1
|
Chen L, Zhao L, Han J, Xiao P, Zhao M, Zhang S, Duan J. Biosynthesis of Chryseno[2,1,c]oxepin-12-Carboxylic Acid from Glycyrrhizic Acid in Aspergillus terreus TMZ05-2, and Analysis of Its Anti-inflammatory Activity. J Microbiol 2024; 62:113-124. [PMID: 38411880 DOI: 10.1007/s12275-024-00105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 02/28/2024]
Abstract
Glycyrrhizic acid, glycyrrhetinic acid, and their oxo, ester, lactone, and other derivatives, are known for their anti-inflammatory, anti-oxidant, and hypoglycemic pharmacological activities. In this study, chryseno[2,1-c]oxepin-12-carboxylic acid (MG) was first biosynthesized from glycyrrhizic acid through sequential hydrolysis, oxidation, and esterification using Aspergillus terreus TMZ05-2, providing a novel in vitro biosynthetic pathway for glycyrrhizic acid derivatives. Assessing the influence of fermentation conditions and variation of strains during culture under stress-induction strategies enhanced the final molar yield to 88.3% (5 g/L glycyrrhizic acid). CCK8 assays showed no cytotoxicity and good cell proliferation, and anti-inflammatory experiments demonstrated strong inhibition of NO release (36.3%, low-dose MG vs. model), transcriptional downregulation of classical effective cellular factors tumor necrosis factor-α (TNF-α; 72.2%, low-dose MG vs. model), interleukin-6 (IL-6; 58.3%, low-dose MG vs. model) and interleukin-1β (IL-1β; 76.4%, low-dose MG vs. model), and decreased abundance of P-IKK-α, P-IKB-α, and P-P65 proteins, thereby alleviating inflammatory responses through the NF-κB pathway in LPS-induced RAW264.7 cells. The findings provide a reference for the biosynthesis of lactone compounds from medicinal plants.
Collapse
Affiliation(s)
- Liangliang Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Lin Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ju Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Mingzhe Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Sen Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Kim M, Kim WS, Cha H, Kim B, Kwon YN, Kim SM. Early involvement of peripherally derived monocytes in inflammation in an NMO-like mouse model. Sci Rep 2024; 14:1177. [PMID: 38216632 PMCID: PMC10786844 DOI: 10.1038/s41598-024-51759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune inflammatory disease that primarily affects the optic nerve and spinal cord within the central nervous system (CNS). Acute astrocyte injury caused by autoantibodies against aquaporin 4 (NMO-IgG) is a well-established key factor in the pathogenesis, ultimately leading to neuronal damage and patient disability. In addition to these humoral immune processes, numerous innate immune cells were found in the acute lesions of NMO patients. However, the origin and function of these innate immune cells remain unclear in NMO pathogenesis. Therefore, this study aims to analyze the origin and functions of these innate immune cells in an NMO-like mouse model and evaluate their role in the pathophysiology of NMO. The expression of Tmem119 on Iba1 + cells in brain tissue disappeared immediately after the injection of NMO-IgG + human complement mixture, while the expression of P2ry12 remained well-maintained at 1 day after injection. Based on these observations, it was demonstrated that monocytes infiltrate the brain during the early stages of the pathological process and are closely associated with the inflammatory response through the expression of the proinflammatory cytokine IL-1β. Understanding the variations in the expression patterns of P2ry12, Tmem119, and other markers could be helpful in distinguishing between these cell types and further analyzing their functions. Therefore, this research may contribute to a better understanding of the mechanisms and potential treatments for NMO.
Collapse
Affiliation(s)
- Moonhang Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, Republic of Korea.
| | - Won Seok Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, Republic of Korea
| | - Hyeuk Cha
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, Republic of Korea
| | - Boram Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082, Republic of Korea
| | - Young Nam Kwon
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Chen T, Lennon VA, Liu YU, Bosco DB, Li Y, Yi MH, Zhu J, Wei S, Wu LJ. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest 2021; 130:4025-4038. [PMID: 32568214 DOI: 10.1172/jci134816] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Neuromyelitis optica (NMO) is a severe inflammatory autoimmune CNS disorder triggered by binding of an IgG autoantibody to the aquaporin 4 (AQP4) water channel on astrocytes. Activation of cytolytic complement has been implicated as the major effector of tissue destruction that secondarily involves myelin. We investigated early precytolytic events in the evolving pathophysiology of NMO in mice by continuously infusing IgG (NMO patient serum-derived or AQP4-specific mouse monoclonal), without exogenous complement, into the spinal subarachnoid space. Motor impairment and sublytic NMO-compatible immunopathology were IgG dose dependent, AQP4 dependent, and, unexpectedly, microglia dependent. In vivo spinal cord imaging revealed a striking physical interaction between microglia and astrocytes that required signaling from astrocytes by the C3a fragment of their upregulated complement C3 protein. Astrocytes remained viable but lost AQP4. Previously unappreciated crosstalk between astrocytes and microglia involving early-activated CNS-intrinsic complement components and microglial C3a receptor signaling appears to be a critical driver of the precytolytic phase in the evolving NMO lesion, including initial motor impairment. Our results indicate that microglia merit consideration as a potential target for NMO therapeutic intervention.
Collapse
Affiliation(s)
| | - Vanda A Lennon
- Department of Neurology.,Department of Immunology, and.,Department of Laboratory Medicine/Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | - Shihui Wei
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China
| | - Long-Jun Wu
- Department of Neurology.,Department of Immunology, and.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
4
|
Effect of Glycyrrhizic Acid on Scopolamine-Induced Cognitive Impairment in Mice. Int Neurourol J 2020; 24:S48-55. [PMID: 32482057 PMCID: PMC7285697 DOI: 10.5213/inj.2040154.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/07/2020] [Indexed: 01/24/2023] Open
Abstract
Purpose Cognitive impairment is one of the main symptoms of Alzheimer disease and other dementias. Glycyrrhiza uralensis is a natural product that has a protective effect against cognitive impairment. In this study, we investigated whether glycyrrhizic acid, among the main bioactive components of Glycyrrhiza uralensis, has a neuroprotective effect on scopolamine-induced cognitive impairment. Methods Twenty-week-old male Institute of Cancer Research mice were used in this study. The scopolamine-induced cognitive impairment mice model was used. Glycyrrhizic acid was orally administered to mice once daily for 21 days, while scopolamine (1 mg/kg) treatment was delivered 30 minutes before behavioral tests. Donepezil (2 mg/kg) was used as a positive drug control. To evaluate the effect of glycyrrhizic acid, the following assessments were performed on hippocampal tissue: Y-maze test, acetylcholinesterase activity, antioxidant enzymes’ activity (superoxide dismutase, catalase). Western blotting for phosphor-extracellular signal-regulated kinase, P38, and c-Jun NH2-terminal kinase was conducted. Results We found that glycyrrhizic acid administration significantly improved scopolamine-induced cognitive impairment in the Y-maze test. The acetylcholinesterase activity, superoxide dismutase, and catalase activity in the glycyrrhizic acid-treated group showed a significant reversal of cognitive impairment compared with the scopolamine-treated group. Conclusions Our results suggest that glycyrrhizic acid has a neuroprotective effect on cognitive function in scopolamine-induced cognitive impairment.
Collapse
|
5
|
Wang C, Chen L, Xu C, Shi J, Chen S, Tan M, Chen J, Zou L, Chen C, Liu Z, Liu X. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:17-45. [PMID: 31931596 DOI: 10.1142/s0192415x20500020] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licorice is extensively applied in food as well as herbal medicine across the world, possessing a substantial share in the global market. It has made great progress in chemical and pharmacological research in recent years. Currently, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. were officially used as Gan-Cao according to the Chinese Pharmacopoeia. Accumulating evidence demonstrated three varieties of licorice have their own special compounds except for two quality markers set by Pharmacopoeia, providing great possibility for better understanding their characteristics, evaluating quality of each species and studying biosynthesis mechanisms of species-specific compounds. As a special "guide drug" in clinic, licorice plays an important role in Chinese herbal formulas. The interaction between licorice with other ingredients and their metabolism in vivo should also be taken into consideration. In addition, draft genome annotation, and success of the final step of glycyrrhizin biosynthesis have paved the way for biosynthesis of other active constituents in licorice, a promising beginning of solving source shortage. Accordingly, we comprehensively explored the nearly 400 chemical compounds found in the three varieties of licorice so far, systematically excavated various pharmacological activities, including metabolism via CYP450 system in vivo, and introduced the complete biosynthesis pathway of glycyrrhizin in licorice. The review will facilitate the further research toward this herbal medicine.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chaoqie Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Collaborative Innovation Center of Chinese, Medicinal Resources Industrialization, Nanjing 210023, P. R. China.,National and Local Collaborative Engineering, Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Huang Y, Li D, Wang J, Cai Y, Dai Z, Jiang D, Liu C. GuUGT, a glycosyltransferase from Glycyrrhiza uralensis, exhibits glycyrrhetinic acid 3- and 30-O-glycosylation. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191121. [PMID: 31824719 PMCID: PMC6837211 DOI: 10.1098/rsos.191121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/08/2019] [Indexed: 06/02/2023]
Abstract
Glycyrrhiza uralensis is a well-known herbal medicine that contains triterpenoid saponins as the predominant bioactive components, and these compounds include glycyrrhetinic acid (GA)-glycoside derivatives. Although two genes encoding UDP-glycosyltransferases (UGTs) that glycosylate these derivates have been functionally characterized in G. uralensis, the mechanisms of glycosylation by other UGTs remain unknown. Based on the available transcriptome data, we isolated a UGT with expression in the roots of G. uralensis. This UGT gene possibly encodes a glucosyltransferase that glycosylates GA derivatives at the 3-OH site. Biochemical analyses revealed that the recombinant UGT enzyme could transfer a glucosyl moiety to the free 3-OH or 30-COOH groups of GA. Furthermore, engineered yeast harbouring genes involved in the biosynthetic pathway for GA-glycoside derivates produced GA-3-O-β-D-glucoside, implying that the enzyme has GA 3-O-glucosyltransferase activity in vivo. Our results could provide a frame for understand the function of the UGT gene family, and also is important for further studies of triterpenoids biosynthesis in G. uralensis.
Collapse
Affiliation(s)
- Ying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Da Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Jinhe Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Yi Cai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Zhubo Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Dan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Chunsheng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| |
Collapse
|
7
|
Enzymatic Synthesis of Novel Glycyrrhizic Acid Glucosides Using a Promiscuous Bacillus Glycosyltransferase. Catalysts 2018. [DOI: 10.3390/catal8120615] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glycyrrhetinic acid (GA) and glycyrrhizin (GA-3-O-[β-d-glucuronopyranosyl-(1→2)-β-d-glucuronopyranoside], GL) are the major bioactive components of Glycyrrhiza uralensis and possess multifarious notable biological activities. UDP-glycosyltransferase (UGT)–catalyzed glycosylation remarkably extends the structural and functional diversification of GA-glycoside derivatives. In this study, six glucosides (1–6) of GA and GL were synthesized using a Bacillus subtilis 168–originated flexible UDP-glycosyltransferase Bs-YjiC. Bs-YjiC could transfer a glucosyl moiety from UDP-glucose to the free C3 hydroxyl and/or C30 carboxyl groups of GA and GL and further elongate the C30 glucosyl chain via a β-1-2-glycosidic bond. Glycosylation significantly increased the water solubility of these novel glucosides by 4–90 folds. In vitro assays showed that GA monoglucosides (1 and 2) showed stronger antiproliferative activity against human liver cancer cells HepG2 and breast cancer cells MCF-7 than that of GL and GL glucosides. These findings provide significant insights into the important role of promiscuous UGTs for the enzymatic synthesis of novel bioactive GA derivatives.
Collapse
|
8
|
Zhao Y, Lv B, Feng X, Li C. Perspective on Biotransformation and De Novo Biosynthesis of Licorice Constituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11147-11156. [PMID: 29179542 DOI: 10.1021/acs.jafc.7b04470] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Licorice, an important herbal medicine, is derived from the dried roots and rhizomes of Glycyrrhiza genus plants. It has been widely used in food, pharmaceutical, tobacco, and cosmetics industries with high economic value. However, overexploitation of licorice resources has severely destroyed the local ecology. Therefore, producing bioactive compounds of licorice through the biotransformation and bioengineering methods is a hot spot in recent years. In this perspective, we comprehensively summarize the biotransformation of licorice constituents into high-value-added derivatives by biocatalysts. Furthermore, successful cases and the strategies for de novo biosynthesizing compounds of licorice in microbes have been summarized. This paper will provide new insights for the further research of licorice.
Collapse
Affiliation(s)
- Yujia Zhao
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Bo Lv
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Xudong Feng
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Chun Li
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| |
Collapse
|