1
|
Kim NJ, Chowdhury NF, Buetow KH, Thompson PM, Irimia A. Genetic Insights into Brain Morphology: a Genome-Wide Association Study of Cortical Thickness and T 1-Weighted MRI Gray Matter-White Matter Intensity Contrast. Neuroinformatics 2025; 23:26. [PMID: 40167904 PMCID: PMC11961481 DOI: 10.1007/s12021-025-09722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
In T1-weighted magnetic resonance imaging (MRI), cortical thickness (CT) and gray-white matter contrast (GWC) capture brain morphological traits and vary with age-related disease. To gain insight into genetic factors underlying brain structure and dynamics observed during neurodegeneration, this genome-wide association study (GWAS) quantifies the relationship between single nucleotide polymorphisms (SNPs) and both CT and GWC in UK Biobank participants (N = 43,002). To our knowledge, this is the first GWAS to investigate the genetic determinants of cortical T1-MRI GWC in humans. We found 251 SNPs associated with CT or GWC for at least 1% of cortical locations, including 42 for both CT and GWC; 127 for only CT; and 82 for only GWC. Identified SNPs include rs1080066 (THSB1, featuring the strongest association with both CT and GWC), rs13107325 (SLC39A8, linked to CT at the largest number of cortical locations), and rs864736 (KCNK2, associated with GWC at the largest number of cortical locations). Dimensionality reduction reveals three major gene ontologies constraining CT (neural signaling, ion transport, cell migration) and four constraining GWC (neural cell development, cellular homeostasis, tissue repair, ion transport). Our findings provide insight into genetic determinants of GWC and CT, highlighting pathways associated with brain anatomy and dynamics of neurodegeneration. These insights can assist the development of gene therapies and treatments targeting brain diseases.
Collapse
Affiliation(s)
- Nicholas J Kim
- University of Southern California (Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering), Los Angeles, CA, USA
- University of Southern California (Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology), Los Angeles, CA, USA
| | - Nahian F Chowdhury
- University of Southern California (Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology), Los Angeles, CA, USA
| | - Kenneth H Buetow
- Arizona State University (School of Life Sciences Center for Social Dynamics and Complexity), Tempe, AZ, USA
| | - Paul M Thompson
- University of Southern California (Mark and Mary Stevens Neuroimaging and Informatics Institute), Marina del Rey, Los Angeles, CA, USA
| | - Andrei Irimia
- University of Southern California (Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering), Los Angeles, CA, USA.
- University of Southern California (Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology), Los Angeles, CA, USA.
- University of Southern California (Department of Quantitative & Computational Biology, Dornsife College of Arts and Sciences), Los Angeles, CA, USA.
- King's College London (Centre for Healthy Brain Aging, Institute of Psychiatry, Psychology & Neuroscience), London, England, UK.
| |
Collapse
|
2
|
Gallardo-Blanco HL, Garza-Rodríguez MDL, Pérez-Ibave DC, Burciaga-Flores CH, Salinas-Torres VM, González-Escamilla M, Piñeiro-Retif R, Cerda-Flores RM, Vidal-Gutiérrez O, Sanchez-Dominguez CN. Genetic Insights into Breast Cancer in Northeastern Mexico: Unveiling Gene-Environment Interactions and Their Links to Obesity and Metabolic Diseases. Cancers (Basel) 2025; 17:982. [PMID: 40149317 PMCID: PMC11940701 DOI: 10.3390/cancers17060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Breast cancer (BC), one of the most common cancers, has increased in Mexico during the past decade, along with other chronic and metabolic diseases. Methods: Herein, we analyzed 121 SNPs (85 SNPs related to BC and/or glucose-associated metabolic pathways and 36 SNP classified as ancestry markers) in 92 confirmed BC cases and 126 unaffected BC women from Northeastern Mexico. The relationship of these 121 SNPs with BC, considering BMI, menopause status, and age as cofactors, was explored using a gene-environment (G × E) interaction multi-locus model. Results: Twelve gene variants were significantly associated with BC: three located in exome (rs3856806 PPARG, rs12792229 MMP8, and rs5218 KCNJ11-ABCC8), and nine in non-coding regions, which are involved in accelerated decay of the mRNA transcripts, regulatory regions, and flanking regions (rs3917542 PON1; rs3750804 and rs3750805 TCF7L2; rs1121980 and rs3751812 FTO; rs12946618 RPTOR; rs2833483 SCAF4; rs11652805 AMZ2P1-GNA13; and rs1800955 SCT-DEAF1-DRD4). Conclusions: This study identified an association between BC and menopause, age (above 45), obesity, and overweight status with gene variants implicated in diabetes mellitus, obesity, insulin resistance, inflammation, and remodeling of the extracellular matrix.
Collapse
Affiliation(s)
- Hugo Leonid Gallardo-Blanco
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - María de Lourdes Garza-Rodríguez
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - Diana Cristina Pérez-Ibave
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - Carlos Horacio Burciaga-Flores
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - Víctor Michael Salinas-Torres
- Departamento de Medicina Genómica, Hospital General Culiacán “Dr. Bernardo J. Gastélum”, Servicios de Salud del Instituto Mexicano del Seguro Social para el Bienestar, Culiacán 80064, SIN, Mexico;
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán 80019, SIN, Mexico
| | - Moisés González-Escamilla
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - Rafael Piñeiro-Retif
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | | | - Oscar Vidal-Gutiérrez
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - Celia N. Sanchez-Dominguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| |
Collapse
|
3
|
Alsagaby SA. Biological roles of THRAP3, STMN1 and GNA13 in human blood cancer cells. 3 Biotech 2024; 14:248. [PMID: 39345963 PMCID: PMC11424602 DOI: 10.1007/s13205-024-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Blood cancers, such as diffuse large B-cell lymphoma (DLBCL), Burkitt's lymphoma (BL) and acute myeloid leukemia (AML), are aggressive neoplasms that are characterized by undesired clinical courses with dismal survival rates. The objective of the current work is to study the expression THRAP3, STMN1 and GNA13 in DLBCL, BL and AML, and to investigate if these proteins are implicated in the prognosis and progression of the blood cancers. Isolation of normal blood cells was performed using lymphoprep coupled with gradient centrifugation and magnetic beads. Flow-cytometric analysis showed high quality of the isolated cells. Western blotting identified THRAP3, STMN1 and GNA13 to be overexpressed in the blood cancer cells but hardly detected in normal blood cells from healthy donors. Consistently, investigations performed using genotype-tissue expression (GTEx) and gene expression profiling interactive analysis (GEPIA) showed that the three proteins had higher mRNA expression in various cancers compared with matched normal tissues (p ≤ 0.01). Furthermore, the up-regulated transcript expression of these proteins was a feature of short overall survival (OS; p ≤ 0.02) in patients with the blood cancers. Interestingly, functional profiling using gProfiler and protein-protein interaction network analysis using STRING with cytoscape reported THRAP3 to be associated with cancer-dependent proliferation and survival pathways (corrected p ≤ 0.05) and to interact with proteins (p = 1 × 10-16) implicated in tumourigenesis and chemotherapy resistance. Taken together, these findings indicated a possible implication of THRAP3, STMN1 and GNA13 in the progression and prognosis of the blood cancers. Additional work using clinical samples of the blood cancers is required to further investigate and validate the results reported here. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04093-5.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11932 Saudi Arabia
| |
Collapse
|
4
|
McDuffie EL, Panettieri RA, Scott CP. G 12/13 signaling in asthma. Respir Res 2024; 25:295. [PMID: 39095798 PMCID: PMC11297630 DOI: 10.1186/s12931-024-02920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood. Our review of the literature suggests that pro-contractile G protein coupled receptors likely signal through G12/13 to activate RhoA and mediate calcium sensitization. This hypothesis is consistent with the effects of pro-contractile agonists on RhoA and Rho kinase activation, actin polymerization and myosin light chain phosphorylation. Recognizing the likely role of G12/13 signaling in the pathophysiology of asthma rationalizes the effects of pro-contractile stimuli on airway hyperresponsiveness, immune activation and airway remodeling, and suggests new approaches for asthma treatment.
Collapse
Affiliation(s)
- Elizabeth L McDuffie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Charles P Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Wu D, Casey PJ. GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer. Int J Mol Sci 2024; 25:7162. [PMID: 39000269 PMCID: PMC11241654 DOI: 10.3390/ijms25137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Gα13 and Gα12, encoded by the GNA13 and GNA12 genes, respectively, are members of the G12 family of Gα proteins that, along with their associated Gβγ subunits, mediate signaling from specific G protein-coupled receptors (GPCRs). Advanced prostate cancers have increased expression of GPCRs such as CXC Motif Chemokine Receptor 4 (CXCR4), lysophosphatidic acid receptor (LPAR), and protease activated receptor 1 (PAR-1). These GPCRs signal through either the G12 family, or through Gα13 exclusively, often in addition to other G proteins. The effect of Gα13 can be distinct from that of Gα12, and the role of Gα13 in prostate cancer initiation and progression is largely unexplored. The oncogenic effect of Gα13 on cell migration and invasion in prostate cancer has been characterized, but little is known about other biological processes such as mitochondrial function and oxidative stress. Current knowledge on the link between Gα13 and oxidative stress is based on animal studies in which GPCR-Gα13 signaling decreased superoxide levels, and the overexpression of constitutively active Gα13 promoted antioxidant gene activation. In human samples, mitochondrial superoxide dismutase 2 (SOD2) correlates with prostate cancer risk and prognostic Gleason grade. However, overexpression of SOD2 in prostate cancer cells yielded conflicting results on cell growth and survival under basal versus oxidative stress conditions. Hence, it is necessary to explore the effect of Gα13 on prostate cancer tumorigenesis, as well as the effect of Gα13 on SOD2 in prostate cancer cell growth under oxidative stress conditions.
Collapse
Affiliation(s)
- Di Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Patrick J. Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
6
|
Oyama M, Sakamoto M, Kitabatake K, Shiina K, Kitahara D, Onozawa S, Nishino K, Sudo Y, Tsukimoto M. Involvement of Cannabinoid Receptors and Adenosine A2B Receptor in Enhanced Migration of Lung Cancer A549 Cells Induced by γ-Ray Irradiation. Biol Pharm Bull 2024; 47:60-71. [PMID: 37926527 DOI: 10.1248/bpb.b23-00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Residual cancer cells after radiation therapy may acquire malignant phenotypes such as enhanced motility and migration ability, and therefore it is important to identify targets for preventing radiation-induced malignancy in order to increase the effectiveness of radiotherapy. G-Protein-coupled receptors (GPCRs) such as adenosine A2B receptor and cannabinoid receptors (CB1, CB2, and GPR55) may be involved, as they are known to have roles in proliferation, invasion, migration and tumor growth. In this study, we investigated the involvement of A2B and cannabinoid receptors in γ-radiation-induced enhancement of cell migration and actin remodeling, as well as the involvement of cannabinoid receptors in cell migration enhancement via activation of A2B receptor in human lung cancer A549 cells. Antagonists or knockdown of A2B, CB1, CB2, or GPR55 receptor suppressed γ-radiation-induced cell migration and actin remodeling. Furthermore, BAY60-6583 (an A2B receptor-specific agonist) enhanced cell migration and actin remodeling in A549 cells, and this enhancement was suppressed by antagonists or knockdown of CB2 or GPR55, though not CB1 receptor. Our results indicate that A2B receptors and cannabinoid CB1, CB2, and GPR55 receptors all contribute to γ-radiation-induced acquisition of malignant phenotypes, and in particular that interactions of A2B receptor and cannabinoid CB2 and GPR55 receptors play a role in promoting cell migration and actin remodeling. A2B receptor-cannabinoid receptor pathways may be promising targets for blocking the appearance of malignant phenotypes during radiotherapy of lung cancer.
Collapse
Affiliation(s)
- Misaki Oyama
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Misaki Sakamoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kazuki Kitabatake
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kanami Shiina
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Daisuke Kitahara
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Sohei Onozawa
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Keisuke Nishino
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yuka Sudo
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
7
|
Mao Y, Jiang X, Guo P, Ouyang Y, Chen X, Xia M, Wu L, Tang Z, Liang T, Li Y, He M. ZXDC enhances cervical cancer metastasis through IGF2BP3-mediated activation of RhoA/ ROCK signaling. iScience 2023; 26:107447. [PMID: 37599824 PMCID: PMC10433122 DOI: 10.1016/j.isci.2023.107447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Metastasis in cervical cancer (CC) has a significant negative impact on patient survival, highlighting the urgent need for investigation in this area. In this study, we identified significant overexpression of zinc finger, X-linked, duplicated family member C (ZXDC) in CC tissue with metastasis, which correlates with poor outcomes for CC patients. We observed that overexpression of ZXDC promotes, while silencing of ZXDC inhibits the metastasis of CC cells both in vitro and in vivo. Additionally, our research demonstrated that ZXDC activated RhoA/ROCK signaling pathway, leading to enhanced cytoskeleton remodeling in CC cells. Besides, we found that IGF2BP3 plays an essential role in the activation of ZXDC on the RhoA/ROCK signaling pathway by stabilizing RhoA mRNA. These findings reveal a mechanism whereby ZXDC promotes the cervical cancer metastasis by targeting IGF2BP3/RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Yifang Mao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xingyu Jiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Peng Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meng Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lixin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zihao Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Tianyi Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Mian He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
8
|
Ribeiro V, Martins SG, Lopes AS, Thorsteinsdóttir S, Zilhão R, Carlos AR. NFIXing Cancer: The Role of NFIX in Oxidative Stress Response and Cell Fate. Int J Mol Sci 2023; 24:ijms24054293. [PMID: 36901722 PMCID: PMC10001739 DOI: 10.3390/ijms24054293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
NFIX, a member of the nuclear factor I (NFI) family of transcription factors, is known to be involved in muscle and central nervous system embryonic development. However, its expression in adults is limited. Similar to other developmental transcription factors, NFIX has been found to be altered in tumors, often promoting pro-tumorigenic functions, such as leading to proliferation, differentiation, and migration. However, some studies suggest that NFIX can also have a tumor suppressor role, indicating a complex and cancer-type dependent role of NFIX. This complexity may be linked to the multiple processes at play in regulating NFIX, which include transcriptional, post-transcriptional, and post-translational processes. Moreover, other features of NFIX, including its ability to interact with different NFI members to form homodimers or heterodimers, therefore allowing the transcription of different target genes, and its ability to sense oxidative stress, can also modulate its function. In this review, we examine different aspects of NFIX regulation, first in development and then in cancer, highlighting the important role of NFIX in oxidative stress and cell fate regulation in tumors. Moreover, we propose different mechanisms through which oxidative stress regulates NFIX transcription and function, underlining NFIX as a key factor for tumorigenesis.
Collapse
Affiliation(s)
- Vanessa Ribeiro
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Susana G. Martins
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Sofia Lopes
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Centro Hospitalar de Lisboa Ocidental (CHLO), 1449-005 Lisbon, Portugal
| | - Sólveig Thorsteinsdóttir
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Rita Zilhão
- cE3c-CHANGE, Department of Plant Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Rita Carlos
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
9
|
Wang Y, Wang J, Zhao A, Huang X, Zhang X. HPV16 E6E7 up-regulates KIF2A expression by activating JNK/c-Jun signal, is beneficial to migration and invasion of cervical cancer cells. Open Med (Wars) 2022; 17:1780-1787. [PMID: 36447525 PMCID: PMC9663933 DOI: 10.1515/med-2022-0578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2023] Open
Abstract
Cervical cancer is the fourth most common cancer and the fourth leading cause of cancer death in women. Human papillomavirus (HPV16) E6/E7 heterogenous expression in C33A cells increased the mRNA and protein levels of KIF2A, while siRNA deletion of endogenous E6/E7 reduced the mRNA and protein levels of KIF2A in SiHa cells. KIF2A promoted cell migration and invasion, and regulated the expression of epithelial-mesenchymal transition-related proteins in C33A and SiHa cells. The exogenous expression of E6/E7 in C33A cells increased the phosphorylation of Akt, ERK, and JNK. However, Akt (API-2) and ERK (PD98059) inhibitors had no effect on the increase in KIF2A expression induced by E6/E7, while JNK inhibitors (JNK-IN-8 and SP600125) blocked the increase in KIF2A expression induced by E6/E7. The exogenous expression of E6/E7 increased the levels of transcription factor c-Jun, which is the classic substrate of JNK. Knockdown of c-Jun reduced the increase in KIF2A expression induced by E6/E7. In summary, KIF2A plays a key role in the motility and metastasis of cervical cancer. HPV16 E6/E7 can increase the levels of transcription factor c-Jun by activating the JNK signal, thereby up-regulating the transcriptional expression of KIF2A.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Jinfeng Wang
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Anqi Zhao
- Department of Obstetrics and Gynecology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xin Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Xin Zhang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| |
Collapse
|
10
|
Guo P, Tai Y, Wang M, Sun H, Zhang L, Wei W, Xiang YK, Wang Q. Gα 12 and Gα 13: Versatility in Physiology and Pathology. Front Cell Dev Biol 2022; 10:809425. [PMID: 35237598 PMCID: PMC8883321 DOI: 10.3389/fcell.2022.809425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs), as the largest family of receptors in the human body, are involved in the pathological mechanisms of many diseases. Heterotrimeric G proteins represent the main molecular switch and receive cell surface signals from activated GPCRs. Growing evidence suggests that Gα12 subfamily (Gα12/13)-mediated signaling plays a crucial role in cellular function and various pathological processes. The current research on the physiological and pathological function of Gα12/13 is constantly expanding, Changes in the expression levels of Gα12/13 have been found in a wide range of human diseases. However, the mechanistic research on Gα12/13 is scattered. This review briefly describes the structural sequences of the Gα12/13 isoforms and introduces the coupling of GPCRs and non-GPCRs to Gα12/13. The effects of Gα12/13 on RhoA and other signaling pathways and their roles in cell proliferation, migration, and immune cell function, are discussed. Finally, we focus on the pathological impacts of Gα12/13 in cancer, inflammation, metabolic diseases, fibrotic diseases, and circulatory disorders are brought to focus.
Collapse
Affiliation(s)
- Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States.,VA Northern California Health Care System, Mather, CA, United States
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Li X, Li D, Ma R. ALW‑II‑41‑27, an EphA2 inhibitor, inhibits proliferation, migration and invasion of cervical cancer cells via inhibition of the RhoA/ROCK pathway. Oncol Lett 2022; 23:129. [PMID: 35251349 PMCID: PMC8895465 DOI: 10.3892/ol.2022.13249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiang Li
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Dan Li
- Department of Gynecology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| | - Rong Ma
- Department of Gynecology, Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| |
Collapse
|
12
|
Adeel MM, Jiang H, Arega Y, Cao K, Lin D, Cao C, Cao G, Wu P, Li G. Structural Variations of the 3D Genome Architecture in Cervical Cancer Development. Front Cell Dev Biol 2021; 9:706375. [PMID: 34368157 PMCID: PMC8344058 DOI: 10.3389/fcell.2021.706375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) integration is the major contributor to cervical cancer (CC) development by inducing structural variations (SVs) in the human genome. SVs are directly associated with the three-dimensional (3D) genome structure leading to cancer development. The detection of SVs is not a trivial task, and several genome-wide techniques have greatly helped in the identification of SVs in the cancerous genome. However, in cervical cancer, precise prediction of SVs mainly translocations and their effects on 3D-genome and gene expression still need to be explored. Here, we have used high-throughput chromosome conformation capture (Hi-C) data of cervical cancer to detect the SVs, especially the translocations, and validated it through whole-genome sequencing (WGS) data. We found that the cervical cancer 3D-genome architecture rearranges itself as compared to that in the normal tissue, and 24% of the total genome switches their A/B compartments. Moreover, translocation detection from Hi-C data showed the presence of high-resolution t(4;7) (q13.1; q31.32) and t(1;16) (q21.2; q22.1) translocations, which disrupted the expression of the genes located at and nearby positions. Enrichment analysis suggested that the disrupted genes were mainly involved in controlling cervical cancer-related pathways. In summary, we detect the novel SVs through Hi-C data and unfold the association among genome-reorganization, translocations, and gene expression regulation. The results help understand the underlying pathogenicity mechanism of SVs in cervical cancer development and identify the targeted therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Muhammad Muzammal Adeel
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hao Jiang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yibeltal Arega
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Kai Cao
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Peng Wu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediators Inflamm 2021; 2021:6655417. [PMID: 33746610 PMCID: PMC7943314 DOI: 10.1155/2021/6655417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of transmembrane proteins that transduce an external stimulus into a variety of cellular responses. They play a critical role in various pathological conditions in humans, including cancer, by regulating a number of key processes involved in tumor formation and progression. The epithelial-mesenchymal transition (EMT) is a fundamental process in promoting cancer cell invasion and tumor dissemination leading to metastasis, an often intractable state of the disease. Uncontrolled proliferation and persistent metabolism of cancer cells also induce oxidative stress, hypoxia, and depletion of growth factors and nutrients. These disturbances lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and induce a cellular condition called ER stress (ERS) which is counteracted by activation of the unfolded protein response (UPR). Many GPCRs modulate ERS and UPR signaling via ERS sensors, IRE1α, PERK, and ATF6, to support cancer cell survival and inhibit cell death. By regulating downstream signaling pathways such as NF-κB, MAPK/ERK, PI3K/AKT, TGF-β, and Wnt/β-catenin, GPCRs also upregulate mesenchymal transcription factors including Snail, ZEB, and Twist superfamilies which regulate cell polarity, cytoskeleton remodeling, migration, and invasion. Likewise, ERS-induced UPR upregulates gene transcription and expression of proteins related to EMT enhancing tumor aggressiveness. Though GPCRs are attractive therapeutic targets in cancer biology, much less is known about their roles in regulating ERS and EMT. Here, we will discuss the interplay in GPCR-ERS linked to the EMT process of cancer cells, with a particular focus on oncogenes and molecular signaling pathways.
Collapse
|
14
|
Chen HY, Zhang WL, Zhang L, Yang P, Li F, Yang ZR, Wang J, Pang M, Hong Y, Yan C, Li W, Liu J, Xu N, Chen L, Xiao XB, Qin Y, He XH, Liu H, Zhu HC, He C, Lin J, Jing HM. 5-Hydroxymethylcytosine profiles of cfDNA are highly predictive of R-CHOP treatment response in diffuse large B cell lymphoma patients. Clin Epigenetics 2021; 13:33. [PMID: 33573703 PMCID: PMC7879534 DOI: 10.1186/s13148-020-00973-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) remains the standard chemotherapy regimen for diffuse large B cell lymphoma (DLBCL) patients, not all patients are responsive to the scheme, and there is no effective method to predict treatment response. METHODS We utilized 5hmC-Seal to generate genome-wide 5hmC profiles in plasma cell-free DNA (cfDNA) from 86 DLBCL patients before they received R-CHOP chemotherapy. To investigate the correlation between 5hmC modifications and curative effectiveness, we separated patients into training (n = 56) and validation (n = 30) cohorts and developed a 5hmC-based logistic regression model from the training cohort to predict the treatment response in the validation cohort. RESULTS In this study, we identified thirteen 5hmC markers associated with treatment response. The prediction performance of the logistic regression model, achieving 0.82 sensitivity and 0.75 specificity (AUC = 0.78), was superior to existing clinical indicators, such as LDH and stage. CONCLUSIONS Our findings suggest that the 5hmC modifications in cfDNA at the time before R-CHOP treatment are associated with treatment response and that 5hmC-Seal may potentially serve as a clinical-applicable, minimally invasive approach to predict R-CHOP treatment response for DLBCL patients.
Collapse
Affiliation(s)
- Hang-Yu Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, People's Republic of China
| | - Wei-Long Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lei Zhang
- Yang Sheng Tang Natural Medicine Research Institute, Hangzhou, 310024, People's Republic of China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Fang Li
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Ze-Ruo Yang
- Yang Sheng Tang Natural Medicine Research Institute, Hangzhou, 310024, People's Republic of China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Meng Pang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yun Hong
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Wei Li
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Jia Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Nuo Xu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, People's Republic of China
| | - Long Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, People's Republic of China
| | - Xiu-Bing Xiao
- Lymphoma Head and Neck Oncology, Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Yan Qin
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Xiao-Hui He
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Beijing, 1000730, People's Republic of China
| | - Hai-Chuan Zhu
- Institute of Biology and Medicine, College of Life and Health 20 Sciences, Wuhan University of Science and Technology, Hubei, 430081, People's Republic of China
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Jian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, People's Republic of China.
| | - Hong-Mei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
15
|
Ye Q, Zhao S, Zhang Y, Su YM, Chen M, Zhao J, Jia GZ, Han BM, Jiang JT. Activation of the RhoA/ROCK pathway contributes to renal fibrosis in offspring rats induced by maternal exposure to di-n-butyl phthalate. Toxicology 2020; 443:152573. [PMID: 32860865 DOI: 10.1016/j.tox.2020.152573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022]
Abstract
Maternal exposure to di-n-butyl phthalate (DBP) can cause renal fibrosis in adult offspring rats. However, its underlying mechanisms have not yet been fully understood. In this study, we investigated whether the RhoA/ROCK pathway plays an important role in offspring renal fibrosis induced by maternal exposure to DBP. Our results showed that maternal exposure to DBP (850 mg/kg/day orally feeding during gestational days 14-18) activated the RhoA/ROCK pathway and induced epithelial-mesenchymal transition (EMT) in kidneys of offspring rats. Compared with the control group treated with normal saline, EMT in the kidneys of offspring rats undergoing 8 weeks of ROCK inhibitor Y-27632 treatment (at a dose of 30 mg/kg) was significantly inhibited, the degree of renal fibrosis was significantly reduced, and the renal function was significantly improved. DBP (10 μmol/L) activated the RhoA/ROCK pathway and induced EMT in NRK-52E cells in vitro. Both 5 μM and 10 μM Y-27632, a ROCK inhibitor, significantly reduced the EMT of NRK-52E cells. Taken together, our findings suggest that the RhoA/ROCK pathway plays an important role in the pathogenesis of renal fibrosis in offspring rats induced by maternal exposure to DBP via promoting EMT of renal tubular epithelial cells.
Collapse
Affiliation(s)
- Qing Ye
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Ming Su
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gao-Zhen Jia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun-Tao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Zou C, Lyu Y, Jiang J, Cao Y, Wang M, Sang C, Zhang R, Li H, Liew CC, Cheng C, Zhao S. Use of peripheral blood transcriptomic biomarkers to distinguish high-grade cervical squamous intraepithelial lesions from low-grade lesions. Oncol Lett 2020; 20:2280-2290. [PMID: 32765790 PMCID: PMC7403635 DOI: 10.3892/ol.2020.11779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/07/2020] [Indexed: 01/10/2023] Open
Abstract
It is crucial to classify cervical lesions into high-grade squamous intraepithelial lesions (HSILs) and low-grade SILs (LSILs), as LSILs are conservatively treated by observation, based on an expectation of natural regression, whereas HSILs usually require electrosurgical excision. In the present study, peripheral blood gene expression profiles were analyzed to identify transcriptomic biomarkers distinguishing HSILs from LSILs. A total of 102 blood samples were collected from women with cervical SILs (66 HSIL and 36 LSIL) for microarray hybridization. Candidate gene signatures were identified using AdaBoost algorithms, and a predictive model was constructed using logistic regression to differentiate HSILs from LSILs. To correct for possible bias as a result of the limited sample size and to verify the stability of the predictive model, a two-fold cross validation and null set analysis was conducted over 1,000 iterations. The functions of the transcriptomic biomarkers were then analyzed to elucidate the pathogenesis of cervical SIL. A total of 10 transcriptomic genes (STMN3, TRPC4AP, DYRK2, AGK, KIAA0319L, GRPEL1, ZFC3H1, LYL1, ITGB1 and ARHGAP18) were identified. The predictive model based on the 10-gene panel exhibited well-discriminated power. A cross validation process using known disease status exhibited almost the same performance as that of the predictive model, whereas null-set analysis with randomly reassigned disease status exhibited much lower predictive performance for distinguishing HSILs from LSILs. These biomarkers were involved in the 'Rho GTPase cycle', 'mitochondrial protein import', 'oncogenic MAPK signaling', 'integrin cell surface interaction' and 'signaling by BRAF and RAF fusions'. In conclusion, peripheral blood gene expression analysis is a promising method for distinguishing HSILs from LSILs. The present study proposes 10 candidate genes that could be used in the future as diagnostic biomarkers and potential therapeutic targets for cervical SILs. A simple, non-invasive blood test would be clinically useful in the diagnosis and classification of patients with cervical SILs.
Collapse
Affiliation(s)
- Cunhua Zou
- Gynecology Center, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| | - Yali Lyu
- R&D Center, Shanghai Homeostasis Bio-Technology Inc., Shanghai 201203, P.R. China
| | - Jing Jiang
- Gynecology Center, Qingdao Lianchi Maternity and Infant Hospital, Qingdao, Shandong 266034, P.R. China
| | - Yuan Cao
- Gynecology Center, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| | - Min Wang
- R&D Center, Shanghai Homeostasis Bio-Technology Inc., Shanghai 201203, P.R. China
| | - Changmei Sang
- Gynecology Center, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| | - Ruirui Zhang
- R&D Center, Shanghai Homeostasis Bio-Technology Inc., Shanghai 201203, P.R. China
| | - Haifeng Li
- Gynecology Center, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| | - Choong-Chin Liew
- Golden Health Diagnostics Inc., Yancheng, Jiangsu 224000, P.R. China.,Department of Clinical Pathology and Laboratory Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Changming Cheng
- R&D Center, Shanghai Homeostasis Bio-Technology Inc., Shanghai 201203, P.R. China
| | - Shuping Zhao
- Gynecology Center, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| |
Collapse
|
17
|
Stecky RC, Quick CR, Fleming TL, Mull ML, Vinson VK, Whitley MS, Dover EN, Meigs TE. Divergent C-terminal motifs in Gα12 and Gα13 provide distinct mechanisms of effector binding and SRF activation. Cell Signal 2020; 72:109653. [PMID: 32330601 DOI: 10.1016/j.cellsig.2020.109653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/18/2022]
Abstract
The G12/13 subfamily of heterotrimeric guanine nucleotide binding proteins comprises the α subunits Gα12 and Gα13, which transduce signals for cell growth, cytoskeletal rearrangements, and oncogenic transformation. In an increasing range of cancers, overexpressed Gα12 or Gα13 are implicated in aberrant cell proliferation and/or metastatic invasion. Although Gα12 and Gα13 bind non-redundant sets of effector proteins and participate in unique signalling pathways, the structural features responsible for functional differences between these α subunits are largely unknown. Invertebrates encode a single G12/13 homolog that participates in cytoskeletal changes yet appears to lack signalling to SRF (serum response factor), a transcriptional activator stimulated by mammalian Gα12 and Gα13 to promote growth and tumorigenesis. Our previous studies identified an evolutionarily divergent region in Gα12 for which replacement by homologous sequence from Drosophila melanogaster abolished SRF signalling, whereas the same invertebrate substitution was fully tolerated in Gα13 [Montgomery et al. (2014) Mol. Pharmacol. 85: 586]. These findings prompted our current approach of evolution-guided mutagenesis to identify fine structural features of Gα12 and Gα13 that underlie their respective SRF activation mechanisms. Our results identified two motifs flanking the α4 helix that play a key role in Gα12 signalling to SRF. We found the region encompassing these motifs to provide an interacting surface for multiple Gα12-specific target proteins that fail to bind Gα13. Adjacent to this divergent region, a highly-conserved domain was vital for SRF activation by both Gα12 and Gα13. However, dissection of this domain using invertebrate substitutions revealed different signalling mechanisms in these α subunits and identified Gα13-specific determinants of binding Rho-specific guanine nucleotide exchange factors. Furthermore, invertebrate substitutions in the C-terminal, α5 helical region were selectively disruptive to Gα12 signalling. Taken together, our results identify key structural features near the C-terminus that evolved after the divergence of Gα12 and Gα13, and should aid the development of agents to selectively manipulate signalling by individual α subunits of the G12/13 subfamily.
Collapse
Affiliation(s)
- Rebecca C Stecky
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Courtney R Quick
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Todd L Fleming
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Makenzy L Mull
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Vanessa K Vinson
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Megan S Whitley
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - E Nicole Dover
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Thomas E Meigs
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America.
| |
Collapse
|
18
|
Wanchai V, Jin J, Bircan E, Eng C, Orloff M. Genome-wide tracts of homozygosity and exome analyses reveal repetitive elements with Barrets esophagus/esophageal adenocarcinoma risk. BMC Bioinformatics 2019; 20:98. [PMID: 30871476 PMCID: PMC6419328 DOI: 10.1186/s12859-019-2622-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Barrett's esophagus (BE) is most commonly seen as the condition in which the normal squamous epithelium lining of the esophagus is replaced by goblet cells. Many studies show that BE is a predisposing factor for the development of esophageal adenocarcinoma (EAC), a particularly lethal cancer. The use of single nucleotide polymorphisms (SNPs) to map BE/EAC genes has previously provided insufficient genetic information to fully characterize the heterogeneous nature of the disease. We therefore hypothesize that rigorous interrogation of other types of genomic changes, e.g. tracts of homozygosity (TOH), repetitive elements, and insertion/deletions, may provide a comprehensive understanding of the development of BE/EAC. RESULTS First, we used a case-control framework to identify TOHs by using SNPs and tested for association with BE/EAC. Second, we used a case only approach on a validation series of eight samples subjected to exome sequencing to identify repeat elements and insertion/deletions. Third, insertion/deletions and repeat elements identified in the exomes were then mapped onto genes in the significant TOH regions. Overall, 24 TOH regions were significantly differentially represented among cases, as compared to controls (adjusted-P = 0.002-0.039). Interestingly, four BE/EAC-associated genes within the TOH regions consistently showed insertions and deletions that overlapped across eight exomes. Predictive functional analysis identified NOTCH, WNT, and G-protein inflammation pathways that affect BE and EAC. CONCLUSIONS The integration of common TOHs (cTOHs) with repetitive elements, insertions, and deletions within exomes can help functionally prioritize factors contributing to low to moderate penetrance predisposition to BE/EAC.
Collapse
Affiliation(s)
- Visanu Wanchai
- Arkansas Center for Genomic Epidemiology & Medicine and The Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Jing Jin
- The Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Emine Bircan
- The Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Mohammed Orloff
- The Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| |
Collapse
|
19
|
Goswami S. G protein-coupled receptor signaling in cardiovascular system: Specificity versus diversity. JOURNAL OF THE PRACTICE OF CARDIOVASCULAR SCIENCES 2019. [DOI: 10.4103/jpcs.jpcs_37_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Wang X, Mao R, Chen W. FSD-C10 Shows Therapeutic Effects in Suppressing oxidized low-density lipoprotein (ox-LDL)-Induced Human Brain Microvascular Endothelial Cells Apoptosis via Rho-Associated Coiled-Coil Kinase (ROCK)/Mitogen-Activated Protein Kinase (MAPK) Signaling. Med Sci Monit 2018; 24:5509-5516. [PMID: 30088495 PMCID: PMC6097139 DOI: 10.12659/msm.911481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ox-LDL-induced injury of brain microvascular endothelial cells (BMECs) is strongly associated with cerebral vascular diseases such as cerebral arterial atherosclerosis. ROCK inhibitor was proved to be anti-apoptotic and has been used in treating cerebral vascular diseases. Research on the neuroprotective effects of a novel ROCK inhibitor, FSD-C10, is still limited. The present study investigated the anti-apoptotic effect and underlying molecular mechanism of FSD-C10 in ox-LDL-mediated apoptosis of BMECs. MATERIAL AND METHODS ox-LDL and/or FSD-C10 were used to incubate immortalized human BMECs. MTT assay was used to assess cell viability. Cell apoptosis was evaluated by TUNEL assay. A colorimetric method was used to assess ROCK activity. Western blot analysis was used to examine the expression and phosphorylation levels of proteins. RESULTS ox-LDL incubation reduced the viability of BMECs by inducing cell apoptosis in a concentration-dependent manner. ROCK activity was also elevated by ox-LDL incubation in BMECs in a concentration-dependent manner. Expression level of Bcl2 was reduced while expression levels of Bax and active caspase3 were increased by ox-LDL treatment in a concentration-dependent manner. ox-LDL also increased the phosphorylation levels of p38, JNK, and ERK1/2 in a concentration-dependent manner. FSD-C10 treatment increased the cell viability by reducing apoptosis of BMECs exposed to ox-LDL. Moreover, FSD-C10 was found to suppress the phosphorylation levels of p38, JNK, and ERK1/2 and the expression levels of Bax and active caspase3 in ox-LDL treated BMECs. CONCLUSIONS FSD-C10 increases cell viability in ox-LDL-treated BMECs by reducing cell apoptosis. ROCK/MAPKs-mediated apoptosis appears to be the underlying molecular mechanism.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Yiwu Central Hospital, Yiwu, Zhejiang, China (mainland)
| | - Rongyan Mao
- Department of Neurology, Yiwu Central Hospital, Yiwu, Zhejiang, China (mainland)
| | - Weiwei Chen
- Department of Neurology, Yiwu Central Hospital, Yiwu, Zhejiang, China (mainland)
| |
Collapse
|
21
|
Mu G, Ding Q, Li H, Zhang L, Zhang L, He K, Wu L, Deng Y, Yang D, Wu L, Xu M, Zhou J, Yu H. Gastrin stimulates pancreatic cancer cell directional migration by activating the Gα12/13-RhoA-ROCK signaling pathway. Exp Mol Med 2018; 50:1-14. [PMID: 29717112 PMCID: PMC5938061 DOI: 10.1038/s12276-018-0081-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
The mechanism by which gastrin promotes pancreatic cancer cell metastasis is unclear. The process of directing polarized cancer cells toward the extracellular matrix is principally required for invasion and distant metastasis; however, whether gastrin can induce this process and its underlying mechanism remain to be elucidated. In this study, we found that gastrin-induced phosphorylation of paxillin at tyrosine 31/118 and RhoA activation as well as promoted the metastasis of PANC-1 cancer cells. Depletion of Gα12 and Gα13 inhibited the phosphorylation of paxillin and downstream activation of GTP-RhoA, blocked the formation and aggregation of focal adhesions and facilitated polarization of actin filaments induced by gastrin. Suppression of RhoA and ROCK also exhibited identical results. Selective inhibition of the CCKBR-Gα12/13-RhoA-ROCK signaling pathway blocked the reoriented localization of the Golgi apparatus at the leading edge of migrated cancer cells. YM022 and Y-27632 significantly suppressed hepatic metastasis of orthotic pancreatic tumors induced by gastrin in vivo. Collectively, we demonstrate that gastrin promotes Golgi reorientation and directional polarization of pancreatic cancer cells by activation of paxillin via the CCKBR-Gα12/13-RhoA-ROCK signal pathway.
Collapse
Affiliation(s)
- Ganggang Mu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianshan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hongyan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lingli Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke He
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Lu Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongmei Yang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianlian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Aberrant expression of JNK-associated leucine-zipper protein, JLP, promotes accelerated growth of ovarian cancer. Oncotarget 2018; 7:72845-72859. [PMID: 27655714 PMCID: PMC5341948 DOI: 10.18632/oncotarget.12069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/10/2016] [Indexed: 01/12/2023] Open
Abstract
Ovarian cancer is the most fatal gynecologic cancer with poor prognosis. Etiological factors underlying ovarian cancer genesis and progression are poorly understood. Previously, we have shown that JNK-associated Leucine zipper Protein (JLP), promotes oncogenic signaling. Investigating the role of JLP in ovarian cancer, our present study indicates that JLP is overexpressed in ovarian cancer tissue and ovarian cancer cells. Transient overexpression of JLP promotes proliferation and invasive migration of ovarian cancer cells. In addition, ectopic expression of JLP confers long-term survival and clonogenic potential to normal fallopian tube-derived epithelial cells. Coimmunoprecipitation and colocalization analyses demonstrate the in vivo interaction of JLP and JNK, which is stimulated by lysophosphatidic acid (LPA), an oncogenic lipid growth factor in ovarian cancer. We also show that LPA stimulates the translocation of JLP-JNK complex to the perinuclear region of SKOV3-ip cells. JLP-knockdown using shRNA abrogates LPA-stimulated activation of JNK as well as LPA-stimulated proliferation and invasive migration of SKOV3-ip cells. Studies using ovarian cancer xenograft mouse model indicate that the mice bearing JLP-silenced xenografts exhibits reduced tumor volume. Analysis of the xenograft tumor tissues indicate a reduction in the levels of JLP, JNK, phosphorylated-JNK, c-Jun and phosphorylated-c-Jun in JLP-silenced xenografts, thereby correlating the attenuated JLP-JNK signaling node with suppressed tumor growth. Thus, our results identify a critical role for JLP-signaling axis in ovarian cancer and provide evidence that targeting this signaling node could provide a new avenue for therapy.
Collapse
|
23
|
Guo KY, Han L, Li X, Yang AV, Lu J, Guan S, Li H, Yu Y, Zhao Y, Yang J, Zhang H. Novel proteasome inhibitor delanzomib sensitizes cervical cancer cells to doxorubicin-induced apoptosis via stabilizing tumor suppressor proteins in the p53 pathway. Oncotarget 2017; 8:114123-114135. [PMID: 29371974 PMCID: PMC5768391 DOI: 10.18632/oncotarget.23166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer, the third most commonly occurring cancer, is the second leading cause of cancer related mortality among women. Aberrant ubiquitination and proteasome activity, both human papillomavirus and tumor derived, have been shown to contribute to tumor angiogenesis, proliferation, and invasion in many cancers, including cervical cancer. Thus, small molecule proteasome inhibitors are a potential and strategic treatment option for cervical cancer. In this study, novel proteasome inhibitor delanzomib (CEP-18770) exhibited potent pro-apoptotic and cytotoxic effects on a panel of cervical cancer cell lines by blocking proteasomal activity. Delanzomib also significantly sensitized cervical cancer cells to treatment of doxorubicin (Dox), a traditional chemotherapeutic agent. Furthermore, proteasome inhibition revealed stabilization of p53 and p53 transcriptional targets and induction of p38/JNK phosphorylation. Additionally, delanzomib worked synergistically with Dox to further upregulate p53 and its downstream targets and enhanced Dox-induced p38 phosphorylation. Our study strongly supports the 26S proteasome as a potential therapeutic target in cervical cancer and proteasome inhibition by delanzomib may be a potential treatment strategy for cervical cancer patients.
Collapse
Affiliation(s)
- Kevin Y Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lili Han
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Gynecology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830001, China
| | - Xinyu Li
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew V Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiaxiong Lu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shan Guan
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui Li
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| |
Collapse
|
24
|
Dong DD, Zhou H, Li G. GPR78 promotes lung cancer cell migration and metastasis by activation of Gαq-Rho GTPase pathway. BMB Rep 2017; 49:623-628. [PMID: 27697106 PMCID: PMC5346323 DOI: 10.5483/bmbrep.2016.49.11.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 12/31/2022] Open
Abstract
GPR78 is an orphan G-protein coupled receptor (GPCR) that is predominantly expressed in human brain tissues. Currently, the function of GPR78 is unknown. This study revealed that GPR78 was expressed in lung cancer cells and functioned as a novel regulator of lung cancer cell migration and metastasis. We found that knockdown of GPR78 in lung cancer cells suppressed cell migration. Moreover, GPR78 modulated the formation of actin stress fibers in A549 cells, in a RhoA- and Rac1-dependent manner. At the molecular level, GPR78 regulated cell motility through the activation of Gαq-RhoA/Rac1 pathway. We further demonstrated that in vivo, the knockdown of GPR78 inhibited lung cancer cell metastasis. These findings suggest that GPR78 is a novel regulator for lung cancer metastasis and may serve as a potential drug target against metastatic human lung cancer. [BMB Reports 2016; 49(11): 623-628].
Collapse
Affiliation(s)
- Dan-Dan Dong
- Department of Pathology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| | - Hui Zhou
- Department of Thoracic Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Gao Li
- Thoracic Surgery , Hainan General Hospital, Haikou 570311, Hainan, PR China
| |
Collapse
|