1
|
Gromova T, Gehred ND, Vondriska TM. Single-cell transcriptomes in the heart: when every epigenome counts. Cardiovasc Res 2023; 119:64-78. [PMID: 35325060 PMCID: PMC10233279 DOI: 10.1093/cvr/cvac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The response of an organ to stimuli emerges from the actions of individual cells. Recent cardiac single-cell RNA-sequencing studies of development, injury, and reprogramming have uncovered heterogeneous populations even among previously well-defined cell types, raising questions about what level of experimental resolution corresponds to disease-relevant, tissue-level phenotypes. In this review, we explore the biological meaning behind this cellular heterogeneity by undertaking an exhaustive analysis of single-cell transcriptomics in the heart (including a comprehensive, annotated compendium of studies published to date) and evaluating new models for the cardiac function that have emerged from these studies (including discussion and schematics that depict new hypotheses in the field). We evaluate the evidence to support the biological actions of newly identified cell populations and debate questions related to the role of cell-to-cell variability in development and disease. Finally, we present emerging epigenomic approaches that, when combined with single-cell RNA-sequencing, can resolve basic mechanisms of gene regulation and variability in cell phenotype.
Collapse
Affiliation(s)
- Tatiana Gromova
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natalie D Gehred
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Deciphering Cardiac Biology and Disease by Single-Cell Transcriptomic Profiling. Biomolecules 2022; 12:biom12040566. [PMID: 35454155 PMCID: PMC9032111 DOI: 10.3390/biom12040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
By detecting minute molecular changes in hundreds to millions of single cells, single-cell RNA sequencing allows for the comprehensive characterization of the diversity and dynamics of cells in the heart. Our understanding of the heart has been transformed through the recognition of cellular heterogeneity, the construction of regulatory networks, the building of lineage trajectories, and the mapping of intercellular crosstalk. In this review, we introduce cardiac progenitors and their transcriptional regulation during embryonic development, highlight cellular heterogeneity and cell subtype functions in cardiac health and disease, and discuss insights gained from the study of pluripotent stem-cell-derived cardiomyocytes.
Collapse
|
3
|
Dai Z, Nomura S. Recent Progress in Cardiovascular Research Involving Single-Cell Omics Approaches. Front Cardiovasc Med 2021; 8:783398. [PMID: 34977189 PMCID: PMC8716466 DOI: 10.3389/fcvm.2021.783398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular diseases are among the leading causes of morbidity and mortality worldwide. Although the spectrum of the heart from development to disease has long been studied, it remains largely enigmatic. The emergence of single-cell omics technologies has provided a powerful toolbox for defining cell heterogeneity, unraveling previously unknown pathways, and revealing intercellular communications, thereby boosting biomedical research and obtaining numerous novel findings over the last 7 years. Not only cell atlases of normal and developing hearts that provided substantial research resources, but also some important findings regarding cell-type-specific disease gene program, could never have been established without single-cell omics technologies. Herein, we briefly describe the latest technological advances in single-cell omics and summarize the major findings achieved by such approaches, with a focus on development and homeostasis of the heart, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Ex uno, plures-From One Tissue to Many Cells: A Review of Single-Cell Transcriptomics in Cardiovascular Biology. Int J Mol Sci 2021; 22:ijms22042071. [PMID: 33669808 PMCID: PMC7922347 DOI: 10.3390/ijms22042071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Recent technological advances have revolutionized the study of tissue biology and garnered a greater appreciation for tissue complexity. In order to understand cardiac development, heart tissue homeostasis, and the effects of stress and injury on the cardiovascular system, it is essential to characterize the heart at high cellular resolution. Single-cell profiling provides a more precise definition of tissue composition, cell differentiation trajectories, and intercellular communication, compared to classical bulk approaches. Here, we aim to review how recent single-cell multi-omic studies have changed our understanding of cell dynamics during cardiac development, and in the healthy and diseased adult myocardium.
Collapse
|
5
|
Pappas MP, Peifer LN, Chan SSK. Dual TGFβ and Wnt inhibition promotes Mesp1-mediated mouse pluripotent stem cell differentiation into functional cardiomyocytes. Dev Growth Differ 2020; 62:487-494. [PMID: 33048365 DOI: 10.1111/dgd.12694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Efficient derivation of cardiomyocytes from mouse pluripotent stem cells has proven challenging, and existing approaches rely on expensive supplementation or extensive manipulation. Mesp1 is a transcription factor that regulates cardiovascular specification during embryo development, and its overexpression has been shown to promote cardiogenesis. Here, we utilize a doxycycline-inducible Mesp1-expressing mouse embryonic stem cell system to develop an efficient differentiation protocol to generate functional cardiomyocytes. Our cardiac differentiation method involves transient Mesp1 induction following by subsequent dual inhibition of TGFβ and Wnt signaling pathways using small molecules. We discovered that whereas TGFβ inhibition promoted Mesp1-induced cardiac differentiation, Wnt inhibition was ineffective. Nevertheless, a combined inhibition of both pathways was superior to either inhibition alone in generating cardiomyocytes. These observations suggested a potential interaction between TGFβ and Wnt signaling pathways in the context of Mesp1-induced cardiac differentiation. Using a step-by-step approach, we have further optimized the windows of Mesp1 induction, TGFβ inhibition and Wnt inhibition to yield a maximal cardiomyocyte output - Mesp1 was induced first, followed by dual inhibition of TGFβ and Wnt signaling. Our protocol is capable of producing approximately 50% of cardiomyocytes in 12 days, which is comparable to existing methods, and have the advantages of being technically simple and inexpensive. Moreover, cardiomyocytes thus derived are functional, displaying intrinsic contractile capacity and contraction in response to electric stimulus. Derivation of mouse cardiomyocytes without the use of growth factors or other costly supplementation provides an accessible cell source for future applications.
Collapse
Affiliation(s)
- Matthew P Pappas
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Lindsay N Peifer
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Sunny S K Chan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Paul and Shelia Wellstone Muscular Dystrophy Center, Stem Cell Institute, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Swedlund B, Lescroart F. Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harb Perspect Biol 2020; 12:a036731. [PMID: 31818856 PMCID: PMC7397823 DOI: 10.1101/cshperspect.a036731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the heart arises from various sources of undifferentiated mesodermal progenitors, with an additional contribution from ectodermal neural crest cells. Mesodermal cardiac progenitors are plastic and multipotent, but are nevertheless specified to a precise heart region and cell type very early during development. Recent findings have defined both this lineage plasticity and early commitment of cardiac progenitors, using a combination of single-cell and population analyses. In this review, we discuss several aspects of cardiac progenitor specification. We discuss their markers, fate potential in vitro and in vivo, early segregation and commitment, and also intrinsic and extrinsic cues regulating lineage restriction from multipotency to a specific cell type of the heart. Finally, we also discuss the subdivisions of the cardiopharyngeal field, and the shared origins of the heart with other mesodermal derivatives, including head and neck muscles.
Collapse
Affiliation(s)
- Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
7
|
Mononen MM, Leung CY, Xu J, Chien KR. Trajectory mapping of human embryonic stem cell cardiogenesis reveals lineage branch points and an ISL1 progenitor-derived cardiac fibroblast lineage. Stem Cells 2020; 38:1267-1278. [PMID: 32497389 DOI: 10.1002/stem.3236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/01/2020] [Indexed: 11/11/2022]
Abstract
A family of multipotent heart progenitors plays a central role in the generation of diverse myogenic and nonmyogenic lineages in the heart. Cardiac progenitors in particular play a significant role in lineages involved in disease, and have also emerged to be a strong therapeutic candidate. Based on this premise, we aimed to deeply characterize the progenitor stage of cardiac differentiation at a single-cell resolution. Integrated comparison with an embryonic 5-week human heart transcriptomic dataset validated lineage identities with their late stage in vitro counterparts, highlighting the relevance of an in vitro differentiation for progenitors that are developmentally too early to be accessed in vivo. We utilized trajectory mapping to elucidate progenitor lineage branching points, which are supported by RNA velocity. Nonmyogenic populations, including cardiac fibroblast-like cells and endoderm, were found, and we identified TGFBI as a candidate marker for human cardiac fibroblasts in vivo and in vitro. Both myogenic and nonmyogenic populations express ISL1, and its loss redirected myogenic progenitors into a neural-like fate. Our study provides important insights into processes during early heart development.
Collapse
Affiliation(s)
- Mimmi M Mononen
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Chuen Yan Leung
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jiejia Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Kenneth R Chien
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
8
|
Penaloza JS, Pappas MP, Hagen HR, Xie N, Chan SSK. Single-cell RNA-seq analysis of Mesp1-induced skeletal myogenic development. Biochem Biophys Res Commun 2019; 520:284-290. [PMID: 31590918 DOI: 10.1016/j.bbrc.2019.09.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
The Mesp1 lineage contributes to cardiac, hematopoietic and skeletal myogenic development. Interestingly, muscle stem cells residing in craniofacial skeletal muscles primarily arise from Mesp1+ progenitors, but those in trunk and limb skeletal muscles do not. To gain insights into the difference between the head and trunk/limb muscle developmental processes, we studied Mesp1+ skeletal myogenic derivatives via single-cell RNA-seq and other strategies. Using a doxycycline-inducible Mesp1-expressing mouse embryonic stem cell line, we found that the development of Mesp1-induced skeletal myogenic progenitors can be characterized by dynamic expression of PDGFRα and VCAM1. Single-cell RNA-seq analysis further revealed the heterogeneous nature of these Mesp1+ derivatives, spanning pluripotent and mesodermal to mesenchymal and skeletal myogenic. We subsequently reconstructed the single-cell trajectories of these subpopulations. Our data thereby provide a cell fate projection of Mesp1-induced skeletal myogenesis.
Collapse
Affiliation(s)
| | | | | | - Ning Xie
- Department of Pediatrics, Minneapolis, MN, 55455, USA.
| | - Sunny S K Chan
- Department of Pediatrics, Minneapolis, MN, 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Biendarra-Tiegs SM, Li X, Ye D, Brandt EB, Ackerman MJ, Nelson TJ. Single-Cell RNA-Sequencing and Optical Electrophysiology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveal Discordance Between Cardiac Subtype-Associated Gene Expression Patterns and Electrophysiological Phenotypes. Stem Cells Dev 2019; 28:659-673. [PMID: 30892143 PMCID: PMC6534093 DOI: 10.1089/scd.2019.0030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ability to accurately phenotype cells differentiated from human induced pluripotent stem cells (hiPSCs) is essential for their application in modeling developmental and disease processes, yet also poses a particular challenge without the context of anatomical location. Our specific objective was to determine if single-cell gene expression was sufficient to predict the electrophysiology of iPSC-derived cardiac lineages, to evaluate the concordance between molecular and functional surrogate markers. To this end, we used the genetically encoded voltage indicator ArcLight to profile hundreds of hiPSC-derived cardiomyocytes (hiPSC-CMs), thus identifying patterns of electrophysiological maturation and increased prevalence of cells with atrial-like action potentials (APs) between days 11 and 42 of differentiation. To profile expression patterns of cardiomyocyte subtype-associated genes, single-cell RNA-seq was performed at days 12 and 40 after the populations were fully characterized with the high-throughput ArcLight platform. Although we could detect global gene expression changes supporting progressive differentiation, individual cellular expression patterns alone were not able to delineate the individual cardiomyocytes into atrial, ventricular, or nodal subtypes as functionally documented by electrophysiology measurements. Furthermore, our efforts to understand the distinct electrophysiological properties associated with day 12 versus day 40 hiPSC-CMs revealed that ion channel regulators SLMAP, FGF12, and FHL1 were the most significantly increased genes at day 40, categorized by electrophysiology-related gene functions. Notably, FHL1 knockdown during differentiation was sufficient to significantly modulate APs toward ventricular-like electrophysiology. Thus, our results establish the inability of subtype-associated gene expression patterns to specifically categorize hiPSC-derived cells according to their functional electrophysiology, and yet, altered FHL1 expression is able to redirect electrophysiological maturation of these developing cells. Therefore, noncanonical gene expression patterns of cardiac maturation may be sufficient to direct functional maturation of cardiomyocytes, with canonical gene expression patterns being insufficient to temporally define cardiac subtypes of in vitro differentiation.
Collapse
Affiliation(s)
- Sherri M Biendarra-Tiegs
- 1 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xing Li
- 2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,3 Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- 4 Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Emma B Brandt
- 1 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- 4 Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,5 Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,6 Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Timothy J Nelson
- 1 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,5 Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,6 Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.,7 Division of General Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Weirick T, Militello G, Uchida S. Long Non-coding RNAs in Endothelial Biology. Front Physiol 2018; 9:522. [PMID: 29867565 PMCID: PMC5960726 DOI: 10.3389/fphys.2018.00522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
In recent years, the role of RNA has expanded to the extent that protein-coding RNAs are now the minority with a variety of non-coding RNAs (ncRNAs) now comprising the majority of RNAs in higher organisms. A major contributor to this shift in understanding is RNA sequencing (RNA-seq), which allows a largely unconstrained method for monitoring the status of RNA from whole organisms down to a single cell. This observational power presents both challenges and new opportunities, which require specialized bioinformatics tools to extract knowledge from the data and the ability to reuse data for multiple studies. In this review, we summarize the current status of long non-coding RNA (lncRNA) research in endothelial biology. Then, we will cover computational methods for identifying, annotating, and characterizing lncRNAs in the heart, especially endothelial cells.
Collapse
Affiliation(s)
- Tyler Weirick
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States
| | - Giuseppe Militello
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States
| | - Shizuka Uchida
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States
| |
Collapse
|
11
|
Lescroart F, Wang X, Lin X, Swedlund B, Gargouri S, Sànchez-Dànes A, Moignard V, Dubois C, Paulissen C, Kinston S, Göttgens B, Blanpain C. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science 2018; 359:1177-1181. [PMID: 29371425 PMCID: PMC6556615 DOI: 10.1126/science.aao4174] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/11/2018] [Indexed: 02/02/2023]
Abstract
Mouse heart development arises from Mesp1-expressing cardiovascular progenitors (CPs) that are specified during gastrulation. The molecular processes that control early regional and lineage segregation of CPs have been unclear. We performed single-cell RNA sequencing of wild-type and Mesp1-null CPs in mice. We showed that populations of Mesp1 CPs are molecularly distinct and span the continuum between epiblast and later mesodermal cells, including hematopoietic progenitors. Single-cell transcriptome analysis of Mesp1-deficient CPs showed that Mesp1 is required for the exit from the pluripotent state and the induction of the cardiovascular gene expression program. We identified distinct populations of Mesp1 CPs that correspond to progenitors committed to different cell lineages and regions of the heart, identifying the molecular features associated with early lineage restriction and regional segregation of the heart at the early stage of mouse gastrulation.
Collapse
Affiliation(s)
- Fabienne Lescroart
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels B-1070, Belgium
| | - Xiaonan Wang
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Xionghui Lin
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels B-1070, Belgium
| | - Benjamin Swedlund
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels B-1070, Belgium
| | - Souhir Gargouri
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels B-1070, Belgium
| | - Adriana Sànchez-Dànes
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels B-1070, Belgium
| | - Victoria Moignard
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Christine Dubois
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels B-1070, Belgium
| | - Catherine Paulissen
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels B-1070, Belgium
| | - Sarah Kinston
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
- Wellcome and Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cédric Blanpain
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels B-1070, Belgium.
- WELBIO, Université Libre de Bruxelles, Brussels B-1070, Belgium
| |
Collapse
|
12
|
(Re-)programming of subtype specific cardiomyocytes. Adv Drug Deliv Rev 2017; 120:142-167. [PMID: 28916499 DOI: 10.1016/j.addr.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing.
Collapse
|
13
|
Liu Y. Earlier and broader roles of Mesp1 in cardiovascular development. Cell Mol Life Sci 2017; 74:1969-1983. [PMID: 28050627 PMCID: PMC11107530 DOI: 10.1007/s00018-016-2448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Mesoderm posterior 1 is one of earliest markers of the nascent mesoderm. Its best-known function is driving the onset of the cardiovascular system. In the past decade, new evidence supports that Mesp1 acts earlier with greater breadth in cell fate decisions, and through cell-autonomous and cell non-autonomous mechanisms. This review summarizes these new aspects, with an emphasis on the upstream and downstream regulation around Mesp1 and how they may guide cell fate reprogramming.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|