new targets to prevent metastasis and disease recurrence.
Collapse
Affiliation(s)
- Anders Etzerodt
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Morgane Moulin
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | | - Marc Bajenoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Michael H Sieweke
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Centre for Regenerative Therapies, TU Dresden, Dresden, Germany
| | - Søren Kragh Moestrup
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Toby Lawrence
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
11
|
Wang W, Chen Y, Xu A, Cai M, Cao J, Zhu H, Yang B, Shao X, Ying M, He Q. Protein phase separation: A novel therapy for cancer? Br J Pharmacol 2020; 177:5008-5030. [PMID: 32851637 DOI: 10.1111/bph.15242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, phase separation has been increasingly reported to play a pivotal role in a wide range of biological processes. Due to the close relationships between cancer and disorders in intracellular physiological function, the identification of new mechanisms involved in intracellular regulation has been regarded as a new direction for cancer therapy. Introducing the concept of phase separation into complex descriptions of disease mechanisms may provide many different insights. Here, we review the recent findings on the phase separation of cancer-related proteins, describing the possible relationships between phase separation and key proteins associated with cancer and indicate possible regulatory modalities, especially drug candidates for phase separation, which may provide more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqian Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aixiao Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minyi Cai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Liu Y, Chang Y, Cai Y. circTNFRSF21, a newly identified circular RNA promotes endometrial carcinoma pathogenesis through regulating miR-1227-MAPK13/ATF2 axis. Aging (Albany NY) 2020; 12:6774-6792. [PMID: 32299063 PMCID: PMC7202486 DOI: 10.18632/aging.103037] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
Background: Circular RNA is a type of non-coding RNA with great potential in regulating gene expression and associated with disease progression. However, the role of circular RNA in endometrial carcinoma (EC) remains largely unknown. Results: In this study, we found that circTNFRSF21 was highly expressed in EC cells and tumor tissues. In vitro and in vivo results showed that circTNFRSF21 was linked to increased EC cell growth and EC xenografts formation in nude mice. Mechanically, we showed that circTNFRSF21 acts as a sponge of miR-1227 in EC cells to rescue MAPK13/ATF2 signaling pathway activity. Conclusions: Our studies suggested that in the EC, circTNFRSF21 promotes EC formation through downregulating miR-1227 expression and activating MAPK13/ATF2 signaling pathway. These findings provide strong evidence that circTNFRSF21-miR-1227-MAPK13/ATF2 axis is a promising target for EC treatment. Methods: qRT-PCR was used to detect circTNFRSF21expression in EC patients and EC cell lines. Cell growth, cell colony formation, cell apoptosis, cell cycle progression, and in vivo tumor formation assays were used to evaluate the roles of circTNFRSF21 in EC. Western blot, luciferase assay, RNA pull-down, siRNA knockdown, and CRISPR gene knock out assays were applied to study the mechanisms through which circTNFRSF21 regulates EC formation.
Collapse
Affiliation(s)
- Yun Liu
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yue Chang
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yixuan Cai
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Dong C, Yin F, Zhu D, Cai X, Chen C, Liu X. NCALD affects drug resistance and prognosis by acting as a ceRNA of CX3CL1 in ovarian cancer. J Cell Biochem 2020; 121:4470-4483. [PMID: 32030795 DOI: 10.1002/jcb.29670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/10/2020] [Indexed: 01/01/2023]
Abstract
Drug resistance, an impenetrable barrier in the treatment of ovarian cancer (OC), is often associated with poor outcomes. Hence, it is urgent to discover new factors controlling drug resistance and survival. The association between neurocalcin delta (NCALD) and cancer drug resistance is poorly understood. Here, we reveal that NCALD messenger RNA expression, probably regulated by DNA methylation and microRNAs, was significantly downregulated in at least three independent microarrays covering 633 ovarian carcinomas and 16 normal controls, which includes the Cancer Genome Atlas (TCGA) ovarian cohort. In the sub-groups of the TCGA cohort, NCALD was suppressed in 90 platinum-resistant tissues vs in 197 sensitive tissues. It is consistent with the quantitative reverse transcription polymerase chain reaction results revealing gene downregulation in carboplatin-resistant SKOV3 and HeyA8 OC cells as compared with that in controls. Low expression of NCALD predicted poor overall survival (OS) in sub-groups of 1656 patients, progression-free survival (PFS) in 1435 patients, and post-progression survival (PPS) in 782 patients according to Kaplan-Meier plotter covering 1815 OC patients. Comprehensive bioinformatic analyses strongly implicated NCALD in the regulation of drug resistance, probably via competing for endogenous RNA (ceRNA) interactions with CX3CL1 and tumor immune-microenvironment. NCALD acted as a ceRNA for CX3CL1 in 21 different cancers includes OC according to Starbase. These two genes negatively correlated with tumor purity and positively correlated with infiltration levels of neutrophils and dendritic cells in OC. The combined low expression of NCALD and CX3CL1 showed better prognosis potential for OS, PFS, and PPS in the 1815 OC patients than any of the individually tested genes. In summary, NCALD acts as a ceRNA for CX3CL1, and its downregulation may affect drug resistance and prognosis in OC. Thus, NCALD could be a new therapeutic target for anticancer therapy and a new biomarker for survival prediction in OC.
Collapse
Affiliation(s)
- Caihua Dong
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Dan Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangxue Cai
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Cuilan Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Niveditha D, Sharma H, Majumder S, Mukherjee S, Chowdhury R, Chowdhury S. Transcriptomic analysis associated with reversal of cisplatin sensitivity in drug resistant osteosarcoma cells after a drug holiday. BMC Cancer 2019; 19:1045. [PMID: 31690262 PMCID: PMC6833242 DOI: 10.1186/s12885-019-6300-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Resistance to chemotherapy is one of the major hurdles in current cancer therapy. With the increasing occurrence of drug resistance, a paradigm shift in treatment strategy is required. Recently “medication vacation” has emerged as a unique, yet uncomplicated strategy in which withdrawal of drug pressure for certain duration allowed tumor cells to regain sensitivity to the drug. However, little is known about the molecular alterations associated with such an outcome. Methods In this study, human osteosarcoma (OS) cells resistant to the extensively used drug cisplatin, were withdrawn from drug pressure, and thereafter cytotoxic response of the cells to the drug was evaluated. We further performed next-generation RNA sequencing and compared transcriptome between parental (OS), resistant (OS-R) and the drug withdrawn (OS-DW) cells. Differentially expressed transcripts were identified, and biological association network (BAN), gene ontology (GO) and pathway enrichment analysis of the differentially regulated transcripts were performed to identify key events associated with withdrawal of drug pressure. Results Following drug withdrawal, the sensitivity of the cells to the drug was found to be regained. Analysis of the expression profile showed that key genes like, IRAK3, IL6ST, RELA, AKT1, FKBP1A and ADIPOQ went significantly down in OS-DW cells when compared to OS-R. Also, genes involved in Wnt signaling, PI3K-Akt, Notch signaling, and ABC transporters were drastically down-regulated in OS-DW cells compared to OS-R. Although, a very small subset of genes maintained similar expression pattern between OS, OS-R and OS-DW, nonetheless majority of the transcriptomic pattern of OS-DW was distinctively different and unique in comparison to either the drug sensitive OS or drug resistant OS-R cells. Conclusion Our data suggests that though drug withdrawal causes reversal of sensitivity, the transcriptomic pattern does not necessarily show significant match with resistant or parental control cells. We strongly believe that exploration of the molecular basis of drug holiday might facilitate additional potential alternative treatment options for aggressive and resistant cancers.
Collapse
Affiliation(s)
- Divya Niveditha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Harshita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India.
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
15
|
Wu VT, Kiriazov B, Koch KE, Gu VW, Beck AC, Borcherding N, Li T, Addo P, Wehrspan ZJ, Zhang W, Braun TA, Brown BJ, Band V, Band H, Kulak MV, Weigel RJ. A TFAP2C Gene Signature Is Predictive of Outcome in HER2-Positive Breast Cancer. Mol Cancer Res 2019; 18:46-56. [PMID: 31619506 DOI: 10.1158/1541-7786.mcr-19-0359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022]
Abstract
The AP-2γ transcription factor, encoded by the TFAP2C gene, regulates the expression of estrogen receptor-alpha (ERα) and other genes associated with hormone response in luminal breast cancer. Little is known about the role of AP-2γ in other breast cancer subtypes. A subset of HER2+ breast cancers with amplification of the TFAP2C gene locus becomes addicted to AP-2γ. Herein, we sought to define AP-2γ gene targets in HER2+ breast cancer and identify genes accounting for physiologic effects of growth and invasiveness regulated by AP-2γ. Comparing HER2+ cell lines that demonstrated differential response to growth and invasiveness with knockdown of TFAP2C, we identified a set of 68 differentially expressed target genes. CDH5 and CDKN1A were among the genes differentially regulated by AP-2γ and that contributed to growth and invasiveness. Pathway analysis implicated the MAPK13/p38δ and retinoic acid regulatory nodes, which were confirmed to display divergent responses in different HER2+ cancer lines. To confirm the clinical relevance of the genes identified, the AP-2γ gene signature was found to be highly predictive of outcome in patients with HER2+ breast cancer. We conclude that AP-2γ regulates a set of genes in HER2+ breast cancer that drive cancer growth and invasiveness. The AP-2γ gene signature predicts outcome of patients with HER2+ breast cancer and pathway analysis predicts that subsets of patients will respond to drugs that target the MAPK or retinoic acid pathways. IMPLICATIONS: A set of genes regulated by AP-2γ in HER2+ breast cancer that drive proliferation and invasion were identified and provided a gene signature that is predictive of outcome in HER2+ breast cancer.
Collapse
Affiliation(s)
- Vincent T Wu
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Boris Kiriazov
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Kelsey E Koch
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Vivian W Gu
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Anna C Beck
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | | | - Tiandao Li
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Peter Addo
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | | | - Weizhou Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Terry A Braun
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Bartley J Brown
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hamid Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, Iowa. .,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa.,Department of Biochemistry, University of Iowa, Iowa City, Iowa
| |
Collapse
|
16
|
Wang Y, Zhong Y, Hou T, Liao J, Zhang C, Sun C, Wang G. PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:159-167. [PMID: 31002970 DOI: 10.1016/j.ecoenv.2019.03.086] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 05/20/2023]
Abstract
Fine particulate matter (PM2.5) has been closely linked to increased morbidity and mortality of lung cancer worldwide. However, the role of PM2.5 in the etiology of lung cancer and the mechanism involved in PM2.5 induced lung cancer are largely unknown. In this study, we performed chronic exposure animal model to investigate the carcinogenetic mechanisms of PM2.5 by targeting the induction of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) properties through Notch1 signal pathway. The antagonism of Notch1 signal pathway was carried out in vitro cell lines of A549 and BEAS-2B to block EMT and CSC. We found that chronic PM2.5 exposure mice lung tissue pathology showed atypical hyperplasia of bronchiolar epithelium. Then, we discovered that chronic PM2.5 exposure induced notable EMT event and obvious CSC properties indicating the developing process of cell malignant behaviors. EMT characterized with decreased protein expression of E-cadherin and increased protein expression of Vimentin. CSC properties induced by chronic PM2.5 exposure characterized with increased cell-surface markers (ABCG2 and ALDH1A1) and self-renewal genes (SOX2 and OCT4). Furthermore, PM2.5 exposure activate Notch signal pathway by increasing expression of Notch1 and Hes1. At last, we blocked Notch signal pathway by inhibitor RO4929097 in vitro to explore the underlying mechanism mediating PM2.5 induced EMT and CSC. We found that blocking Notch1 could prevent PM2.5 induced malignant behaviors including EMT and CSC in A549 and BEAS-2B. These data revealed that the induction of EMT and CSC properties were involved in the lung cancer risk of PM2.5 in vivo, and blocking-up Notch1 may negatively regulate EMT and CSC to suppress the invasion and migration in vitro, thereby putatively serving as a novel therapeutic target for PM2.5 induced lung cancer.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Yijue Zhong
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Tianfang Hou
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Jiping Liao
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Cheng Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Chao Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China.
| |
Collapse
|
17
|
Post AEM, Bussink J, Sweep FCGJ, Span PN. Changes in DNA Damage Repair Gene Expression and Cell Cycle Gene Expression Do Not Explain Radioresistance in Tamoxifen-Resistant Breast Cancer. Oncol Res 2019; 28:33-40. [PMID: 31046897 PMCID: PMC7851527 DOI: 10.3727/096504019x15555794826018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tamoxifen-induced radioresistance, reported in vitro, might pose a problem for patients who receive neoadjuvant tamoxifen treatment and subsequently receive radiotherapy after surgery. Previous studies suggested that DNA damage repair or cell cycle genes are involved, and could therefore be targeted to preclude the occurrence of cross-resistance. We aimed to characterize the observed cross-resistance by investigating gene expression of DNA damage repair genes and cell cycle genes in estrogen receptor-positive MCF-7 breast cancer cells that were cultured to tamoxifen resistance. RNA sequencing was performed, and expression of genes characteristic for several DNA damage repair pathways was investigated, as well as expression of genes involved in different phases of the cell cycle. The association of differentially expressed genes with outcome after radiotherapy was assessed in silico in a large breast cancer cohort. None of the DNA damage repair pathways showed differential gene expression in tamoxifen-resistant cells compared to wild-type cells. Two DNA damage repair genes were more than two times upregulated (NEIL1 and EME2), and three DNA damage repair genes were more than two times downregulated (PCNA, BRIP1, and BARD1). However, these were not associated with outcome after radiotherapy in the TCGA breast cancer cohort. Genes involved in G1, G1/S, G2, and G2/M phases were lower expressed in tamoxifen-resistant cells compared to wild-type cells. Individual genes that were more than two times upregulated (MAPK13) or downregulated (E2F2, CKS2, GINS2, PCNA, MCM5, and EIF5A2) were not associated with response to radiotherapy in the patient cohort investigated. We assessed the expression of DNA damage repair genes and cell cycle genes in tamoxifen-resistant breast cancer cells. Though several genes in both pathways were differentially expressed, these could not explain the cross-resistance for irradiation in these cells, since no association to response to radiotherapy in the TCGA breast cancer cohort was found.
Collapse
Affiliation(s)
- Annemarie E M Post
- Radboud University Medical Center, Department of Radiation Oncology, Radiotherapy and OncoImmunology LaboratoryNijmegenThe Netherlands
| | - Johan Bussink
- Radboud University Medical Center, Department of Radiation Oncology, Radiotherapy and OncoImmunology LaboratoryNijmegenThe Netherlands
| | - Fred C G J Sweep
- Radboud University Medical Center, Department of Laboratory MedicineNijmegenThe Netherlands
| | - Paul N Span
- Radboud University Medical Center, Department of Radiation Oncology, Radiotherapy and OncoImmunology LaboratoryNijmegenThe Netherlands
| |
Collapse
|
18
|
Kiss A, Koppel AC, Murphy E, Sall M, Barlas M, Kissling G, Efimova T. Cell Type-Specific p38δ Targeting Reveals a Context-, Stage-, and Sex-Dependent Regulation of Skin Carcinogenesis. Int J Mol Sci 2019; 20:ijms20071532. [PMID: 30934690 PMCID: PMC6479675 DOI: 10.3390/ijms20071532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 12/14/2022] Open
Abstract
Activation and/or upregulated expression of p38δ are demonstrated in human skin malignancies including cutaneous squamous cell carcinoma, suggesting a role for p38δ in skin carcinogenesis. We previously reported that mice with germline deletion of the p38δ gene are significantly protected from chemical skin carcinogenesis. Here, we investigated the effects of cell-selective targeted ablation of p38δ in keratinocytes and in immune (myeloid) cells on skin tumor development in a two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical mouse skin carcinogenesis model. Conditional keratinocyte-specific p38δ ablation (p38δ-cKO∆K) did not influence the latency, incidence, or multiplicity of chemically-induced skin tumors, but led to increased tumor volume in females during the TPA promotion stage, and reduced malignant progression in males and females relative to their wild-type counterparts. In contrast, conditional myeloid cell-specific p38δ deletion (p38δ-cKO∆M) inhibited DMBA/TPA-induced skin tumorigenesis in male but not female mice. Thus, tumor onset was delayed, and tumor incidence, multiplicity, and volume were reduced in p38δ-cKO∆M males compared with control wild-type males. Moreover, the percentage of male mice with malignant tumors was decreased in the p38δ-cKO∆M group relative to their wild-type counterparts. Collectively, these results reveal that cell-specific p38δ targeting modifies susceptibility to chemical skin carcinogenesis in a context-, stage-, and sex-specific manner.
Collapse
Affiliation(s)
- Alexi Kiss
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
- The George Washington Cancer Center, 800 22nd Street NW, Science and Engineering Hall 8160, Washington, DC 20052, USA.
| | - Aaron C Koppel
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
| | - Emily Murphy
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave NW, Suite 2B-430, Washington, DC 20037, USA.
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington, DC 20007, USA.
| | - Maxwell Sall
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
| | - Meral Barlas
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
| | - Grace Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Tatiana Efimova
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
- The George Washington Cancer Center, 800 22nd Street NW, Science and Engineering Hall 8160, Washington, DC 20052, USA.
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave NW, Suite 2B-430, Washington, DC 20037, USA.
| |
Collapse
|
19
|
Tabuchi Y, Hirohashi Y, Hashimoto S, Mariya T, Asano T, Ikeo K, Kuroda T, Mizuuchi M, Murai A, Uno S, Kawai N, Kubo T, Nakatsugawa M, Kanaseki T, Tsukahara T, Saito T, Torigoe T. Clonal analysis revealed functional heterogeneity in cancer stem-like cell phenotypes in uterine endometrioid adenocarcinoma. Exp Mol Pathol 2019; 106:78-88. [DOI: 10.1016/j.yexmp.2018.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022]
|
20
|
Zhang W, Liu S, Zhan H, Yan Z, Zhang G. Transcriptome sequencing identifies key pathways and genes involved in gastric adenocarcinoma. Mol Med Rep 2018; 18:3673-3682. [PMID: 30106143 PMCID: PMC6131596 DOI: 10.3892/mmr.2018.9370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to investigate the key pathways and genes associated with gastric adenocarcinoma via transcriptome sequencing. Five pairs of gastric adenocarcinoma tissue and normal tumor-adjacent tissue were harvested. After sequencing, raw data were processed and differentially expressed genes (DEGs) between tumor and control groups were screened, followed by functional enrichment analysis and gene clustering analysis. The effect of DEGs on patient prognosis was analyzed on the basis of the survival data from gastric adenocarcinoma patients in The Cancer Genome Atlas database. Several genes were validated through reverse transcription-quantitative polymerase chain reaction. In total, 1,477 upregulated and 282 downregulated DEGs were screened in tumor groups. These genes were segregated into four clusters. Genes in cluster 1 were significantly involved in metabolism of xenobiotics by cytochrome P450, genes in cluster 2 were majorly involved in apoptosis, tight junction formation, and platelet activation, genes in cluster 3 were primarily enriched in the p53 signaling pathway and genes in cluster 4 were significantly enriched in the insulin resistance pathway. Furthermore, 15 DEGs significantly influenced prognosis, including F2R, CTHRC1, and RASGRP3. The expression levels of CYP2B6, MAPK13, CTHRC, RASGRP3 and PYGM were consistent with our analysis results. In conclusion, pathways for metabolism of xenobiotics via cytochrome P450, apoptosis, tight junction formation, platelet activation, and insulin resistance may serve important roles in the progression of gastric adenocarcinoma. Notably, CTHRC1 and RASGRP3 may serve as key prognostic markers.
Collapse
Affiliation(s)
- Wenhu Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhibo Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
21
|
Yasuda K, Hirohashi Y, Mariya T, Murai A, Tabuchi Y, Kuroda T, Kusumoto H, Takaya A, Yamamoto E, Kubo T, Nakatsugawa M, Kanaseki T, Tsukahara T, Tamura Y, Hirano H, Hasegawa T, Saito T, Sato N, Torigoe T. Phosphorylation of HSF1 at serine 326 residue is related to the maintenance of gynecologic cancer stem cells through expression of HSP27. Oncotarget 2018; 8:31540-31553. [PMID: 28415561 PMCID: PMC5458228 DOI: 10.18632/oncotarget.16361] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer stem-like cells (CSCs)/ cancer-initiating cells (CICs) are defined by their higher tumor-initiating ability, self-renewal capacity and differentiation capacity. CSCs/CICs are resistant to several therapies including chemotherapy and radiotherapy. CSCs/CICs thus are thought to be responsible for recurrence and distant metastasis, and elucidation of the molecular mechanisms of CSCs/CICs are essential to design CSC/CIC-targeting therapy. In this study, we analyzed the molecular aspects of gynecological CSCs/CICs. Gynecological CSCs/CICs were isolated as ALDH1high cell by Aldefluor assay. The gene expression profile of CSCs/CICs revealed that several genes related to stress responses are preferentially expressed in gynecological CSCs/CICs. Among the stress response genes, a small heat shock protein HSP27 has a role in the maintenance of gynecological CSCs/CICs. The upstream transcription factor of HSP27, heat shock factior-1 (HSF1) was activated by phosphorylation at serine 326 residue (pSer326) in CSCs/CICs, and phosphorylation at serine 326 residue is essential for induction of HSP27. Immunohistochemical staining using clinical ovarian cancer samples revealed that higher expressions of HSF1 pSer326 was related to poorer prognosis. These findings indicate that activation of HSF1 at Ser326 residue and transcription of HSP27 is related to the maintenance of gynecological CSCs/CICs.
Collapse
Affiliation(s)
- Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Tasuku Mariya
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Aiko Murai
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Yuta Tabuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Takafumi Kuroda
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Hiroki Kusumoto
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Akari Takaya
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Eri Yamamoto
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Munehide Nakatsugawa
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Yasuaki Tamura
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Hiroshi Hirano
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| |
Collapse
|
22
|
Codd AS, Kanaseki T, Torigo T, Tabi Z. Cancer stem cells as targets for immunotherapy. Immunology 2017; 153:304-314. [PMID: 29150846 DOI: 10.1111/imm.12866] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Current cancer therapies target the bulk of the tumour, while a population of highly resistant tumour cells may be able to repopulate the tumour and metastasize to new sites. Cancer cells with such stem cell-like characteristics can be identified based on their phenotypical and/or functional features which may open up ways for their targeted elimination. In this review we discuss potential off-target effects of inhibiting cancer stem-cell self-renewal pathways on immune cells, and summarize some recent immunological studies specifically targeting cancer stem cells based on their unique antigen expression.
Collapse
Affiliation(s)
- Amy S Codd
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Toshihiko Torigo
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Zsuzsanna Tabi
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
23
|
An Y, Wang S, Li S, Zhang L, Wang D, Wang H, Zhu S, Zhu W, Li Y, Chen W, Ji S, Guo X. Distinct molecular subtypes of uterine leiomyosarcoma respond differently to chemotherapy treatment. BMC Cancer 2017; 17:639. [PMID: 28893210 PMCID: PMC5594508 DOI: 10.1186/s12885-017-3568-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
Background Uterine leiomyosarcoma (ULMS) is an aggressive form of soft tissue tumors. The molecular heterogeneity and pathogenesis of ULMS are not well understood. Methods Expression profiling data were used to determine the possibility and optimal number of ULMS molecular subtypes. Next, clinicopathological characters and molecular pathways were analyzed in each subtype to prospect the clinical applications and progression mechanisms of ULMS. Results Two distinct molecular subtypes of ULMS were defined based on different gene expression signatures. Subtype I ULMS recapitulated low-grade ULMS, the gene expression pattern of which resembled normal smooth muscle cells, characterized by overexpression of smooth muscle function genes such as LMOD1, SLMAP, MYLK, MYH11. In contrast, subtype II ULMS recapitulated high-grade ULMS with higher tumor weight and invasion rate, and was characterized by overexpression of genes involved in the pathway of epithelial to mesenchymal transition and tumorigenesis, such as CDK6, MAPK13 and HOXA1. Conclusions We identified two distinct molecular subtypes of ULMS responding differently to chemotherapy treatment. Our findings provide a better understanding of ULMS intrinsic molecular subtypes, and will potentially facilitate the development of subtype-specific diagnosis biomarkers and therapy strategies for these tumors. Electronic supplementary material The online version of this article (10.1186/s12885-017-3568-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang An
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Shuzhen Wang
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Songlin Li
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Lulu Zhang
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Dayong Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Haojie Wang
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Shibai Zhu
- Department of Orthopedic Surgery, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Wan Zhu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, 94110, USA
| | - Yongqiang Li
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Wenwu Chen
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Shaoping Ji
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China. .,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China.
| | - Xiangqian Guo
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China. .,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China. .,Department of Preventive Medicine, Medical School, Henan University, Kaifeng, 475004, China. .,Institute of Environmental Medicine, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
24
|
Tsukahara T, Hirohashi Y, Kanaseki T, Nakatsugawa M, Kubo T, Sato N, Torigoe T. Peptide vaccination therapy: Towards the next generation. Pathol Int 2016; 66:547-553. [PMID: 27435148 DOI: 10.1111/pin.12438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Tomohide Tsukahara
- Department of PathologySapporo Medical University School of Medicine South‐1 West‐17, Chuo‐ku Sapporo Japan
| | - Yoshihiko Hirohashi
- Department of PathologySapporo Medical University School of Medicine South‐1 West‐17, Chuo‐ku Sapporo Japan
| | - Takayuki Kanaseki
- Department of PathologySapporo Medical University School of Medicine South‐1 West‐17, Chuo‐ku Sapporo Japan
| | - Munehide Nakatsugawa
- Department of PathologySapporo Medical University School of Medicine South‐1 West‐17, Chuo‐ku Sapporo Japan
| | - Terufumi Kubo
- Department of PathologySapporo Medical University School of Medicine South‐1 West‐17, Chuo‐ku Sapporo Japan
| | - Noriyuki Sato
- Department of PathologySapporo Medical University School of Medicine South‐1 West‐17, Chuo‐ku Sapporo Japan
| | - Toshihiko Torigoe
- Department of PathologySapporo Medical University School of Medicine South‐1 West‐17, Chuo‐ku Sapporo Japan
| |
Collapse
|