1
|
Wang M, Grauzam S, Bayram MF, Dressman J, DelaCourt A, Blaschke C, Liang H, Scott D, Huffman G, Black A, Ochoa-Rios S, Lewin D, Angel PM, Drake RR, Ball L, Bethard J, Castellino S, Kono Y, Kubota N, Hoshida Y, Quirk L, Yopp A, Gopal P, Singal A, Mehta AS. Spatial omics-based machine learning algorithms for the early detection of hepatocellular carcinoma. COMMUNICATIONS MEDICINE 2024; 4:258. [PMID: 39627514 PMCID: PMC11614901 DOI: 10.1038/s43856-024-00677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Worldwide, hepatocellular carcinoma (HCC) is the second most lethal cancer, although early-stage HCC is amenable to curative treatment and can facilitate long-term survival. Early detection has proved difficult, as proteomics, transcriptomics, and genomics have been unable to discover suitable biomarkers. METHODS To find new biomarkers of HCC, we utilized a spatial omics N-glycan imaging method to identify altered glycosylation in cancer tissue (n = 53) and in paired serum of individuals with HCC (n = 23). Glycoproteomics identified the glycoproteins carrying these N-glycan structures, and we utilized an antibody array-based glycan imaging method to examine all the N-glycans associated with the identified glycoproteins. N-glycans from the examined glycoproteins were used to create machine learning algorithms, which were tested in a case-control sample set of 100 patients with cirrhosis and HCC and 101 matched patients with cirrhosis alone. RESULTS Spatial glycan imaging identifies thirteen branched, fucosylated, and high mannose glycans as altered in HCC tissue and in matched patient serum. Glycoproteomics identifies over 50 proteins containing these changes, of which sixteen glycoproteins were selected for further testing in an independent patient set. Algorithms using a combination of glycan and glycoproteins accurately differentiate early-stage and all HCC from cirrhosis with AUROC values of 0.88-0.97. CONCLUSIONS In conclusion, we present the development and application of a new biomarker platform, which can identify effective biomarkers for the early detection of HCC. This platform may also apply to other diseases, in which changes in N-linked glycosylation are known to occur.
Collapse
Affiliation(s)
- Mengjun Wang
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Stephane Grauzam
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
- GlycoPath, Inc, 22 WestEdge St - Suite 400, Charleston, SC, 29403, USA
| | - Muhammed Furkan Bayram
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - James Dressman
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Andrew DelaCourt
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Calvin Blaschke
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Hongyan Liang
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Danielle Scott
- GlycoPath, Inc, 22 WestEdge St - Suite 400, Charleston, SC, 29403, USA
| | - Gray Huffman
- GlycoPath, Inc, 22 WestEdge St - Suite 400, Charleston, SC, 29403, USA
| | - Alyson Black
- HTX Technologies, LLC, Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Shaaron Ochoa-Rios
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - David Lewin
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC, 29425, USA
| | - Peggi M Angel
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Richard R Drake
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Lauren Ball
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | - Jennifer Bethard
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA
| | | | - Yuko Kono
- University of California San Diego, Department of Medicine, Gastroenterology and Hepatology, San Diego, CA, 92103, USA
| | - Naoto Kubota
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yujin Hoshida
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lisa Quirk
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Adam Yopp
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Purva Gopal
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amit Singal
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anand S Mehta
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Charleston, SC, 29425, USA.
| |
Collapse
|
2
|
Macdonald JK, Clift CL, Saunders J, Zambrzycki SC, Mehta AS, Drake RR, Angel PM. Differential Protease Specificity by Collagenase as a Novel Approach to Serum Proteomics That Includes Identification of Extracellular Matrix Proteins without Enrichment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:487-497. [PMID: 38329320 PMCID: PMC10921462 DOI: 10.1021/jasms.3c00366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Circulating extracellular matrix (ECM) proteins are serological biomarkers of interest due to their association with pathologies involving disease processes such as fibrosis and cancers. In this study, we investigate the potential for serum biomarker research using differential protease specificity (DPS), leveraging alternate protease specificity as a targeting mechanism to selectively digest circulating ECM protein serum proteins. A proof-of-concept study is presented using serum from patients with cirrhotic liver or hepatocellular carcinoma. The approach uses collagenase DPS for digestion of deglycosylated serum and liquid-chromatography-trapped ion mobility-tandem mass spectrometry (LC-TIMS-MS/MS) to enhance the detection of ECM proteins in serum. It requires no sample enrichment and minimizes the albumin average precursor intensity readout to less than 1.2%. We further demonstrate the capabilities for using the method as a high-throughput matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS) assay coupled with reference library searching. A goal is to improve the depth and breadth of biofluid proteomics for noninvasive assays.
Collapse
Affiliation(s)
- Jade K. Macdonald
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | | | | | - Stephen C. Zambrzycki
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S. Mehta
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R. Drake
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M. Angel
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
3
|
Butaye E, Somers N, Grossar L, Pauwels N, Lefere S, Devisscher L, Raevens S, Geerts A, Meuris L, Callewaert N, Van Vlierberghe H, Verhelst X. Systematic review: Glycomics as diagnostic markers for hepatocellular carcinoma. Aliment Pharmacol Ther 2024; 59:23-38. [PMID: 37877758 DOI: 10.1111/apt.17748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer with one of the highest cancer-related mortality rates worldwide. Early diagnosis is crucial for improving the therapeutic options and reducing the disease-related mortality. AIM To investigate serum N-glycomics as diagnostic markers for HCC. METHODS We performed a comprehensive search in PubMed, EMBASE, Web of Science and Scopus through August 17, 2023. Eligible studies assessed the potential use of serum N-glycomics as diagnostic biomarkers for HCC. Study selection, data extraction and quality assessment were performed by two independent reviewers. RESULTS Of the 48 articles included, 11 evaluated the utility of N-glycomics for the diagnosis of HCC in whole serum while the remaining articles focused on specific protein glycoforms or protein levels. Of these specific proteins, haptoglobin, alpha-fetoprotein (AFP), kininogen (Kin), α-1-antitrypsin and Golgi protein 73 (GP73) were the most frequently studied. Increased levels of fucosylation and branching presented as the most prevalent post-translational modifications of glycoproteins in patients with HCC compared to controls. Notably, glycomics-based biomarkers may provide a clinical benefit for the diagnosis of early HCC, as several algorithms achieved AUCs between 0.92-0.97. However, these were based on single studies with limited sample sizes and should therefore be validated. CONCLUSIONS Alterations in serum N-glycomics, characterised by increased levels of fucosylation and branching, have potential as diagnostic biomarkers for HCC. Optimisation of study design, patient selection and analysing techniques are needed before clinical implementation will be possible.
Collapse
Affiliation(s)
- Emma Butaye
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Nicky Somers
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lorenz Grossar
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Nele Pauwels
- Knowledge Center for Health Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Sarah Raevens
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Anja Geerts
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Leander Meuris
- Department of Biochemistry and Microbiology, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- Department of Biochemistry and Microbiology, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Xavier Verhelst
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
4
|
Wang M, Singal AG, Parikh N, Kono Y, Marrero J, Mehta A. A Biomarker Panel Based upon AFP, Fucosylated Kininogen and PEG-Precipitated IgG Is Highly Accurate for the Early Detection Hepatocellular Carcinoma in Patients with Cirrhosis in Phase II and Phase III Biomarker Evaluation. Cancers (Basel) 2022; 14:5970. [PMID: 36497452 PMCID: PMC9740205 DOI: 10.3390/cancers14235970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
We have previously identified alterations in glycosylation on serum proteins from patients with HCC and developed plate-based assays using lectins to detect the change in glycosylation. However, heterophilic antibodies, which increase with non-malignant liver disease, compromised these assays. To address this, we developed a method of polyethylene glycol (PEG) precipitation that removed the contaminating IgG and IgM but allowed for the lectin detection of the relevant glycoprotein. We found that this PEG-precipitated material itself could differentiate between cirrhosis and HCC. In the analysis of three training cohorts and one validation cohort, consisting of 571 patients, PEG-IgG had AUC values that ranged from 0.713 to 0.810. In the validation cohort, which contained samples from patients at a time of 1-6 months prior to HCC detection or 7+ months prior to detection, the AUC of this marker remained consistent (0.813 and 0.846, respectively). When this marker was incorporated into a biomarker algorithm that also consisted of AFP and fucosylated kininogen, the AUROC increased to 0.816-0.883 in the training cohort and was 0.909 in the external validation cohort. Biomarker performance was also examined though the analysis of partial ROC curves, at false positive values less than 10% (90-ROC), ≤20% (80-ROC) or ≤30% (70-ROC), which highlighted the algorithm's improvement over the individual markers at clinically relevant specificity values.
Collapse
Affiliation(s)
- Mengjun Wang
- Basic Science Building Room 310, Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Amit G. Singal
- Division of Digestive and Liver Diseases, University of Texas Southwestern, 5959 Harry Hines Blvd POB I Suite 420B, Dallas, TX 75201, USA
| | - Neehar Parikh
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuko Kono
- Division of Gastroenterology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jorge Marrero
- Division of Gastroenterology, University of Pennsylvania, 3400 Civic Center Boulevard South Pavilion, 4th Floor, Philadelphia, PA 19104, USA
| | - Anand Mehta
- Basic Science Building Room 310, Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Parikh ND, Mehta AS, Singal AG, Block T, Marrero JA, Lok AS. Biomarkers for the Early Detection of Hepatocellular Carcinoma. Cancer Epidemiol Biomarkers Prev 2020; 29:2495-2503. [PMID: 32238405 DOI: 10.1158/1055-9965.epi-20-0005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and the cancer with the fastest increase in mortality in the United States, with more than 39,000 cases and 29,000 deaths in 2018. As with many cancers, survival is significantly improved by early detection. The median survival of patients with early HCC is >60 months but <15 months when detected at an advanced stage. Surveillance of at-risk patients improves outcome, but fewer than 20% of those at risk for HCC receive surveillance, and current surveillance strategies have limited sensitivity and specificity. Ideally, blood-based biomarkers with adequate sensitivity or specificity would be available for early detection of HCC; however, the most commonly used biomarker for HCC, alpha-fetoprotein, has inadequate performance characteristics. There are several candidate serum proteomic, glycomic, and genetic markers that have gone through early stages of biomarker validation and have shown promise for the early detection of HCC, but these markers require validation in well-curated cohorts. Ongoing prospective cohort studies will permit retrospective longitudinal (phase III biomarker study) validation of biomarkers. In this review, we highlight promising candidate biomarkers and biomarker panels that have completed phase II evaluation but require further validation prior to clinical use.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan.
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Amit G Singal
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas
| | - Timothy Block
- Baruch S. Blumberg Institute of The Hepatitis B Foundation, Doylestown, Pennsylvania
| | - Jorge A Marrero
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Wang M, Shen J, Herrera H, Singal A, Swindell C, Renquan L, Mehta A. Biomarker analysis of fucosylated kininogen through depletion of lectin reactive heterophilic antibodies in hepatocellular carcinoma. J Immunol Methods 2018; 462:59-64. [PMID: 30144410 PMCID: PMC6784319 DOI: 10.1016/j.jim.2018.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for >700,000 deaths worldwide, largely related to poor rates of diagnosis. Our previous work identified glycoproteins with increased levels of fucosylation in HCC. Plate-based assays to measure this change were compromised by increased levels of heterophilic antibodies with glycan lacking terminal galactose residues, which allowed for increased binding to the lectins used in these assays. To address this issue, we developed a multi-step protein A/G incubation and filtration method to remove the contaminating signal. However, this method was time consuming and expensive so alternative methods were desired. Herein, we describe a simple method relying on PEG precipitation that allows for the removal of IgG and IgM but retention of glycoproteins of interest. This method was tested on three sample sets, two internal and one external. PEG depletion of heterophilic IgG and IgM reduced in the coefficient of variation as observed with the protein A/G filtration method from 26.82% to 7.50% and allowed for the measurement of fucosylated protein. This method allowed for the measurement of fucosylated kininogen, which could serve as a biomarker of HCC. In conclusion, a new and simple method for the depletion of heterophilic IgG and IgM was developed and allowed for the analysis of fucosylated kininogen in patients with liver disease.
Collapse
Affiliation(s)
- Mengjun Wang
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425, United States
| | - Jiabin Shen
- Fudan University Shanghai Cancer Center, 138 Yixueyuan Rd, Xuhui Qu, Shanghai Shi, China
| | - Harmin Herrera
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Microbiology and Immunology Graduate Program, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Amit Singal
- Division of Digestive and Liver Diseases, University of Texas Southwestern, 5959 Harry Hines Blvd POB I Suite 420B, Dallas, TX 75201 - 8887, United States
| | - Charles Swindell
- Glycotest, Inc, 77 Water Street, Suite 817, New York, NY 10005, United States
| | - Lu Renquan
- Fudan University Shanghai Cancer Center, 138 Yixueyuan Rd, Xuhui Qu, Shanghai Shi, China.
| | - Anand Mehta
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, SC 29425, United States.
| |
Collapse
|
7
|
Wang M, Sanda M, Comunale MA, Herrera H, Swindell C, Kono Y, Singal AG, Marrero J, Block T, Goldman R, Mehta A. Changes in the Glycosylation of Kininogen and the Development of a Kininogen-Based Algorithm for the Early Detection of HCC. Cancer Epidemiol Biomarkers Prev 2017; 26:795-803. [PMID: 28223431 DOI: 10.1158/1055-9965.epi-16-0974] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/13/2017] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) has the greatest increase in mortality among all solids tumors in the United States related to low rates of early tumor detection. Development of noninvasive biomarkers for the early detection of HCC may reduce HCC-related mortality.Methods: We have developed an algorithm that combines routinely observed clinical values into a single equation that in a study of >3,000 patients from 5 independent sites improved detection of HCC as compared with the currently used biomarker, alpha-fetoprotein (AFP), by 4% to 20%. However, this algorithm had limited benefit in those with AFP <20 ng/mL. To that end, we have developed a secondary algorithm that incorporates a marker, fucosylated kininogen, to improve the detection of HCC, especially in those with AFP <20 ng/mL and early-stage disease.Results: The ability to detect early-stage AFP-negative (AFP <20 ng/mL) HCC increased from 0% (AFP alone) to 89% (for the new algorithm). Glycan analysis revealed that kininogen has several glycan modifications that have been associated with HCC, but often not with specific proteins, including increased levels of core and outer-arm fucosylation and increased branching.Conclusions: An algorithm combining fucosylated kininogen, AFP, and clinical characteristics is highly accurate for early HCC detection.Impact: Our biomarker algorithm could significantly improve early HCC detection and curative treatment eligibility in patients with cirrhosis. Cancer Epidemiol Biomarkers Prev; 26(5); 795-803. ©2017 AACR.
Collapse
Affiliation(s)
- Mengjun Wang
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Medical University of South Carolina, Charleston, South Carolina
| | - Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University, Philadelphia, Pennsylvania
| | - Harmin Herrera
- Department of Microbiology and Immunology, Drexel University, Philadelphia, Pennsylvania
| | | | - Yuko Kono
- Division of Gastroenterology and Hepatology, University of California, San Diego, California
| | - Amit G Singal
- Division of Digestive and Liver Diseases, University of Texas Southwestern, Dallas, Texas
| | - Jorge Marrero
- Division of Digestive and Liver Diseases, University of Texas Southwestern, Dallas, Texas
| | - Timothy Block
- The Baruch S. Blumberg Institute, Doylestown, Pennsylvania
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Anand Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|