1
|
Lian F, Li H, Ma Y, Zhou R, Wu W. Recent advances in primary cilia in bone metabolism. Front Endocrinol (Lausanne) 2023; 14:1259650. [PMID: 37886641 PMCID: PMC10598340 DOI: 10.3389/fendo.2023.1259650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Primary cilia are microtubule-based organelles that are widespread on the cell surface and play a key role in tissue development and homeostasis by sensing and transducing various signaling pathways. The process of intraflagellar transport (IFT), which is propelled by kinesin and dynein motors, plays a crucial role in the formation and functionality of cilia. Abnormalities in the cilia or ciliary transport system often cause a range of clinical conditions collectively known as ciliopathies, which include polydactyly, short ribs, scoliosis, thoracic stenosis and many abnormalities in the bones and cartilage. In this review, we summarize recent findings on the role of primary cilia and ciliary transport systems in bone development, we describe the role of cilia in bone formation, cartilage development and bone resorption, and we summarize advances in the study of primary cilia in fracture healing. In addition, the recent discovery of crosstalk between integrins and primary cilia provides new insights into how primary cilia affect bone.
Collapse
Affiliation(s)
- Fenfen Lian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Hui Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuwei Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Rui Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
2
|
Onodera S, Azuma T. Hedgehog-Related Mutation Causes Bone Malformations with or without Hereditary Gene Mutations. Int J Mol Sci 2023; 24:12903. [PMID: 37629084 PMCID: PMC10454035 DOI: 10.3390/ijms241612903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
3
|
Lee MS, Han HJ, Choi TI, Lee KH, Baasankhuu A, Kim HT, Kim CH. IFT46 gene promoter-driven ciliopathy disease model in zebrafish. Front Cell Dev Biol 2023; 11:1200599. [PMID: 37363725 PMCID: PMC10285392 DOI: 10.3389/fcell.2023.1200599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Ciliopathies are human genetic disorders caused by abnormal formation and dysfunction of cellular cilia. Cilia are microtubule-based organelles that project into the extracellular space and transduce molecular and chemical signals from the extracellular environment or neighboring cells. Intraflagellar transport (IFT) proteins are required for the assembly and maintenance of cilia by transporting proteins along the axoneme which consists of complexes A and B. IFT46, a core IFT-B protein complex, is required for cilium formation and maintenance during vertebrate embryonic development. Here, we introduce transgenic zebrafish lines under the control of ciliated cell-specific IFT46 promoter to recapitulate human ciliopathy-like phenotypes. We generated a Tg(IFT46:GAL4-VP16) line to temporo-spatially control the expression of effectors including fluorescent reporters or nitroreductase based on the GAL4/UAS system, which expresses GAL4-VP16 chimeric transcription factors in most ciliated tissues during embryonic development. To analyze the function of IFT46-expressing ciliated cells during zebrafish development, we generated the Tg(IFT46:GAL4-VP16;UAS;nfsb-mCherry) line, a ciliated cell-specific injury model induced by nitroreductase (NTR)/metrodinazole (MTZ). Conditionally, controlled ablation of ciliated cells in transgenic animals exhibited ciliopathy-like phenotypes including cystic kidneys and pericardial and periorbital edema. Altogether, we established a zebrafish NTR/MTZ-mediated ciliated cell injury model that recapitulates ciliopathy-like phenotypes and may be a vertebrate animal model to further investigate the etiology and therapeutic approaches to human ciliopathies.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
- Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
| | - Hye-Jeong Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Republic of Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Amartuvshin Baasankhuu
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Republic of Korea
| | - Hyun-Taek Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
De Ita M, Gaytán-Cervantes J, Cisneros B, Araujo MA, Huicochea-Montiel JC, Cárdenas-Conejo A, Lazo-Cárdenas CC, Ramírez-Portillo CI, Feria-Kaiser C, Peregrino-Bejarano L, Yáñez-Gutiérrez L, González-Torres C, Rosas-Vargas H. Clustering of Genetic Anomalies of Cilia Outer Dynein Arm and Central Apparatus in Patients with Transposition of the Great Arteries. Genes (Basel) 2022; 13:genes13091662. [PMID: 36140829 PMCID: PMC9498580 DOI: 10.3390/genes13091662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Transposition of the great arteries (TGA) is a congenital heart defect with a complex pathogenesis that has not been fully elucidated. In this study, we performed whole-exome sequencing (WES) in isolated TGA-diagnosed patients and analyzed genes of motile and non-motile cilia ciliogenesis and ciliary trafficking, as well as genes previously associated with this heart malformation. Deleterious missense and splicing variants of genes DNAH9, DNAH11, and ODAD4 of cilia outer dynein arm and central apparatus, HYDIN, were found in our TGA patients. Remarkable, there is a clustering of deleterious genetic variants in cilia genes, suggesting it could be an oligogenic disease. Our data evidence the genetic diversity and etiological complexity of TGA and point out that population allele determination and genetic aggregation studies are required to improve genetic counseling.
Collapse
Affiliation(s)
- Marlon De Ita
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - Javier Gaytán-Cervantes
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
| | - Bulmaro Cisneros
- Dpto de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México 07360, Mexico
| | - María Antonieta Araujo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Juan Carlos Huicochea-Montiel
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Alan Cárdenas-Conejo
- Departamento clínico de Genética Médica, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Charles César Lazo-Cárdenas
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - César Iván Ramírez-Portillo
- Departamento clínico de Cardiología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | - Carina Feria-Kaiser
- Unidad de Cuidados Intensivos Neonatales, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
| | | | - Lucelli Yáñez-Gutiérrez
- Clínica de Cardiopatías Congénitas, UMAE Hospital de Cardiología, CMN Siglo XXI, Ciudad de México 06720, Mexico
| | - Carolina González-Torres
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México 06720, Mexico
- Correspondence: (C.G.-T.); (H.R.-V.)
| |
Collapse
|
5
|
Wang L, Liu C, Yang B, Zhang H, Jiao J, Zhang R, Liu S, Xiao S, Chen Y, Liu B, Ma Y, Duan X, Guo Y, Guo M, Wu B, Wang X, Huang X, Yang H, Gui Y, Fang M, Zhang L, Duo S, Guo X, Li W. SARS-CoV-2 ORF10 impairs cilia by enhancing CUL2ZYG11B activity. J Biophys Biochem Cytol 2022; 221:213272. [PMID: 35674692 PMCID: PMC9184850 DOI: 10.1083/jcb.202108015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/02/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal pathogen of the ongoing global pandemic of coronavirus disease 2019 (COVID-19). Loss of smell and taste are symptoms of COVID-19, and may be related to cilia dysfunction. Here, we found that the SARS-CoV-2 ORF10 increases the overall E3 ligase activity of the CUL2ZYG11B complex by interacting with ZYG11B. Enhanced CUL2ZYG11B activity by ORF10 causes increased ubiquitination and subsequent proteasome-mediated degradation of an intraflagellar transport (IFT) complex B protein, IFT46, thereby impairing both cilia biogenesis and maintenance. Further, we show that exposure of the respiratory tract of hACE2 mice to SARS-CoV-2 or SARS-CoV-2 ORF10 alone results in cilia-dysfunction-related phenotypes, and the ORF10 expression in primary human nasal epithelial cells (HNECs) also caused a rapid loss of the ciliary layer. Our study demonstrates how SARS-CoV-2 ORF10 hijacks CUL2ZYG11B to eliminate IFT46 and leads to cilia dysfunction, thereby offering a powerful etiopathological explanation for how SARS-CoV-2 causes multiple cilia-dysfunction-related symptoms specific to COVID-19.
Collapse
Affiliation(s)
- Liying Wang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Chao Liu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Bo Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China 5
| | - Haotian Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China 2
| | - Jian Jiao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China 9
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China 10
| | - Ruidan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Shujun Liu
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 3
| | - Sai Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Yinghong Chen
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Bo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Yanjie Ma
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China 6
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China 2
| | - Mengmeng Guo
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Bingbing Wu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China 9
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China 10
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China 8
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China 7
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China 5
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China 6
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China 9
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China 10
| | - Shuguang Duo
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 3
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China 2
| | - Wei Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| |
Collapse
|
6
|
Zhao H, Sun J, Insinna C, Lu Q, Wang Z, Nagashima K, Stauffer J, Andresson T, Specht S, Perera S, Daar IO, Westlake CJ. Male infertility-associated Ccdc108 regulates multiciliogenesis via the intraflagellar transport machinery. EMBO Rep 2022; 23:e52775. [PMID: 35201641 PMCID: PMC8982597 DOI: 10.15252/embr.202152775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Motile cilia on the cell surface generate movement and directional fluid flow that is crucial for various biological processes. Dysfunction of these cilia causes human diseases such as sinopulmonary disease and infertility. Here, we show that Ccdc108, a protein linked to male infertility, has an evolutionarily conserved requirement in motile multiciliation. Using Xenopus laevis embryos, Ccdc108 is shown to be required for the migration and docking of basal bodies to the apical membrane in epidermal multiciliated cells (MCCs). We demonstrate that Ccdc108 interacts with the IFT‐B complex, and the ciliation requirement for Ift74 overlaps with Ccdc108 in MCCs. Both Ccdc108 and IFT‐B proteins localize to migrating centrioles, basal bodies, and cilia in MCCs. Importantly, Ccdc108 governs the centriolar recruitment of IFT while IFT licenses the targeting of Ccdc108 to the cilium. Moreover, Ccdc108 is required for the centriolar recruitment of Drg1 and activated RhoA, factors that help establish the apical actin network in MCCs. Together, our studies indicate that Ccdc108 and IFT‐B complex components cooperate in multiciliogenesis.
Collapse
Affiliation(s)
- Huijie Zhao
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jian Sun
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christine Insinna
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Quanlong Lu
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ziqiu Wang
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Kunio Nagashima
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jimmy Stauffer
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory (PCL) Mass Spectrometry Center, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne Specht
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sumeth Perera
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
7
|
Abstract
The primary cilium is a nonmotile microtubule-based organelle in most vertebrate cell types. The primary cilium plays a critical role in tissue development and homeostasis by sensing and transducing various signaling pathways. Ciliary proteins such as intraflagellar transport (IFT) proteins as well as ciliary motor proteins, kinesin and dynein, comprise a bidirectional intraflagellar transport system needed for cilia formation and function. Mutations in ciliary proteins that lead to loss or dysfunction of primary cilia cause ciliopathies such as Jeune syndrome and Ellis-van Creveld syndrome and cause abnormalities in tooth development. These diseases exhibit severe skeletal and craniofacial dysplasia, highlighting the significance of primary cilia in skeletal development. Cilia are necessary for the propagation of hedgehog, transforming growth factor β, platelet-derived growth factor, and fibroblast growth factor signaling during osteogenesis and chondrogenesis. Ablation of ciliary proteins such as IFT80 or IFT20 blocks cilia formation, which inhibits osteoblast differentiation, osteoblast polarity, and alignment and reduces bone formation. Similarly, cilia facilitate chondrocyte differentiation and production of a cartilage matrix. Cilia also play a key role in mechanosensing and are needed for increased bone formation in response to mechanical forces.
Collapse
Affiliation(s)
- Z. Chinipardaz
- Department of Basic and
Translational Sciences, University of Pennsylvania, School of Dental
Medicine, Philadelphia, PA, USA,Department of Periodontics,
School of Dental Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - M. Liu
- Department of Periodontics,
School of Dental Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - D.T. Graves
- Department of Periodontics,
School of Dental Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - S. Yang
- Department of Basic and
Translational Sciences, University of Pennsylvania, School of Dental
Medicine, Philadelphia, PA, USA,Center for Innovation &
Precision Dentistry, School of Dental Medicine, School of Engineering and
Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA,The Penn Center for
Musculoskeletal Disorders, School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA,S. Yang, Department of Basic and
Translational Sciences, University of Pennsylvania, School of Dental
Medicine, 240 S 40th Street, Philadelphia, PA 19104-6243, USA.
| |
Collapse
|
8
|
Mata M, Zurriaga J, Milian L, Reula A, Armengot M, Ruiz-Sauri A, Carda C. IFT46 Expression in the Nasal Mucosa of Primary Ciliary Dyskinesia Patients: Preliminary Study. ALLERGY & RHINOLOGY 2021; 12:2152656721989288. [PMID: 33628615 PMCID: PMC7883161 DOI: 10.1177/2152656721989288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Primary ciliary dyskinesia (PCD) is characterised by an imbalance in mucociliary clearance leading to chronic respiratory infections. Cilia length is considered to be a contributing factor in cilia movement. Recently, IFT46 protein has been related to cilia length. Therefore, this work aims to study IFT46 expression in a PCD patients cohort and analyse its relationship with cilia length and function, as it was not previously described. Materials and methods The expression of one intraflagellar transport (IFT46) and two regulating ciliary architecture (FOXJ1 and DNAI2) genes, as well as cilia length of 27 PCD patients, were measured. PCD patients were diagnosed based on clinical data, and cilia function and ultrastructure. Gene expression was estimated by real-time RT-PCR and cilia length by electron microscopy in nasal epithelium biopsies. Results and conclusions: While IFT46 expression was only diminished in patients with short cilia, FOXJ1, and DNAI2 expression were reduced in all PCD patient groups compared to controls levels. Among the PCD patients, cilia were short in 44% (5.9 ± 0.70 µm); nine of these (33% from the total) patients’ cilia also had an abnormal ultrastructure. Cilia length was normal in 33% of patients (6.4 ± 0.39 µm), and only three patients’ biopsies indicated decreased expression of dynein.
Collapse
Affiliation(s)
- Manuel Mata
- Pathology Department, Faculty of Medicine, University of Valencia, Valencia, Spain.,Research Institute of the University Clinical Hospital of Valencia (INCLIVA), Valencia, Spain.,Networking Research Center on Respiratory Diseases (CIBERER), Mallorca, Illes Balears, Spain
| | - Javier Zurriaga
- Research Institute of the University Clinical Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Lara Milian
- Pathology Department, Faculty of Medicine, University of Valencia, Valencia, Spain.,Research Institute of the University Clinical Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Ana Reula
- Pathology Department, Faculty of Medicine, University of Valencia, Valencia, Spain.,Grupo de Biomedicina Molecular, Celular y Genómica IIS La Fe, Valencia, Spain.,Biomedical Sciences Department, Faculty of Health Sciences, CEU-Cardenal Herrera University, Valencia, Spain
| | - Miguel Armengot
- Networking Research Center on Respiratory Diseases (CIBERER), Mallorca, Illes Balears, Spain.,Grupo de Biomedicina Molecular, Celular y Genómica IIS La Fe, Valencia, Spain.,Surgery Department, Faculty of Medicine, University of Valencia, Valencia, Spain.,ENT Service, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Amparo Ruiz-Sauri
- Pathology Department, Faculty of Medicine, University of Valencia, Valencia, Spain.,Research Institute of the University Clinical Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Carmen Carda
- Pathology Department, Faculty of Medicine, University of Valencia, Valencia, Spain.,Research Institute of the University Clinical Hospital of Valencia (INCLIVA), Valencia, Spain
| |
Collapse
|
9
|
Intraflagellar transport 46 (IFT46) is essential for trafficking IFT proteins between cilia and cytoplasm in Paramecium. Sci Rep 2018; 8:9259. [PMID: 29915351 PMCID: PMC6006156 DOI: 10.1038/s41598-018-27050-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/09/2018] [Indexed: 11/08/2022] Open
Abstract
Intraflagellar transport (IFT) is a bi-directional process by which particles are carried within the cilia or flagella. This process is essential for ciliary growth and functional maintenance. The IFT complex B (IFTB) is linked to a kinesin motor for anterograde transport towards the ciliary tip. The IFT complex A (IFTA) is connected to a dynein motor for retrograde transport towards the ciliary basis. This study focuses on IFT46, an IFTB member that participates in this process. In Paramecium, a GFP-labelled IFT46 protein was found in basal bodies and in some cilia, mostly those undergoing biogenesis. RNA interference against IFT46 in Paramecium triggered severe defects in ciliary growth and architecture, including a decreased cilia number and shortened cilia length. This result differed from that obtained from the cells that were depleted of IFT80, another IFTB protein. Moreover, IFT57-GFP fusion protein abnormally accumulated in the cortex and cytoplasm in IFT46-depleted cells compared with the control. Furthermore, transcriptomic analysis showed that IFT46 depletion induced the abnormal expression of several genes that encodeding kinesin and dynein chains. These findings together indicate that IFT46 plays important roles in trafficking IFT proteins between the cytoplasm and cilia of Paramecium.
Collapse
|
10
|
Halbeisen F, Hogg C, Alanin MC, Bukowy-Bieryllo Z, Dasi F, Duncan J, Friend A, Goutaki M, Jackson C, Keenan V, Harris A, Hirst RA, Latzin P, Marsh G, Nielsen K, Norris D, Pellicer D, Reula A, Rubbo B, Rumman N, Shoemark A, Walker WT, Kuehni CE, Lucas JS. Proceedings of the 2nd BEAT-PCD conference and 3rd PCD training school: part 1. BMC Proc 2018; 12:1. [PMID: 29630684 PMCID: PMC5841193 DOI: 10.1186/s12919-018-0098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare heterogenous condition that causes progressive suppurative lung disease, chronic rhinosinusitis, chronic otitis media, infertility and abnormal situs. 'Better Experimental Approaches to Treat Primary Ciliary Dyskinesia' (BEAT-PCD) is a network of scientists and clinicians coordinating research from basic science through to clinical care with the intention of developing treatments and diagnostics that lead to improved long-term outcomes for patients. BEAT-PCD activities are supported by EU funded COST Action (BM1407). The second BEAT-PCD conference, and third PCD training school were held jointly in April 2017 in Valencia, Spain. Presentations and workshops focussed on advancing the knowledge and skills relating to PCD in: basic science, epidemiology, diagnostic testing, clinical management and clinical trials. The multidisciplinary conference provided an interactive platform for exchanging ideas through a program of lectures, poster presentations, breakout sessions and workshops. Three working groups met to plan consensus statements. Progress with BEAT-PCD projects was shared and new collaborations were fostered. In this report, we summarize the meeting, highlighting developments made during the meeting.
Collapse
Affiliation(s)
- Florian Halbeisen
- 1Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Claire Hogg
- 2Primary Ciliary Dyskinesia Centre, Departments of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Mikkel C Alanin
- 3Department of Otolaryngology - Head and Neck Surgery and Audiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Zuzanna Bukowy-Bieryllo
- 4Department of Molecular and Clinical Genetics, Institute of Human Genetics Polish Academy of Sciences, Poznań, Poland
| | - Francisco Dasi
- 5Department of Physiology, Faculty of Medicine, Universitat de Valencia, Valencia, Spain.,UCIM Department, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Julie Duncan
- 7Primary Ciliary Dyskinesia Centre, Departments of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Amanda Friend
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Myrofora Goutaki
- 1Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Claire Jackson
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Victoria Keenan
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Amanda Harris
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | - Philipp Latzin
- 10Paediatric Respiratory Medicine, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Gemma Marsh
- 2Primary Ciliary Dyskinesia Centre, Departments of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Kim Nielsen
- 11Danish PCD & chILD Centre, CF Centre Copenhagen Paediatric Pulmonary Service, ERN Accredited for PCD and CF Health Care, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Dominic Norris
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Daniel Pellicer
- 5Department of Physiology, Faculty of Medicine, Universitat de Valencia, Valencia, Spain.,UCIM Department, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Ana Reula
- 5Department of Physiology, Faculty of Medicine, Universitat de Valencia, Valencia, Spain.,UCIM Department, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Bruna Rubbo
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Nisreen Rumman
- Pediatric Department, Makassed Hospital, East Jerusalem, Palestine
| | - Amelia Shoemark
- 2Primary Ciliary Dyskinesia Centre, Departments of Paediatrics and Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK.,14School of Medicine, University of Dundee, Dundee, UK
| | - Woolf T Walker
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Claudia E Kuehni
- 1Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,10Paediatric Respiratory Medicine, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Jane S Lucas
- 8Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|