1
|
Alam M, Basir MS, Sultan MB, Murshed MF, Hossain S, Anik AH. Ecological footprint of ionophores in livestock production: Environmental pathways and effects. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70052. [PMID: 40056089 DOI: 10.1002/wer.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 05/13/2025]
Abstract
Ionophores, a class of animal antibiotics, are widely used in intensive livestock farming to enhance feed efficiency and control coccidiosis. These compounds, known for their ability to transport cations across biological membranes, are crucial in maintaining cellular homeostasis. However, their extensive use raises environmental and human health concerns. This manuscript offers a comprehensive review of ionophores in livestock production, highlighting their environmental impact and potential to contribute to antimicrobial resistance (AMR). It emphasizes the fate and transport of ionophores in various environmental matrices, providing a holistic framework for assessing ecological risks. The study calls for improved management practices like enhanced waste management through anaerobic digestion, and composting is essential. Establishing Maximum Residue Limits (MRLs) and using LC-MS/MS for residue detection will help manage exposure. Educating livestock producers and researching alternatives like probiotics can decrease reliance on ionophores to mitigate the ecological footprint of ionophores, making it a timely and relevant piece of research. Ionophores can persist in the environment, potentially contributing to AMR in gram-positive bacteria. Furthermore, their presence in manure, runoff, and agricultural soils has been documented, leading to contamination of water bodies and sediments. Ionophores pose risks to terrestrial and aquatic ecosystems, with studies revealing hazardous effects even at low concentrations. This review highlights the need for improved management practices to mitigate the environmental impacts of ionophores, particularly regarding AMR development and ecosystem disruption. Careful monitoring and sustainable use of these antibiotics are essential to reduce their ecological footprint in livestock production. PRACTITIONER POINTS: Ionophores enhance feed efficiency, but pose environmental health risks. Their persistence may lead to antimicrobial resistance in gram-positive bacteria. Ionophore contamination threatens both terrestrial and aquatic ecosystems. Monitoring and management are crucial to mitigate ionophore-related risks.
Collapse
Affiliation(s)
- Mahbub Alam
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Md Samium Basir
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| | - Maisha Binte Sultan
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| | - Md Fahim Murshed
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| | - Shabiha Hossain
- Department of Geography and Sustainability, University of Tennessee, Knoxville, Tennessee, USA
| | - Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| |
Collapse
|
2
|
Henn D, Lensink AV, Botha CJ. Ultrastructural changes in cardiac and skeletal myoblasts following in vitro exposure to monensin, salinomycin, and lasalocid. PLoS One 2024; 19:e0311046. [PMID: 39321180 PMCID: PMC11423986 DOI: 10.1371/journal.pone.0311046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Carboxylic ionophores are polyether antibiotics used in production animals as feed additives, with a wide range of benefits. However, ionophore toxicosis often occurs as a result of food mixing errors or extra-label use and primarily targets the cardiac and skeletal muscles of livestock. The ultrastructural changes induced by 48 hours of exposure to 0.1 μM monensin, salinomycin, and lasalocid in cardiac (H9c2) and skeletal (L6) myoblasts in vitro were investigated using transmission electron microscopy and scanning electron microscopy. Ionophore exposure resulted in condensed mitochondria, dilated Golgi apparatus, and cytoplasmic vacuolization which appeared as indentations on the myoblast surface. Ultrastructurally, it appears that both apoptotic and necrotic myoblasts were present after exposure to the ionophores. Apoptotic myoblasts contained condensed chromatin and apoptotic bodies budding from their surface. Necrotic myoblasts had disrupted plasma membranes and damaged cytoplasmic organelles. Of the three ionophores, monensin induced the most alterations in myoblasts of both cell lines.
Collapse
MESH Headings
- Monensin/pharmacology
- Pyrans/pharmacology
- Animals
- Myoblasts, Skeletal/drug effects
- Myoblasts, Skeletal/ultrastructure
- Myoblasts, Skeletal/metabolism
- Lasalocid/toxicity
- Cell Line
- Ionophores/pharmacology
- Myoblasts, Cardiac/drug effects
- Myoblasts, Cardiac/ultrastructure
- Myoblasts, Cardiac/metabolism
- Rats
- Apoptosis/drug effects
- Necrosis/chemically induced
- Microscopy, Electron, Transmission
- Microscopy, Electron, Scanning
- Polyether Polyketides
Collapse
Affiliation(s)
- Danielle Henn
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Antonia V Lensink
- Electron Microscope Unit, Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christo J Botha
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Kanchan S, Marwaha D, Tomar B, Agrawal S, Mishra S, Kapoor R, Sushma, Jha G, Sharma D, Bhatta RS, Mishra PR, Rath SK. Nanocarrier - Mediated Salinomycin Delivery Induces Apoptosis and Alters EMT Phenomenon in Prostate Adenocarcinoma. AAPS PharmSciTech 2024; 25:104. [PMID: 38724836 DOI: 10.1208/s12249-024-02817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 09/05/2024] Open
Abstract
Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.
Collapse
Affiliation(s)
- Sonam Kanchan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawna Tomar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sristi Agrawal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakshi Mishra
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Radhika Kapoor
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sushma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Gaurav Jha
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divyansh Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Liu J, Wu Y, Meng S, Xu P, Li S, Li Y, Hu X, Ouyang L, Wang G. Selective autophagy in cancer: mechanisms, therapeutic implications, and future perspectives. Mol Cancer 2024; 23:22. [PMID: 38262996 PMCID: PMC10807193 DOI: 10.1186/s12943-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Eukaryotic cells engage in autophagy, an internal process of self-degradation through lysosomes. Autophagy can be classified as selective or non-selective depending on the way it chooses to degrade substrates. During the process of selective autophagy, damaged and/or redundant organelles like mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes, and lipid droplets are selectively recycled. Specific cargo is delivered to autophagosomes by specific receptors, isolated and engulfed. Selective autophagy dysfunction is closely linked with cancers, neurodegenerative diseases, metabolic disorders, heart failure, etc. Through reviewing latest research, this review summarized molecular markers and important signaling pathways for selective autophagy, and its significant role in cancers. Moreover, we conducted a comprehensive analysis of small-molecule compounds targeting selective autophagy for their potential application in anti-tumor therapy, elucidating the underlying mechanisms involved. This review aims to supply important scientific references and development directions for the biological mechanisms and drug discovery of anti-tumor targeting selective autophagy in the future.
Collapse
Affiliation(s)
- Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Sha Meng
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Ping Xu
- Emergency Department, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Vitamin D 3 and Salinomycin synergy in MCF-7 cells cause cell death via endoplasmic reticulum stress in monolayer and 3D cell culture. Toxicol Appl Pharmacol 2022; 452:116178. [PMID: 35914560 DOI: 10.1016/j.taap.2022.116178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/21/2022]
Abstract
1α, 25, dihydroxyvitamin D3 (1,25D), the active form of vitamin D3, has antitumor properties in several cancer cell lines in vitro. Salinomycin (Sal) has anticancer activity against cancer cell lines. This study aims to examine the cytotoxic and antiproliferative effect of Sal associated with 1,25D on MCF-7 breast carcinoma cell line cultured in monolayer (2D) and three-dimensional models (mammospheres). We also aim to evaluate the molecular mechanism of Sal and 1,25D-mediated effects. We report that Sal and 1,25D act synergistically in MCF-7 mammospheres and monolayer causing G1 cell cycle arrest, reduction of mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) overproduction with a long-lasting cytotoxic response represented by clonogenic and mammosphere assay. We observed the induction of cell death by apoptosis with upregulation in mRNA levels of apoptosis-related genes (CASP7, CASP9, and BBC3). Extensive cytoplasmic vacuolization, a morphological characteristic found in paraptosis, was also seen and could be triggered by endoplasmic reticulum stress (ER) as we found transcriptional upregulation of genes related to ER stress (ATF6, GADD153, GADD45G, EIF2AK3, and HSPA5). Overall, Sal and 1,25D act synergistically, inhibiting cell proliferation by activating simultaneously multiple death pathways and may be a novel and promising luminal A breast cancer therapy strategy.
Collapse
|
6
|
Czerwonka D, Müller S, Cañeque T, Colombeau L, Huczyński A, Antoszczak M, Rodriguez R. Expeditive Synthesis of Potent C20- epi-Amino Derivatives of Salinomycin against Cancer Stem-Like Cells. ACS ORGANIC & INORGANIC AU 2022; 2:214-221. [PMID: 35673680 PMCID: PMC9164233 DOI: 10.1021/acsorginorgau.1c00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
As a continuation of our studies toward the development of small molecules to selectively target cancer stem cells (CSCs), a library of 18 novel derivatives of salinomycin (Sal), a naturally occurring polyether ionophore, was synthesized with a good overall yield using a one-pot Mitsunobu-Staudinger procedure. Compared to the parent structure, the newly synthesized products contained the mono- or disubstituted C20-epi-amine groups. The biological activity of these compounds was evaluated against human mammary mesenchymal HMLER CD24low/CD44high cells, a well-established model of breast CSCs, and its isogenic epithelial cell line (HMLER CD24high/CD44low) lacking CSC properties. Importantly, the vast majority of Sal derivatives were characterized by low nanomolar activities, comparing favorably with previous data in the literature. Furthermore, some of these derivatives exhibited a higher selectivity for the mesenchymal state compared to the reference Sal and ironomycin, representing a promising new series of compounds with anti-CSC activity.
Collapse
Affiliation(s)
- Dominika Czerwonka
- Department of Chemical Biology Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 Rue d'Ulm, 75005 Paris, France.,Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Sebastian Müller
- Department of Chemical Biology Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 Rue d'Ulm, 75005 Paris, France
| | - Tatiana Cañeque
- Department of Chemical Biology Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 Rue d'Ulm, 75005 Paris, France
| | - Ludovic Colombeau
- Department of Chemical Biology Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 Rue d'Ulm, 75005 Paris, France
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Antoszczak
- Department of Chemical Biology Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 Rue d'Ulm, 75005 Paris, France.,Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Raphaël Rodriguez
- Department of Chemical Biology Institut Curie, CNRS UMR 3666, INSERM U1143, PSL Université, 26 Rue d'Ulm, 75005 Paris, France
| |
Collapse
|
7
|
Gezer E, Üner G, Küçüksolak M, Kurt MÜ, Doğan G, Kırmızıbayrak PB, Bedir E. Undescribed polyether ionophores from Streptomyces cacaoi and their antibacterial and antiproliferative activities. PHYTOCHEMISTRY 2022; 195:113038. [PMID: 34902703 DOI: 10.1016/j.phytochem.2021.113038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Polyether ionophores represent a large group of naturally occurring compounds mainly produced by Streptomyces species. With previously proven varieties of bioactivity including antibacterial, antifungal, antiparasitic, antiviral and anti-tumor effects, the discovery of undescribed polyethers leading to development of efficient therapeutics has become important. As part of our research on polyether-rich Streptomyces cacaoi, we previously performed modification studies on fermentation conditions to induce synthesis of specialized metabolites. Here, we report four undescribed and nine known polyether compounds from S. cacaoi grown in optimized conditions. Antimicrobial activity assays revealed that four compounds, including the undescribed (6), showed strong inhibitory effects over both Bacillus subtilis and methicillin-resistant Staphylococcus aureus (MRSA) growth. Additionally, K41-A and its C15-demethoxy derivative exhibited significant cytotoxicity. These results signified that selectivity of C15-demethoxy K41-A towards cancer cells was higher than K41-A, which prompted us to conduct mechanistic experiments. These studies showed that this uninvestigated compound acts as a multitarget compound by inhibiting autophagic flux, inducing reactive oxygen species formation, abolishing proteasome activity, and stimulating ER stress. Consequently, the optimized fermentation conditions of S. cacaoi led to the isolation of undescribed and known polyethers displaying promising activities.
Collapse
Affiliation(s)
- Emre Gezer
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Göklem Üner
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Melis Küçüksolak
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Mustafa Ünver Kurt
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Gamze Doğan
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | | | - Erdal Bedir
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| |
Collapse
|
8
|
Coronel-Hernández J, Salgado-García R, Cantú-De León D, Jacobo-Herrera N, Millan-Catalan O, Delgado-Waldo I, Campos-Parra AD, Rodríguez-Morales M, Delgado-Buenrostro NL, Pérez-Plasencia C. Combination of Metformin, Sodium Oxamate and Doxorubicin Induces Apoptosis and Autophagy in Colorectal Cancer Cells via Downregulation HIF-1α. Front Oncol 2021; 11:594200. [PMID: 34123772 PMCID: PMC8187873 DOI: 10.3389/fonc.2021.594200] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/30/2021] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide in both sexes. Current therapies include surgery, chemotherapy, and targeted therapy; however, prolonged exposure to chemical agents induces toxicity in patients and drug resistance. So, we implemented a therapeutic strategy based on the combination of doxorubicin, metformin, and sodium oxamate called triple therapy (Tt). We found that Tt significantly reduced proliferation by inhibiting the mTOR/AKT pathway and promoted apoptosis and autophagy in CRC derived cells compared with doxorubicin. Several autophagy genes were assessed by western blot; ULK1, ATG4, and LC3 II were overexpressed by Tt. Interestingly, ULK1 was the only one autophagy-related protein gradually overexpressed during Tt administration. Thus, we assumed that there was a post-transcriptional mechanism mediating by microRNAs that regulate UKL1 expression during autophagy activation. Through bioinformatics approaches, we ascertained that ULK1 could be targeted by mir-26a, which is overexpressed in advanced stages of CRC. In vitro experiments revealed that overexpression of mir-26a decreased significantly ULK1, mRNA, and protein expression. Contrariwise, the Tt recovered ULK1 expression by mir-26a decrease. Due to triple therapy repressed mir-26a expression, we hypothesized this drug combination could be involved in mir-26a transcription regulation. Consequently, we analyzed the mir-26a promoter sequence and found two HIF-1α transcription factor recognition sites. We developed two different HIF-1α stabilization models. Both showed mir-26a overexpression and ULK1 reduction in hypoxic conditions. Immunoprecipitation experiments were performed and HIF-1α enrichment was observed in mir-26a promoter. Surprisingly, Tt diminished HIF-1α detection and restored ULK1 mRNA expression. These results reveal an important regulation mechanism controlled by the signaling that activates HIF-1α and that in turn regulates mir-26a transcription.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-Iztacala, UNAM, Tlalnepantla, Mexico,Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | | | - David Cantú-De León
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | | | | | | | | | | | | | - Carlos Pérez-Plasencia
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-Iztacala, UNAM, Tlalnepantla, Mexico,Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico,*Correspondence: Carlos Pérez-Plasencia,
| |
Collapse
|
9
|
Dual role of reactive oxygen species in autophagy and apoptosis induced by compound PN in prostate cancer cells. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00107-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Irmak G, Öztürk MG, Gümüşderelioğlu M. Salinomycin encapsulated PLGA nanoparticles eliminate osteosarcoma cells via inducing/inhibiting multiple signaling pathways: Comparison with free salinomycin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Salinomycin Treatment Specifically Inhibits Cell Proliferation of Cancer Stem Cells Revealed by Longitudinal Single Cell Tracking in Combination with Fluorescence Microscopy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A cell line derived from a tumor is a heterogeneous mixture of phenotypically different cells. Such cancer cell lines are used extensively in the search for new anticancer drugs and for investigating their mechanisms of action. Most studies today are population-based, implying that small subpopulations of cells, reacting differently to the potential drug go undetected. This is a problem specifically related to the most aggressive single cancer cells in a tumor as they appear to be insensitive to the drugs used today. These cells are not detected in population-based studies when developing new anticancer drugs. Thus, to get a deeper understanding of how all individual cancer cells react to chemotherapeutic drugs, longitudinal tracking of individual cells is needed. Here we have used digital holography for long time imaging and longitudinal tracking of individual JIMT-1 breast cancer cells. To gain further knowledge about the tracked cells, we combined digital holography with fluorescence microscopy. We grouped the JIMT-1 cells into different subpopulations based on expression of CD24 and E-cadherin and analyzed cell proliferation and cell migration for 72 h. We investigated how the cancer stem cell (CSC) targeting drug salinomycin affected the different subpopulations. By uniquely combining digital holography with fluorescence microscopy we show that salinomycin specifically targeted the CD24− subpopulation, i.e., the CSCs, by inhibiting cell proliferation, which was evident already after 24 h of drug treatment. We further found that after salinomycin treatment, the surviving cells were more epithelial-like due to the selection of the CD24+ cells.
Collapse
|
12
|
Singh AK, Verma A, Singh A, Arya RK, Maheshwari S, Chaturvedi P, Nengroo MA, Saini KK, Vishwakarma AL, Singh K, Sarkar J, Datta D. Salinomycin inhibits epigenetic modulator EZH2 to enhance death receptors in colon cancer stem cells. Epigenetics 2020; 16:144-161. [PMID: 32635858 DOI: 10.1080/15592294.2020.1789270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug resistance is one of the trademark features of Cancer Stem Cells (CSCs). We and others have recently shown that paucity of functional death receptors (DR4/5) on the cell surface of tumour cells is one of the major reasons for drug resistance, but their involvement in the context of in CSCs is poorly understood. By harnessing CSC specific cytotoxic function of salinomycin, we discovered a critical role of epigenetic modulator EZH2 in regulating the expression of DRs in colon CSCs. Our unbiased proteome profiler array approach followed by ChIP analysis of salinomycin treated cells indicated that the expression of DRs, especially DR4 is epigenetically repressed in colon CSCs. Concurrently, EZH2 knockdown demonstrated increased expression of DR4/DR5, significant reduction of CSC phenotypes such as spheroid formation in-vitro and tumorigenic potential in-vivo in colon cancer. TCGA data analysis of human colon cancer clinical samples shows strong inverse correlation between EZH2 and DR4. Taken together, this study provides an insight about epigenetic regulation of DR4 in colon CSCs and advocates that drug-resistant colon cancer can be therapeutically targeted by combining TRAIL and small molecule EZH2 inhibitors.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Akhilesh Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Rakesh Kumar Arya
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Shrankhla Maheshwari
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India.,Academy of Scientific and Innovative Research , New Delhi, India
| | - Priyank Chaturvedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Mushtaq Ahmad Nengroo
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India
| | - Krishan Kumar Saini
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India.,Academy of Scientific and Innovative Research , New Delhi, India
| | | | - Kavita Singh
- Electron Microscopy Unit, CSIR-CDRI , Lucknow, India
| | | | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI) , Lucknow, India.,Academy of Scientific and Innovative Research , New Delhi, India
| |
Collapse
|
13
|
Alqahtani T, Kumarasamy VM, Huczyński A, Sun D. Salinomycin and its derivatives as potent RET transcriptional inhibitors for the treatment of medullary thyroid carcinoma. Int J Oncol 2019; 56:348-358. [PMID: 31746350 DOI: 10.3892/ijo.2019.4916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/19/2019] [Indexed: 11/05/2022] Open
Abstract
Rearranged during transfection kinase (RET) is a validated molecular target in medullary thyroid cancer (MTC), as activating mutations in RET are often associated with the development of MTC. The present study reports the first preclinical characterization of salinomycin and selected analogs as potent RET transcriptional inhibitors. Reverse transcription‑PCR and immunoblotting revealed that salinomycin profoundly decreased RET expression in the TT human MTC cell line by inhibiting RET transcription. Moreover, salinomycin resulted in remarkable anti‑proliferative activity against MTC that is driven by RET (gain of function mutation) by selectively inhibiting the intracellular PI3K/Akt/mTOR signaling pathway. Also, flow cytometry and fluorescence‑activated cell sorting showed that salinomycin induces G1 phase arrest and apoptosis by reducing the expression of retinoblastoma protein, E2F1, cyclin D and CDK4. The structure‑activity relationship of salinomycin was investigated in this study. Some of the salinomycin derivatives showed the ability to reduce RET expression where others fail to alter RET expression. These results suggest that the RET‑suppressing effect of salinomycin may be largely attributed to disruption of the Wnt pathway, presumably through interference with the ternary LRP6‑Frizzled‑Wnt complex. Furthermore, these findings support the further preclinical evaluation of salinomycin and its analogs as a promising new class of therapeutic agents for the improved treatment of MTC.
Collapse
Affiliation(s)
- Tariq Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Vishnu Muthuraj Kumarasamy
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Adam Huczyński
- Faculty of Chemistry, Adam Mickiewicz University, 60‑780 Poznan, Poland
| | - Daekyu Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Niu J, Yan T, Guo W, Wang W, Zhao Z. Insight Into the Role of Autophagy in Osteosarcoma and Its Therapeutic Implication. Front Oncol 2019; 9:1232. [PMID: 31803616 PMCID: PMC6873391 DOI: 10.3389/fonc.2019.01232] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is an aggressive bone cancer that frequently metastasizes to the lungs. The cytotoxicity of most chemotherapeutics and targeted drugs in the treatment of osteosarcoma is partially lessened. Furthermore, there is a poor response to current chemo- and radiotherapy for both primary lesions and pulmonary metastases of osteosarcoma. There is a clear need to explore promising drug candidates that could improve the efficacy of osteosarcoma treatment. Autophagy, a dynamic and highly conserved catabolic process, has dual roles in promoting cell survival as well as cell death. The role of autophagy has been investigated extensively in different tumor types, and a growing body of research has highlighted the potential value of using autophagy in clinical therapy. Here, we address significant aspects of autophagy in osteosarcoma, including its functions, modulation, and possible therapeutic applications.
Collapse
Affiliation(s)
- Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Zhiqing Zhao
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| |
Collapse
|
15
|
Kim KY, Oh TW, Yang HJ, Kim YW, Ma JY, Park KI. Ethanol extract of Chrysanthemum zawadskii Herbich induces autophagy and apoptosis in mouse colon cancer cells through the regulation of reactive oxygen species. Altern Ther Health Med 2019; 19:274. [PMID: 31638961 PMCID: PMC6805551 DOI: 10.1186/s12906-019-2688-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
Background Recent research has suggested that autophagy can provide a better mechanism for inducing cell death than current therapeutic strategies. This study investigated the effects of using an ethanol extract of Chrysanthemum zawadskii Herbich (ECZ) to induce apoptosis and autophagy associated with reliable signal pathways in mouse colon cancer CT-26 cells. Methods Using ECZ on mouse colon cancer CT-26 cells, cell viability, annexin V/propidium iodide staining, acridine orange staining, reactive oxygen species (ROS) and western blotting were assayed. Results ECZ exhibited cytotoxicity in CT-26 cells in a dose-dependent manner. ECZ induced apoptosis was confirmed by caspase-3 activation, poly (ADP-ribose) polymerase cleavage, and increased production of reactive oxygen species (ROS). Furthermore, it was shown that ECZ induced autophagy via the increased conversion of microtubule-associated protein 1 light chain 3II, the degradation of p62, and the formation of acidic vesicular organelles. The inhibition of ROS production by N-Acetyl-L-cysteine resulted in reduced ECZ-induced apoptosis and autophagy. Furthermore, the inhibition of autophagy by 3-methyladenine resulted in enhanced ECZ-induced apoptosis via increased ROS generation. Conclusion These findings confirmed that ECZ induced ROS-mediated autophagy and apoptosis in colon cancer cells. Therefore, ECZ may serve as a novel potential chemotherapeutic candidate for colon cancer.
Collapse
|
16
|
Antoszczak M, Huczyński A. Salinomycin and its derivatives - A new class of multiple-targeted "magic bullets". Eur J Med Chem 2019; 176:208-227. [PMID: 31103901 DOI: 10.1016/j.ejmech.2019.05.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022]
Abstract
The history of drug development clearly shows the scale of painstaking effort leading to a finished product - a highly biologically active agent that would be at the same time no or little toxic to human organism. Moreover, the aim of modern drug discovery can move from "one-molecule one-target" concept to more promising "one-molecule multiple-targets" one, particularly in the context of effective fight against cancer and other complex diseases. Gratifyingly, natural compounds are excellent source of potential drug leads. One of such promising naturally-occurring drug candidates is a polyether ionophore - salinomycin (SAL). This compound should be identified as multi-target agent for two reasons. Firstly, SAL combines a broad spectrum of bioactivity, including antibacterial, antifungal, antiviral, antiparasitic and anticancer activity, with high selectivity of action, proving its significant therapeutic potential. Secondly, the multimodal mechanism of action of SAL has been shown to be related to its interactions with multiple molecular targets and signalling pathways that are synergistic for achieving a therapeutic anticancer effect. On the other hand, according to the Paul Ehrlich's "magic bullet" concept, invariably inspiring the scientists working on design of novel target-selective molecules, a very interesting direction of research is rational chemical modification of SAL. Importantly, many of SAL derivatives have been found to be more promising as chemotherapeutics than the native structure. This concise review article is focused both on the possible role of SAL and its selected analogues in future antimicrobial and/or cancer therapy, and on the potential use of SAL as a new class of multiple-targeted "magic bullet" because of its multimodal mechanism of action.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland
| | - Adam Huczyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61‒614, Poznań, Poland.
| |
Collapse
|
17
|
A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. Eur J Med Chem 2019; 166:48-64. [DOI: 10.1016/j.ejmech.2019.01.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
|
18
|
Antoszczak M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Eur J Med Chem 2019; 164:366-377. [DOI: 10.1016/j.ejmech.2018.12.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/30/2023]
|
19
|
Salinomycin ameliorates oxidative hepatic damage through AMP-activated protein kinase, facilitating autophagy. Toxicol Appl Pharmacol 2018; 360:141-149. [DOI: 10.1016/j.taap.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 01/11/2023]
|
20
|
Kaushik V, Yakisich JS, Kumar A, Azad N, Iyer AKV. Ionophores: Potential Use as Anticancer Drugs and Chemosensitizers. Cancers (Basel) 2018; 10:E360. [PMID: 30262730 PMCID: PMC6211070 DOI: 10.3390/cancers10100360] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Ion homeostasis is extremely important for the survival of both normal as well as neoplastic cells. The altered ion homeostasis found in cancer cells prompted the investigation of several ionophores as potential anticancer agents. Few ionophores, such as Salinomycin, Nigericin and Obatoclax, have demonstrated potent anticancer activities against cancer stem-like cells that are considered highly resistant to chemotherapy and responsible for tumor relapse. The preclinical success of these compounds in in vitro and in vivo models have not been translated into clinical trials. At present, phase I/II clinical trials demonstrated limited benefit of Obatoclax alone or in combination with other anticancer drugs. However, future development in targeted drug delivery may be useful to improve the efficacy of these compounds. Alternatively, these compounds may be used as leading molecules for the development of less toxic derivatives.
Collapse
Affiliation(s)
- Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anil Kumar
- Great Plains Health, North Platte, NE 69101, USA.
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anand K V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| |
Collapse
|
21
|
Versini A, Saier L, Sindikubwabo F, Müller S, Cañeque T, Rodriguez R. Chemical biology of salinomycin. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Huang X, Borgström B, Stegmayr J, Abassi Y, Kruszyk M, Leffler H, Persson L, Albinsson S, Massoumi R, Scheblykin IG, Hegardt C, Oredsson S, Strand D. The Molecular Basis for Inhibition of Stemlike Cancer Cells by Salinomycin. ACS CENTRAL SCIENCE 2018; 4:760-767. [PMID: 29974072 PMCID: PMC6026786 DOI: 10.1021/acscentsci.8b00257] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 05/13/2023]
Abstract
Tumors are phenotypically heterogeneous and include subpopulations of cancer cells with stemlike properties. The natural product salinomycin, a K+-selective ionophore, was recently found to exert selectivity against such cancer stem cells. This selective effect is thought to be due to inhibition of the Wnt signaling pathway, but the mechanistic basis remains unclear. Here, we develop a functionally competent fluorescent conjugate of salinomycin to investigate the molecular mechanism of this compound. By subcellular imaging, we demonstrate a rapid cellular uptake of the conjugate and accumulation in the endoplasmic reticulum (ER). This localization is connected to induction of Ca2+ release from the ER into the cytosol. Depletion of Ca2+ from the ER induces the unfolded protein response as shown by global mRNA analysis and Western blot analysis of proteins in the pathway. In particular, salinomycin-induced ER Ca2+ depletion up-regulates C/EBP homologous protein (CHOP), which inhibits Wnt signaling by down-regulating β-catenin. The increased cytosolic Ca2+ also activates protein kinase C, which has been shown to inhibit Wnt signaling. These results reveal that salinomycin acts in the ER membrane of breast cancer cells to cause enhanced Ca2+ release into the cytosol, presumably by mediating a counter-flux of K+ ions. The clarified mechanistic picture highlights the importance of ion fluxes in the ER as an entry to inducing phenotypic effects and should facilitate rational development of cancer treatments.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
| | - Björn Borgström
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| | - John Stegmayr
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
- Department of Laboratory Medicine, Lund University, BMC C12, 221 84 Lund, Sweden
| | - Yasmin Abassi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Scheelevägen 8, 223 63 Lund, Sweden
| | - Monika Kruszyk
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, BMC C12, 221 84 Lund, Sweden
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, BMC D12, 221 84 Lund, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Lund University, BMC D12, 221 84 Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Scheelevägen 8, 223 63 Lund, Sweden
| | - Ivan G Scheblykin
- Department of Chemical Physics and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Cecilia Hegardt
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Medicon Village, 223 81 Lund, Sweden
| | - Stina Oredsson
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
| | - Daniel Strand
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
23
|
Chen J, Zhu Y, Zhang W, Peng X, Zhou J, Li F, Han B, Liu X, Ou Y, Yu X. Delphinidin induced protective autophagy via mTOR pathway suppression and AMPK pathway activation in HER-2 positive breast cancer cells. BMC Cancer 2018; 18:342. [PMID: 29587684 PMCID: PMC5870693 DOI: 10.1186/s12885-018-4231-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
Background We have previously demonstrated the anticancer effect of anthocyanins. In this study, we explored the biological activities of delphinidin, the most common of the anthocyanidin monomers, that were related to autophagy in HER-2 positive breast cancer MDA-MB-453 and BT474 cells. Methods The effects of various doses of delphinidin on the proliferation and apoptosis of MDA-MB-453 and BT474 cells were analysed. Autophagy was identified as a critical factor that influenced chemotherapy, and the autophagic mechanism in delphinidin-treated cells was investigated. The autophagy inhibitors, 3-MA and BA1, were used to analyse the effects of autophagy inhibition. Results Delphinidin inhibited proliferation, promoted apoptosis, and induced autophagy in MDA-MB-453 and BT474 cells in a dose-dependent manner. The inhibition of autophagy enhanced the delphinidin-induced apoptosis and antiproliferative effect in both HER-2 positive breast cancer cells. In addition, delphinidin induced autophagy via suppression of the mTOR signalling pathway and activation of the AMPK signalling pathway in HER-2 positive breast cancer cells. Conclusions Collectively, the results showed that delphinidin induced apoptosis and autophagy in HER-2 positive breast cancer cells and that autophagy was induced via the mTOR and AMPK signalling pathways. The suppression of autophagy promoted the anticancer effects of delphinidin.
Collapse
Affiliation(s)
- Jingyao Chen
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yanfeng Zhu
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Weiwei Zhang
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Xiaoli Peng
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Jie Zhou
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Fei Li
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Bin Han
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Xin Liu
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yu Ou
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Xiaoping Yu
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|
24
|
Jiang J, Li H, Qaed E, Zhang J, Song Y, Wu R, Bu X, Wang Q, Tang Z. Salinomycin, as an autophagy modulator-- a new avenue to anticancer: a review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:26. [PMID: 29433536 PMCID: PMC5809980 DOI: 10.1186/s13046-018-0680-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022]
Abstract
Since Salinomycin (Sal) emerged its ability to target breast cancer stem cells in 2009, numerous experiments have been carried out to test Sal’s anticancer effects. What deserve to be mentioned is that Sal can efficiently induce proliferation inhibition, cell death and metastasis suppression against human cancers from different origins both in vivo and in vitro without causing serious side effects as the conventional chemotherapeutical drugs on the body. There may be novel cell death pathways involving the anticancer effects of Sal except the conventional pathways, such as autophagic pathway. This review is focused on how autophagy involves the effects of Sal, trying to describe clearly and systematically why autophagy plays a vital role in predominant anticancer effects of Sal, including its distinctive characteristic. Based on recent advances, we present evidence that a dual role of Sal involving in autophagy may account for its unique anticancer effects - the preference for cancer cells. Further researches are required to confirm the authenticity of this suppose in order to develop an ideal anticancer drug.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Hailong Li
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Jing Zhang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Yushu Song
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Rong Wu
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Xinmiao Bu
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Qinyan Wang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, 9 west section, south road of Lvshun, Dalian, 116044, China
| |
Collapse
|
25
|
Gao X, Zheng Y, Ruan X, Ji H, Peng L, Guo D, Jiang S. Salinomycin induces primary chicken cardiomyocytes death via mitochondria mediated apoptosis. Chem Biol Interact 2018; 282:45-54. [DOI: 10.1016/j.cbi.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 01/05/2023]
|
26
|
Klose J, Guerlevik E, Trostel T, Kühnel F, Schmidt T, Schneider M, Ulrich A. Salinomycin inhibits cholangiocarcinoma growth by inhibition of autophagic flux. Oncotarget 2017; 9:3619-3630. [PMID: 29423070 PMCID: PMC5790487 DOI: 10.18632/oncotarget.23339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction Cholangiocarcinoma is characterized by aggressive tumor growth, high recurrence rates, and resistance against common chemotherapeutical regimes. The polyether-antibiotic Salinomycin is a promising drug in cancer therapy because of its ability to overcome apoptosis resistance of cancer cells and its selectivity against cancer stem cells. Here, we investigated the effectiveness of Salinomycin against cholangiocarcinoma in vivo, and analyzed interference of Salinomycin with autophagic flux in human cholangiocarcinoma cells. Results Salinomycin reduces tumor cell viability, proliferation, migration, invasion, and induced apoptosis in vitro. Subcutaneous and intrahepatic cholangiocarcinoma growth in vivo was inhibited upon Salinomycin treatment. Analysis of autophagy reveals inhibition of autophagic activity. This was accompanied by accumulation of mitochondrial mass and increased generation of reactive oxygen species. Conclusions This study demonstrates the effectiveness of Salinomycin against cholangiocarcinoma in vivo. Inhibition of autophagic flux represents an underlying molecular mechanism of Salinomycin against cholangiocarcinoma. Methods The two murine cholangiocarcinoma cell lines p246 and p254 were used to analyze tumor cell proliferation, viability, migration, invasion, and apoptosis in vitro. For in vivo studies, murine cholangiocarcinoma cells were injected into syngeneic C57-BL/6-mice to initiate subcutaneous cholangiocarcinoma growth. Intrahepatic tumor growth was induced by electroporation of oncogenic transposon-plasmids into the left liver lobe. For mechanistic studies in human cells, TFK-1 and EGI-1 were used, and activation of autophagy was analyzed after exposure to Salinomycin.
Collapse
Affiliation(s)
- Johannes Klose
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Engin Guerlevik
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Tina Trostel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
27
|
Kondratskyi A, Kondratska K, Skryma R, Klionsky DJ, Prevarskaya N. Ion channels in the regulation of autophagy. Autophagy 2017; 14:3-21. [PMID: 28980859 PMCID: PMC5846505 DOI: 10.1080/15548627.2017.1384887] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/07/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a cellular process in which the cell degrades and recycles its own constituents. Given the crucial role of autophagy in physiology, deregulation of autophagic machinery is associated with various diseases. Hence, a thorough understanding of autophagy regulatory mechanisms is crucially important for the elaboration of efficient treatments for different diseases. Recently, ion channels, mediating ion fluxes across cellular membranes, have emerged as important regulators of both basal and induced autophagy. However, the mechanisms by which specific ion channels regulate autophagy are still poorly understood, thus underscoring the need for further research in this field. Here we discuss the involvement of major types of ion channels in autophagy regulation.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Kateryna Kondratska
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Daniel J. Klionsky
- Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology; University of Michigan, Ann Arbor, MI, USA
| | - Natalia Prevarskaya
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|
28
|
Autophagy inhibition enhances antiproliferative effect of salinomycin in pancreatic cancer cells. Pancreatology 2017; 17:990-996. [PMID: 28927939 DOI: 10.1016/j.pan.2017.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/10/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Salinomycin has cytotoxic effects on various types of malignancy and induces autophagy. However, it has not been clarified whether autophagy induced by salinomycin treatment has a protective or cytotoxic role. We investigated whether salinomycin affects autophagy in pancreatic cancer cells and whether autophagy induced by salinomycin treatment has a protective or cytotoxic role in these cells. METHODS We investigated the effect of salinomycin using three pancreatic cancer cell lines. We investigated effect on proliferation and the CD133 positive fraction using flow cytometry. In addition, we monitored the change in autophagic activity after salinomycin treatment using fluorescent immunostaining, western blotting, and flow cytometry. Finally, knockdown of ATG5 or ATG7 by siRNA was used to investigate the impact of autophagy inhibition on sensitivity to salinomycin. RESULTS Salinomycin suppressed the proliferation of pancreatic cancer cells in a concentration dependent manner, and reduced the CD133 positive fraction. Salinomycin enhanced autophagy activity in these cells in a concentration dependent manner. Autophagy inhibition made pancreatic cancer cells more sensitive to salinomycin. CONCLUSIONS Our data provide the first evidence indicating that autophagy induced by salinomycin have a protective role in pancreatic cancer cells. A new therapeutic strategy of combining salinomycin, autophagy inhibitors, and anticancer drugs could hold promise for pancreatic cancer treatment.
Collapse
|
29
|
Salinomycin Exerts Anticancer Effects on PC-3 Cells and PC-3-Derived Cancer Stem Cells In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4101653. [PMID: 28676857 PMCID: PMC5476894 DOI: 10.1155/2017/4101653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/27/2017] [Indexed: 12/27/2022]
Abstract
Salinomycin is an antibiotic isolated from Streptomyces albus that selectively kills cancer stem cells (CSCs). However, the antitumor mechanism of salinomycin is unclear. This study investigated the chemotherapeutic efficacy of salinomycin in human prostate cancer PC-3 cells. We found that cytotoxicity of salinomycin to PC-3 cells was stronger than to nonmalignant prostate cell RWPE-1, and exposure to salinomycin induced G2/M phage arrest and apoptosis of PC-3 cells. A mechanistic study found salinomycin suppressed Wnt/β-catenin pathway to induce apoptosis of PC-3 cells. An in vivo experiment confirmed that salinomycin suppressed tumorigenesis in a NOD/SCID mice xenograft model generated from implanted PC-3 cells by inhibiting the Wnt/β-catenin pathway, since the total β-catenin protein level was reduced and the downstream target c-Myc level was significantly downregulated. We also showed that salinomycin, but not paclitaxel, triggered more apoptosis in aldehyde dehydrogenase- (ALDH-) positive PC-3 cells, which were considered as the prostate cancer stem cells, suggesting that salinomycin may be a promising chemotherapeutic to target CSCs. In conclusion, this study suggests that salinomycin reduces resistance and relapse of prostate tumor by killing cancer cells as well as CSCs.
Collapse
|
30
|
Yu SN, Kim SH, Kim KY, Ji JH, Seo YK, Yu HS, Ahn SC. Salinomycin induces endoplasmic reticulum stress-mediated autophagy and apoptosis through generation of reactive oxygen species in human glioma U87MG cells. Oncol Rep 2017; 37:3321-3328. [DOI: 10.3892/or.2017.5615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/27/2017] [Indexed: 11/06/2022] Open
|
31
|
Dong X, Fu J, Yin X, Yang C, Ni J. Aloe-emodin Induces Apoptosis in Human Liver HL-7702 Cells through Fas Death Pathway and the Mitochondrial Pathway by Generating Reactive Oxygen Species. Phytother Res 2017; 31:927-936. [DOI: 10.1002/ptr.5820] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/13/2017] [Accepted: 04/01/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaoxv Dong
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing 100102 PR China
| | - Jing Fu
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing 100102 PR China
| | - Xingbin Yin
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing 100102 PR China
| | - Chunjing Yang
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing 100102 PR China
| | - Jian Ni
- School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing 100102 PR China
| |
Collapse
|
32
|
Bi YL, Mi PY, Zhao SJ, Pan HM, Li HJ, Liu F, Shao LR, Zhang HF, Zhang P, Jiang SL. Salinomycin exhibits anti-angiogenic activity against human glioma in vitro and in vivo by suppressing the VEGF-VEGFR2-AKT/FAK signaling axis. Int J Mol Med 2017; 39:1255-1261. [PMID: 28358414 PMCID: PMC5403467 DOI: 10.3892/ijmm.2017.2940] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
Tumor angiogenesis plays a crucial role in tumor growth, progression and metastasis, and suppression of tumor angiogenesis has been considered as a promising anticancer strategy. Salinomycin (SAL), an antibiotic, displays novel anticancer potential against several human cancer cells in vitro and in vivo. However, little information concerning its anti-angiogenic properties is available. Therefore, the anti‑angiogenic effect of SAL and the underlying mechanism in human glioma were evaluated in the present study. The results indicated that SAL treatment significantly inhibited human umbilical vein endothelial cell (HUVEC) proliferation, migration, invasion and capillary-like tube formation. Further investigation on intracellular mechanisms showed that SAL markedly suppressed FAK and AKT phosphorylation, and downregulated vascular endothelial growth factor (VEGF) expression in HUVECs. Pretreatment of cells with a PI3K inhibitor (LY294002) and FAK inhibitor (PF562271) markedly enhanced SAL-induced inhibition of HUVEC proliferation and migration, respectively. Moreover, U251 human glioma xenograft growth was also effectively blocked by SAL treatment in vivo via inhibition of angiogenesis involving FAK and AKT depho-sphorylation. Taken together, our findings validated that SAL inhibits angiogenesis and human glioma growth through suppression of the VEGF-VEGFR2-AKT/FAK signaling axis, indicating the potential application of SAL for the treatment of human glioma.
Collapse
Affiliation(s)
- Yan-Ling Bi
- Department of Cardiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Pei-Yan Mi
- Department of Cardiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Shi-Jun Zhao
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Heng-Ming Pan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hui-Juan Li
- Department of Cardiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Fei Liu
- Department of Breast Surgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Lu-Rong Shao
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Hui-Fang Zhang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Pu Zhang
- Department of Cardiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Shi-Liang Jiang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
33
|
Autophagy as a potential target for sarcoma treatment. Biochim Biophys Acta Rev Cancer 2017; 1868:40-50. [PMID: 28242349 DOI: 10.1016/j.bbcan.2017.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 02/05/2023]
Abstract
Autophagy is a constitutively active, evolutionary conserved, catabolic process for maintaining homeostasis in cellular stress responses and cell survival. Although its mechanism has not been fully illustrated, recent work on autophagy in various types of sarcomas has demonstrated that autophagy exerts an important role in sarcoma cell growth and proliferation, in pro-survival response to therapies and stresses, and in therapeutic resistance of sarcoma. Thus, the autophagic process is being seen as a possibly novel therapeutic target of sarcoma. Additionally, some co-regulators of autophagy have also been investigated as promising biomarkers for the diagnosis and prognosis of sarcoma. In this review, we summarize contemporary advances in the role of autophagy in sarcoma and discuss the potential of autophagy as a new target for sarcoma treatment.
Collapse
|
34
|
Kim KY, Kim SH, Yu SN, Park SG, Kim YW, Nam HW, An HH, Yu HS, Kim YW, Ji JH, Seo YK, Ahn SC. Lasalocid induces cytotoxic apoptosis and cytoprotective autophagy through reactive oxygen species in human prostate cancer PC-3 cells. Biomed Pharmacother 2017; 88:1016-1024. [PMID: 28178613 DOI: 10.1016/j.biopha.2017.01.140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 02/07/2023] Open
Abstract
Lasalocid is an antibiotic from the group of carboxylic ionophores, produced by Streptomyces lasaliensis. But there was limited information of lasalocid on human prostate cancer cells. In the present studies, to better understand its effect in human prostate cancer cells, apoptosis and autophagy associated with possible signal pathways in vitro was examined. Our study showed that lasalocid mediated cell cycle arrest in G0/G1 phase by reducing G1 phase dependent proteins, indicating entering into apoptotic cell death pathway. Lasalocid-induced apoptosis was involved with reactive oxygen species (ROS) production, and mitochondrial hyperpolarization. In addition, lasalocid induced autophagy through microtubule-associated protein 1 light chain 3 (LC-3)-II conversion, acidic vesicular organelles formation and GFP-LC-3 punctuate, which was inhibited by 3-methyladenine (3-MA), a widely used pharmacological inhibitor of autophagy. Furthermore, the autophagic phenomena were mediated by production of ROS, confirming that inhibition of ROS with N-acetyl-l-cysteine, a ROS inhibitor, attenuated lasalocid-triggered autophagy. Inhibition of autophagy with 3-MA enhanced the lasalocid-induced apoptosis through enhanced ROS generation. Taken together, lasalocid should be useful in the search for new potential chemotherapeutic agents for understanding the molecular mechanisms of anticancer in prostate cancer cells.
Collapse
Affiliation(s)
- Kwang-Youn Kim
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Sang-Hun Kim
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Sun-Nyoung Yu
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Sul-Gi Park
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Young-Wook Kim
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Hyo-Won Nam
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Hyun-Hee An
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Hak-Sun Yu
- Department of Parasitology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan National University, Yangsan 50612, Republic of Korea
| | - Young Woo Kim
- Department of Herbal Formula, Medical Research Center (MRC-GHF), College of Oriental Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Jae-Hoon Ji
- Genome Instability Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Young-Kyo Seo
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Soon-Cheol Ahn
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
35
|
Sui X, Liang X, Chen L, Guo C, Han W, Pan H, Li X. Bacterial xenophagy and its possible role in cancer: A potential antimicrobial strategy for cancer prevention and treatment. Autophagy 2016; 13:237-247. [PMID: 27924676 DOI: 10.1080/15548627.2016.1252890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic process through which cellular excessive or dysfunctional proteins and organelles are transported to the lysosome for terminal degradation and recycling. Over the past few years increasing evidence has suggested that autophagy is not only a simple metabolite recycling mechanism, but also plays a critical role in the removal of intracellular pathogens such as bacteria and viruses. When autophagy engulfs intracellular pathogens, the pathway is called 'xenophagy' because it leads to the elimination of foreign microbes. Recent studies support the idea that xenophagy can be modulated by bacterial infection. Meanwhile, convincing evidence indicates that xenophagy may be involved in malignant transformation and cancer therapy. Xenophagy can suppress tumorigenesis, particularly during the early stages of tumor initiation. However, in established tumors, xenophagy may also function as a prosurvival pathway in response to microenvironment stresses including bacterial infection. Therefore, bacterial infection-related xenophagy may have an effect on tumor initiation and cancer treatment. However, the role and machinery of bacterial infection-related xenophagy in cancer remain elusive. Here we will discuss recent developments in our understanding of xenophagic mechanisms targeting bacteria, and how they contribute to tumor initiation and anticancer therapy. A better understanding of the role of xenophagy in bacterial infection and cancer will hopefully provide insight into the design of novel and effective therapies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Xinbing Sui
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China.,b Departments of Urology and Pathology , Boston Children's Hospital , Boston , MA , USA.,c Department of Surgery , Harvard Medical School , Boston , MA , USA.,d Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Xiao Liang
- e Department of General Surgery , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Liuxi Chen
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Chunming Guo
- b Departments of Urology and Pathology , Boston Children's Hospital , Boston , MA , USA.,c Department of Surgery , Harvard Medical School , Boston , MA , USA
| | - Weidong Han
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Hongming Pan
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Xue Li
- b Departments of Urology and Pathology , Boston Children's Hospital , Boston , MA , USA.,c Department of Surgery , Harvard Medical School , Boston , MA , USA
| |
Collapse
|