1
|
Han G, Li X, Wen CH, Wu S, He L, Tan C, Nivar J, Bekker A, Davidson S, Tao YX. FUS Contributes to Nerve Injury-Induced Nociceptive Hypersensitivity by Activating NF-κB Pathway in Primary Sensory Neurons. J Neurosci 2023; 43:1267-1278. [PMID: 36627209 PMCID: PMC9962786 DOI: 10.1523/jneurosci.2082-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of pain-associated genes in the dorsal root ganglion (DRG) is considered to be a molecular basis of neuropathic pain genesis. Fused in sarcoma (FUS), a DNA/RNA-binding protein, is a critical regulator of gene expression. However, whether it contributes to neuropathic pain is unknown. This study showed that peripheral nerve injury caused by the fourth lumbar (L4) spinal nerve ligation (SNL) or chronic constriction injury (CCI) of the sciatic nerve produced a marked increase in the expression of FUS protein in injured DRG neurons. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5-expressing Fus shRNA into the ipsilateral L4 DRG mitigated the SNL-induced nociceptive hypersensitivities in both male and female mice. This microinjection also alleviated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in the ipsilateral L4 dorsal horn. Furthermore, mimicking this increase through microinjection of AAV5 expressing full-length Fus mRNA into unilateral L3/4 DRGs produced the elevations in the levels of p-ERK1/2 and GFAP in the dorsal horn, enhanced responses to mechanical, heat and cold stimuli, and induced the spontaneous pain on the ipsilateral side of both male and female mice in the absence of SNL. Mechanistically, the increased FUS activated the NF-κB signaling pathway by promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Our results indicate that DRG FUS contributes to neuropathic pain likely through the activation of NF-κB in primary sensory neurons.SIGNIFICANCE STATEMENT In the present study, we reported that fused in sarcoma (FUS), a DNA/RNA-binding protein, is upregulated in injured dorsal root ganglion (DRG) following peripheral nerve injury. This upregulation is responsible for nerve injury-induced translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Because blocking this upregulation alleviates nerve injury-induced nociceptive hypersensitivity, DRG FUS participates in neuropathic pain likely through the activation of NF-κB in primary sensory neurons. FUS may be a potential target for neuropathic pain management.
Collapse
Affiliation(s)
- Guang Han
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Xiang Li
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Chun-Hsien Wen
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Long He
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Cynthia Tan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - John Nivar
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Steve Davidson
- Department of Anesthesiology, Pain Research Center, and Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
- Departments of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
2
|
Kikuchi Y, Sugano E, Yuki S, Tabata K, Endo Y, Takita Y, Onoguchi R, Ozaki T, Fukuda T, Takai Y, Kurose T, Tanaka K, Honma Y, Perez E, Stock M, Fernández JR, Tamura M, Voronkov M, Stock JB, Tomita H. SIG-1451, a Novel, Non-Steroidal Anti-Inflammatory Compound, Attenuates Light-Induced Photoreceptor Degeneration by Affecting the Inflammatory Process. Int J Mol Sci 2022; 23:ijms23158802. [PMID: 35955937 PMCID: PMC9369167 DOI: 10.3390/ijms23158802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration is a progressive retinal disease that is associated with factors such as oxidative stress and inflammation. In this study, we evaluated the protective effects of SIG-1451, a non-steroidal anti-inflammatory compound developed for treating atopic dermatitis and known to inhibit Toll-like receptor 4, in light-induced photoreceptor degeneration. SIG-1451 was intraperitoneally injected into rats once per day before exposure to 1000 lx light for 24 h; one day later, optical coherence tomography showed a decrease in retinal thickness, and electroretinogram (ERG) amplitude was also found to have decreased 3 d after light exposure. Moreover, SIG-1451 partially protected against this decrease in retinal thickness and increase in ERG amplitude. One day after light exposure, upregulation of inflammatory response-related genes was observed, and SIG-1451 was found to inhibit this upregulation. Iba-1, a microglial marker, was suppressed in SIG-1451-injected rats. To investigate the molecular mechanism underlying these effects, we used lipopolysaccharide (LPS)-stimulated rat immortalised Müller cells. The upregulation of C-C motif chemokine 2 by LPS stimulation was significantly inhibited by SIG-1451 treatment, and Western blot analysis revealed a decrease in phosphorylated I-κB levels. These results indicate that SIG-1451 indirectly protects photoreceptor cells by attenuating light damage progression, by affecting the inflammatory responses.
Collapse
Affiliation(s)
- Yuki Kikuchi
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Eriko Sugano
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Shiori Yuki
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Kitako Tabata
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Yuka Endo
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Yuya Takita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Reina Onoguchi
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Taku Ozaki
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Tomokazu Fukuda
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Yoshihiro Takai
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Takahiro Kurose
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Koichi Tanaka
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Yoichi Honma
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Eduardo Perez
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | - Maxwell Stock
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | | | - Masanori Tamura
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | - Michael Voronkov
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | - Jeffry B. Stock
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
- Correspondence: ; Tel.: +81-19-621-6427
| |
Collapse
|
3
|
Addition of Popular Exogenous Antioxidant Agent, PBN, to Culture Media May Be an Important Step to Optimization of Myogenic Stem/Progenitor Cell Preparation Protocol. Antioxidants (Basel) 2021; 10:antiox10060959. [PMID: 34203726 PMCID: PMC8232265 DOI: 10.3390/antiox10060959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to modify human skeletal muscle-derived stem/progenitor cells (SkMDS/PCs) and demonstrate the optimal cell preparation protocol for application in post-infarction hearts. We used conditioned SkMDS/PC culture medium with α-phenyl-N-tert-butyl nitrone (PBN). SkMDS/PCs were cultured under hypoxic conditions and the results were compared to the standard ones. We observed a significant increase of CD-56 positive phenotypic marker the ability to form functional myotubes, increase in the proportion of young cells in cell primary suspensions, and a decrease in the percentage of apoptotic cells among PBN-conditioned cells in normoxia an hypoxia. We also observed significantly higher levels of SOD3 expression; maintained expression of SOD1, SOD2, and CAT; a higher level of BCL2 gene expression; and a rather significant decrease in Hsp70 gene expression in PBN-conditioned SkMDS/PCs compared to the WT population under hypoxic conditions. In addition, significant increase of myogenic genes expression was observed after PBN addition to culture medium, compared to WT population under hypoxia. Interestingly, PBN addition significantly increased the lengths of telomeres under hypoxia. Based on the data obtained, we can postulate that PBN conditioning of human SkMDS/PCs could be a promising step in improving myogenic cell preparation protocol for pro-regenerative treatment of post-infarction hearts.
Collapse
|
4
|
Kutsyr O, Sánchez-Sáez X, Martínez-Gil N, de Juan E, Lax P, Maneu V, Cuenca N. Gradual Increase in Environmental Light Intensity Induces Oxidative Stress and Inflammation and Accelerates Retinal Neurodegeneration. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 32744596 PMCID: PMC7441298 DOI: 10.1167/iovs.61.10.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a blinding neurodegenerative disease of the retina that can be affected by many factors. The present study aimed to analyze the effect of different environmental light intensities in rd10 mice retina. Methods C57BL/6J and rd10 mice were bred and housed under three different environmental light intensities: scotopic (5 lux), mesopic (50 lux), and photopic (300 lux). Visual function was studied using electroretinography and optomotor testing. The structural and morphological integrity of the retinas was evaluated by optical coherence tomography imaging and immunohistochemistry. Additionally, inflammatory processes and oxidative stress markers were analyzed by flow cytometry and western blotting. Results When the environmental light intensity was higher, retinal function decreased in rd10 mice and was accompanied by light-dependent photoreceptor loss, followed by morphological alterations, and synaptic connectivity loss. Moreover, light-dependent retinal degeneration was accompanied by an increased number of inflammatory cells, which became more activated and phagocytic, and by an exacerbated reactive gliosis. Furthermore, light-dependent increment in oxidative stress markers in rd10 mice retina pointed to a possible mechanism for light-induced photoreceptor degeneration. Conclusions An increase in rd10 mice housing light intensity accelerates retinal degeneration, activating cell death, oxidative stress pathways, and inflammatory cells. Lighting intensity is a key factor in the progression of retinal degeneration, and standardized lighting conditions are advisable for proper analysis and interpretation of experimental results from RP animal models, and specifically from rd10 mice. Also, it can be hypothesized that light protection could be an option to slow down retinal degeneration in some cases of RP.
Collapse
|
5
|
Optogenetics-Mediated Gene Therapy for Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:535-543. [PMID: 33398840 DOI: 10.1007/978-981-15-8763-4_37] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The visual system consists of various types of neurons and a single-nucleotide mutation can sometimes lead to blindness. The phototransduction pathway in the retina starts from the first-order neurons, the photoreceptor cells, and transmits the signals to second-order neurons. Finally, the output signal from third-order neurons, the ganglion cells, is carried to the brain. The photoreceptor cells are the only neurons in the retina that can respond to a light signal; they are hyperpolarised when they receive light, and the ganglion cells carry the signals to the brain following the depolarization. Recently, various types of channelrhodopsins have been found and developed. It is expected that the gene therapies using the cation channel as well as anion channelrhodopsin genes would be effective against diseases that cause severe destruction of visual function, such as the retinitis pigmentosa and age-related macular degeneration. In this review, we mainly describe mVChR1-mediated gene therapy for retinitis pigmentosa and the future application of optogenetic genes in retinal diseases.
Collapse
|
6
|
Wang X, Peng H, Huang Y, Kong W, Cui Q, Du J, Jin H. Post-translational Modifications of IκBα: The State of the Art. Front Cell Dev Biol 2020; 8:574706. [PMID: 33224945 PMCID: PMC7674170 DOI: 10.3389/fcell.2020.574706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) signaling pathway regulates a variety of biological functions in the body, and its abnormal activation contributes to the pathogenesis of many diseases, such as cardiovascular and respiratory diseases and cancers. Therefore, to ensure physiological homeostasis of body systems, this pathway is strictly regulated by IκBα transcription, IκBα synthesis, and the IκBα-dependent nuclear transport of NF-κB. Particularly, the post-translational modifications of IκBα including phosphorylation, ubiquitination, SUMOylation, glutathionylation and hydroxylation are crucial in the abovementioned regulatory process. Because of the importance of the NF-κB pathway in maintaining body homeostasis, understanding the post-translational modifications of IκBα can not only provide deeper insights into the regulation of NF-κB pathway but also contribute to the development of new drug targets and biomarkers for the diseases.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Centre for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Toll-like receptor 7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons. Brain Behav Immun 2020; 87:840-851. [PMID: 32205121 PMCID: PMC7316623 DOI: 10.1016/j.bbi.2020.03.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
Toll like receptor 7 (TLR7) is expressed in neurons of the dorsal root ganglion (DRG), but whether it contributes to neuropathic pain is elusive. We found that peripheral nerve injury caused by ligation of the fourth lumbar (L4) spinal nerve (SNL) or chronic constriction injury of sciatic nerve led to a significant increase in the expression of TLR7 at mRNA and protein levels in mouse injured DRG. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5 expressing TLR7 shRNA into the ipsilateral L4 DRG alleviated the SNL-induced mechanical, thermal and cold pain hypersensitivities in both male and female mice. This microinjection also attenuated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase ½ (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in L4 dorsal horn on the ipsilateral side during both development and maintenance periods. Conversely, mimicking this increase through microinjection of AAV5 expressing full-length TLR7 into unilateral L3/4 DRGs led to elevations in the amounts of p-ERK1/2 and GFAP in the dorsal horn, augmented responses to mechanical, thermal and cold stimuli, and induced the spontaneous pain on the ipsilateral side in the absence of SNL. Mechanistically, the increased TLR7 activated the NF-κB signaling pathway through promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from the injured DRG neurons. Our findings suggest that DRG TLR7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons. TLR7 may be a potential target for therapeutic treatment of this disorder.
Collapse
|
8
|
Ivanova IG, Perkins ND. Hypoxia induces rapid, STAT3 and ROS dependent, mitochondrial translocation of RelA(p65) and IκBα. Biosci Rep 2019; 39:BSR20192101. [PMID: 31484794 PMCID: PMC6746997 DOI: 10.1042/bsr20192101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022] Open
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors can directly or indirectly regulate many important areas of biology, including immunity, inflammation and cell survival. One intriguing aspect of NF-κB crosstalk with other cell signalling pathways is its regulation of mitochondrial biology, including biogenesis, metabolism and apoptosis. In addition to regulating the expression of mitochondrial genes encoded in the nucleus, NF-κB signalling components are also found within mitochondria themselves and associated with mitochondrial DNA. However, complete biochemical analysis of mitochondrial and sub-mitochondrial localisation of all NF-κB subunits has not been undertaken. Here, we show that only the RelA NF-κB subunit and its inhibitor IκBα reside within mitochondria, whilst p50 is found in the endoplasmic reticulum (ER). Fractionation of mitochondria revealed that only RelA was found in the mitoplast, the location of the mtDNA. We demonstrate that hypoxia leads to a very rapid but transient accumulation of RelA and IκBα in mitochondria. This effect required reactive oxygen species (ROS) but was not dependent on the hypoxia sensing transcription factor subunit HIF1α or intracellular Ca2+ release. We also observed rapid mitochondrial localisation of transcription factor STAT3 following hypoxia. Inhibition of STAT3 blocked RelA and IκBα mitochondrial localisation revealing a previously unknown aspect of crosstalk between these key cellular regulators.
Collapse
Affiliation(s)
- Iglika G Ivanova
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle Upon Tyne, U.K
| | - Neil D Perkins
- Faculty of Medical Sciences, Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle Upon Tyne, U.K.
| |
Collapse
|
9
|
Fn14 Participates in Neuropathic Pain Through NF-κB Pathway in Primary Sensory Neurons. Mol Neurobiol 2019; 56:7085-7096. [PMID: 30976982 DOI: 10.1007/s12035-019-1545-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor-inducible-14 (Fn14), a receptor for tumor necrosis-like weak inducer of apoptosis, is expressed in the neurons of dorsal root ganglion (DRG). Its mRNA is increased in the injured DRG following peripheral nerve injury. Whether this increase contributes to neuropathic pain is unknown. We reported here that peripheral nerve injury caused by spinal nerve ligation (SNL) increased the expression of Fn14 at both protein and mRNA levels in the injured DRG. Blocking this increase attenuated the development of SNL-induced mechanical, thermal, and cold pain hypersensitivities. Conversely, mimicking this increase produced the increases in the levels of phosphorylated extracellular signal-regulated kinase ½ and glial fibrillary acidic protein in ipsilateral dorsal horn and the enhanced responses to mechanical, thermal, and cold stimuli in the absence of SNL. Mechanistically, the increased Fn14 activated the NF-κB pathway through promoting the translocation of p65 into the nucleus of the injured DRG neurons. Our findings suggest that Fn14 may be a potential target for the therapeutic treatment of peripheral neuropathic pain.
Collapse
|
10
|
Li JY, Zhang K, Xu D, Zhou WT, Fang WQ, Wan YY, Yan DD, Guo MY, Tao JX, Zhou WC, Yang F, Jiang LP, Han XJ. Mitochondrial Fission Is Required for Blue Light-Induced Apoptosis and Mitophagy in Retinal Neuronal R28 Cells. Front Mol Neurosci 2018; 11:432. [PMID: 30538621 PMCID: PMC6277708 DOI: 10.3389/fnmol.2018.00432] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
Light emitting diodes (LEDs) are widely used to provide illumination due to their low energy requirements and high brightness. However, the LED spectrum contains an intense blue light component which is phototoxic to the retina. Recently, it has been reported that blue light may directly impinge on mitochondrial function in retinal ganglion cells (RGCs). Mitochondria are high dynamic organelles that undergo frequent fission and fusion events. The aim of our study was to elucidate the role of mitochondrial dynamics in blue light-induced damage in retinal neuronal R28 cells. We found that exposure to blue light (450 nm, 1000 lx) for up to 12 h significantly up-regulated the expression of mitochondrial fission protein Drp1, while down-regulating the expression of mitochondrial fusion protein Mfn2 in cells. Mitochondrial fission was simultaneously stimulated by blue light irradiation. In addition, exposure to blue light increased the production of reactive oxygen species (ROS), disrupted mitochondrial membrane potential (MMP), and induced apoptosis in R28 cells. Notably, Drp1 inhibitor Mdivi-1 and Drp1 RNAi not only attenuated blue light-induced mitochondrial fission, but also alleviated blue light-induced ROS production, MMP disruption and apoptosis in cells. Compared with Mdivi-1 and Drp1 RNAi, the antioxidant N-acetyl-L-cysteine (NAC) only slightly inhibited mitochondrial fission, while significantly alleviating apoptosis after blue light exposure. Moreover, we examined markers for mitophagy, which is responsible for the clearance of dysfunctional mitochondria. It was found that blue light stimulated the conversion of LC3B-I to LC3B-II as well as the expression of PINK1 in R28 cells. Mdivi-1 or Drp1 RNAi efficiently inhibited the blue light-induced expression of PINK1 and co-localization of LC3 with mitochondria. Thus, our data suggest that mitochondrial fission is required for blue light-induced mitochondrial dysfunction and apoptosis in RGCs.
Collapse
Affiliation(s)
- Jia-Yu Li
- Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Kun Zhang
- Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Dan Xu
- Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Wen-Tian Zhou
- Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Wen-Qing Fang
- National Engineering Technology Research Center for LED on Silicon Substrate, Nanchang University, Nanchang, China
| | - Yu-Ying Wan
- Department of Intra-Hospital Infection Management, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan-Dan Yan
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Miao-Yu Guo
- Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Jin-Xin Tao
- Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Wen-Chuan Zhou
- Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Fan Yang
- National Engineering Technology Research Center for LED on Silicon Substrate, Nanchang University, Nanchang, China
| | - Li-Ping Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Xiao-Jian Han
- Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina. Biomed Pharmacother 2018; 103:829-837. [PMID: 29684862 DOI: 10.1016/j.biopha.2018.04.104] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
We assessed the neuroprotective effects of Lycium barbarum Polysaccharides (LBP) on photoreceptor degeneration and the mechanisms involved in oxidative stress in light-exposed mouse retinas. Mice were given a gavage of LBP (150 mg/kg or 300 mg/kg) or phosphate buffered saline (PBS) for 7 days before exposure to light (5000 lx for 24 h). We found that LBP significantly improved the electroretinography (ERG) amplitudes of the a- and b-waves that had been attenuated by light exposure. In addition, changes caused by light exposure including photoreceptor cell loss, nuclear condensation, an increased number of mitochondria vacuoles, outer membrane disc swelling and cristae fractures were distinctly ameliorated by LBP. LBP treatment also significantly prevented the generation of reactive oxygen species (ROS) compared with PBS treatment. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and thioredoxin reductase (TrxR1) mRNA were decreased in PBS-treated mice compared with controls but increased remarkably in LBP-treated mice. The mRNA levels of the DNA repair gene Poly (ADP-ribose) polymerase (PARP14) was increased in PBS-treated mice but decreased significantly in the LBP-treated mice. Our findings indicate that pretreatment with LBP effectively protected photoreceptor cells against light-induced retinal damage probably through the up-regulation of the antioxidative genes Nrf2 and TrxR1, the elimination of oxygen free radicals, and the subsequent reduction in the mitochondrial reaction to oxidative stress and enhancement in antioxidant capacity. In addition, the decreased level of PARP14 mRNA in LBP-treated mice also indicated a protective effect of LBP on delaying photoreceptor in the light-damaged retina.
Collapse
|