1
|
Gonzalez A, Kim HJ, Freibaum BD, Fung HYJ, Brautigam CA, Taylor JP, Chook YM. A new Karyopherin-β2 binding PY-NLS epitope of HNRNPH2 linked to neurodevelopmental disorders. Structure 2023; 31:924-934.e4. [PMID: 37279758 PMCID: PMC10524338 DOI: 10.1016/j.str.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
The HNRNPH2 proline-tyrosine nuclear localization signal (PY-NLS) is mutated in HNRNPH2-related X-linked neurodevelopmental disorder, causing the normally nuclear HNRNPH2 to accumulate in the cytoplasm. We solved the cryoelectron microscopy (cryo-EM) structure of Karyopherin-β2/Transportin-1 bound to the HNRNPH2 PY-NLS to understand importin-NLS recognition and disruption in disease. HNRNPH2 206RPGPY210 is a typical R-X2-4-P-Y motif comprising PY-NLS epitopes 2 and 3, followed by an additional Karyopherin-β2-binding epitope, we term epitope 4, at residues 211DRP213; no density is present for PY-NLS epitope 1. Disease variant mutations at epitopes 2-4 impair Karyopherin-β2 binding and cause aberrant cytoplasmic accumulation in cells, emphasizing the role of nuclear import defect in disease. Sequence/structure analysis suggests that strong PY-NLS epitopes 4 are rare and thus far limited to close paralogs of HNRNPH2, HNRNPH1, and HNRNPF. Epitope 4-binidng hotspot Karyopherin-β2 W373 corresponds to close paralog Karyopherin-β2b/Transportin-2 W370, a pathological variant site in neurodevelopmental abnormalities, suggesting that Karyopherin-β2b/Transportin-2-HNRNPH2/H1/F interactions may be compromised in the abnormalities.
Collapse
Affiliation(s)
- Abner Gonzalez
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Nöthen T, Sarabi MA, Weinert S, Zuschratter W, Morgenroth R, Mertens PR, Braun-Dullaeus RC, Medunjanin S. DNA-Dependent Protein Kinase Mediates YB-1 (Y-Box Binding Protein)-Induced Double Strand Break Repair. Arterioscler Thromb Vasc Biol 2023; 43:300-311. [PMID: 36475703 DOI: 10.1161/atvbaha.122.317922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND DNA-PK (DNA-dependent protein kinase) is a stress-activated serine/threonine kinase that plays a central role in vascular smooth muscle cell proliferation and vascular proliferative disease processes such as neointimal formation. In this study, we link the activation of DNA-PK to the function of the transcription factor YB-1 (Y-box binding protein). METHODS To identify YB-1 phosphorylation by DNA-PK, we generated different YB-1-expressing vectors. YB-1 nuclear translocation was investigated using immunoblotting and immunofluorescence staining. For YB-1 activity, luciferase assays were performed. RESULTS We show by mutational analysis and kinase assay that the transcriptional regulator YB-1 is a substrate of DNA-PK. Blockade of DNA-PK by specific inhibitors revealed its critical involvement in YB-1phosphorylation as demonstrated by inhibition of an overexpressed YB-1 reporter construct. Using DNA-PK-deficient cells, we demonstrate that the shuttling of YB-1 from the cytoplasm to the nucleus is dependent on DNA-PK and that the N-terminal domain of YB-1 is phosphorylated at threonine 89. Point mutation of YB-1 at this residue abrogated the translocation of YB-1 into the nucleus. The phosphorylation of YB-1 by DNA-PK increased cellular DNA repair after exposure to ionizing radiation. Atherosclerotic tissue specimens were analyzed by immunohistochemistry. The DNA-PK subunits and YB-1 phosphorylated at T89 were found colocalized suggesting their in vivo interaction. In mice, the local application of the specific DNA-PK inhibitor NU7026 via thermosensitive Pluronic F-127 gel around dilated arteries significantly reduced the phosphorylation of YB-1. CONCLUSIONS DNA-PK directly phosphorylates YB-1 and, this way, modulates YB-1 function. This interaction could be demonstrated in vivo, and colocalization in human atherosclerotic plaques suggests clinical relevance of our finding. Phosphorylation of YB-1 by DNA-PK may represent a novel mechanism governing atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Till Nöthen
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Mohsen Abdi Sarabi
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Sönke Weinert
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | | | - Ronnie Morgenroth
- Department of Internal Medicine, Division of Nephrology and Hypertension, Diabetes and Endocrinology (R.M., P.R.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Department of Internal Medicine, Division of Nephrology and Hypertension, Diabetes and Endocrinology (R.M., P.R.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Ruediger C Braun-Dullaeus
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Senad Medunjanin
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
3
|
YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 2022; 11:cells11071217. [PMID: 35406781 PMCID: PMC8997642 DOI: 10.3390/cells11071217] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Y box binding protein 1 (YB-1) is a protein with a highly conserved cold shock domain (CSD) that also belongs to the family of DNA- and RNA-binding proteins. YB-1 is present in both the nucleus and cytoplasm and plays versatile roles in gene transcription, RNA splicing, DNA damage repair, cell cycle progression, and immunity. Cumulative evidence suggests that YB-1 promotes the progression of multiple tumor types and serves as a potential tumor biomarker and therapeutic target. This review comprehensively summarizes the emerging functions, mechanisms, and regulation of YB-1 in cancers, and further discusses targeted strategies.
Collapse
|
4
|
Eliseeva IA, Sogorina EM, Smolin EA, Kulakovskiy IV, Lyabin DN. Diverse Regulation of YB-1 and YB-3 Abundance in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S48-S167. [PMID: 35501986 DOI: 10.1134/s000629792214005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
YB proteins are DNA/RNA binding proteins, members of the family of proteins with cold shock domain. Role of YB proteins in the life of cells, tissues, and whole organisms is extremely important. They are involved in transcription regulation, pre-mRNA splicing, mRNA translation and stability, mRNA packaging into mRNPs, including stress granules, DNA repair, and many other cellular events. Many processes, from embryonic development to aging, depend on when and how much of these proteins have been synthesized. Here we discuss regulation of the levels of YB-1 and, in part, of its homologs in the cell. Because the amount of YB-1 is immediately associated with its functioning, understanding the mechanisms of regulation of the protein amount invariably reveals the events where YB-1 is involved. Control over the YB-1 abundance may allow using this gene/protein as a therapeutic target in cancers, where an increased expression of the YBX1 gene often correlates with the disease severity and poor prognosis.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | | | - Egor A Smolin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Dmitry N Lyabin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
5
|
Lyabin DN, Serebrova EV. In Memory of Lev Ovchinnikov. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S1-S191. [PMID: 35501982 DOI: 10.1134/s0006297922140012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Lev Ovchinnikov was a true man of Science. Until the end of his life, he retained not only loyalty to strict scientific principles, but also a benevolent attitude towards the people around him. He devoted his scientific career to the study of mRNP and regulation of protein biosynthesis. He created a unique scientific school that received international recognition.
Collapse
Affiliation(s)
- Dmitry N Lyabin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Eugenia V Serebrova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
6
|
Sogorina EM, Kim ER, Sorokin AV, Lyabin DN, Ovchinnikov LP, Mordovkina DA, Eliseeva IA. YB-1 Phosphorylation at Serine 209 Inhibits Its Nuclear Translocation. Int J Mol Sci 2021; 23:ijms23010428. [PMID: 35008856 PMCID: PMC8745666 DOI: 10.3390/ijms23010428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
YB-1 is a multifunctional DNA- and RNA-binding protein involved in cell proliferation, differentiation, and migration. YB-1 is a predominantly cytoplasmic protein that is transported to the nucleus in certain conditions, including DNA-damaging stress, transcription inhibition, and viral infection. In tumors, YB-1 nuclear localization correlates with high aggressiveness, multidrug resistance, and a poor prognosis. It is known that posttranslational modifications can regulate the nuclear translocation of YB-1. In particular, well-studied phosphorylation at serine 102 (S102) activates YB-1 nuclear import. Here, we report that Akt kinase phosphorylates YB-1 in vitro at serine 209 (S209), which is located in the vicinity of the YB-1 nuclear localization signal. Using phosphomimetic substitutions, we showed that S209 phosphorylation inhibits YB-1 nuclear translocation and prevents p-S102-mediated YB-1 nuclear import.
Collapse
Affiliation(s)
- Ekaterina M. Sogorina
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Ekaterina R. Kim
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexey V. Sorokin
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dmitry N. Lyabin
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Lev P. Ovchinnikov
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Daria A. Mordovkina
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Correspondence: (D.A.M.); (I.A.E.)
| | - Irina A. Eliseeva
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Correspondence: (D.A.M.); (I.A.E.)
| |
Collapse
|
7
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
8
|
Alkrekshi A, Wang W, Rana PS, Markovic V, Sossey-Alaoui K. A comprehensive review of the functions of YB-1 in cancer stemness, metastasis and drug resistance. Cell Signal 2021; 85:110073. [PMID: 34224843 DOI: 10.1016/j.cellsig.2021.110073] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
The Y Box binding protein 1 (YB-1) is a member of the highly conserved Cold Shock Domain protein family with multifunctional properties both in the cytoplasm and inside the nucleus. YB-1 is also involved in various cellular functions, including regulation of transcription, mRNA stability, and splicing. Recent studies have associated YB-1 with the regulation of the malignant phenotypes in several tumor types. In this review article, we provide an in-depth and expansive review of the literature pertaining to the multiple physiological functions of YB-1. We will also review the role of YB-1 in cancer development, progression, metastasis, and drug resistance in various malignancies, with more weight on literature published in the last decade. The methodology included querying databases PubMed, Embase, and Google Scholar for Y box binding protein 1, YB-1, YBX1, and Y-box-1.
Collapse
Affiliation(s)
- Akram Alkrekshi
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Wei Wang
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Priyanka Shailendra Rana
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Vesna Markovic
- MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Khalid Sossey-Alaoui
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
9
|
Mboukou A, Rajendra V, Kleinova R, Tisné C, Jantsch MF, Barraud P. Transportin-1: A Nuclear Import Receptor with Moonlighting Functions. Front Mol Biosci 2021; 8:638149. [PMID: 33681296 PMCID: PMC7930572 DOI: 10.3389/fmolb.2021.638149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Transportin-1 (Trn1), also known as karyopherin-β2 (Kapβ2), is probably the best-characterized nuclear import receptor of the karyopherin-β family after Importin-β, but certain aspects of its functions in cells are still puzzling or are just recently emerging. Since the initial identification of Trn1 as the nuclear import receptor of hnRNP A1 ∼25 years ago, several molecular and structural studies have unveiled and refined our understanding of Trn1-mediated nuclear import. In particular, the understanding at a molecular level of the NLS recognition by Trn1 made a decisive step forward with the identification of a new class of NLSs called PY-NLSs, which constitute the best-characterized substrates of Trn1. Besides PY-NLSs, many Trn1 cargoes harbour NLSs that do not resemble the archetypical PY-NLS, which complicates the global understanding of cargo recognition by Trn1. Although PY-NLS recognition is well established and supported by several structures, the recognition of non-PY-NLSs by Trn1 is far less understood, but recent reports have started to shed light on the recognition of this type of NLSs. Aside from its principal and long-established activity as a nuclear import receptor, Trn1 was shown more recently to moonlight outside nuclear import. Trn1 has for instance been caught in participating in virus uncoating, ciliary transport and in modulating the phase separation properties of aggregation-prone proteins. Here, we focus on the structural and functional aspects of Trn1-mediated nuclear import, as well as on the moonlighting activities of Trn1.
Collapse
Affiliation(s)
- Allegra Mboukou
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université de Paris, Paris, France
| | - Vinod Rajendra
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Renata Kleinova
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Carine Tisné
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université de Paris, Paris, France
| | - Michael F. Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Pierre Barraud
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université de Paris, Paris, France
| |
Collapse
|
10
|
Y-Box Binding Protein-1: A Neglected Target in Pediatric Brain Tumors? Mol Cancer Res 2020; 19:375-387. [PMID: 33239357 DOI: 10.1158/1541-7786.mcr-20-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
|
11
|
Hessman CL, Hildebrandt J, Shah A, Brandt S, Bock A, Frye BC, Raffetseder U, Geffers R, Brunner-Weinzierl MC, Isermann B, Mertens PR, Lindquist JA. YB-1 Interferes with TNFα-TNFR Binding and Modulates Progranulin-Mediated Inhibition of TNFα Signaling. Int J Mol Sci 2020; 21:ijms21197076. [PMID: 32992926 PMCID: PMC7583764 DOI: 10.3390/ijms21197076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Inflammation and an influx of macrophages are common elements in many diseases. Among pro-inflammatory cytokines, tumor necrosis factor α (TNFα) plays a central role by amplifying the cytokine network. Progranulin (PGRN) is a growth factor that binds to TNF receptors and interferes with TNFα-mediated signaling. Extracellular PGRN is processed into granulins by proteases released from immune cells. PGRN exerts anti-inflammatory effects, whereas granulins are pro-inflammatory. The factors coordinating these ambivalent functions remain unclear. In our study, we identify Y-box binding protein-1 (YB-1) as a candidate for this immune-modulating activity. Using a yeast-2-hybrid assay with YB-1 protein as bait, clones encoding for progranulin were selected using stringent criteria for strong interaction. We demonstrate that at physiological concentrations, YB-1 interferes with the binding of TNFα to its receptors in a dose-dependent manner using a flow cytometry-based binding assay. We show that YB-1 in combination with progranulin interferes with TNFα-mediated signaling, supporting the functionality with an NF-κB luciferase reporter assay. Together, we show that YB-1 displays immunomodulating functions by affecting the binding of TNFα to its receptors and influencing TNFα-mediated signaling via its interaction with progranulin.
Collapse
Affiliation(s)
- Christopher L. Hessman
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Josephine Hildebrandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Aneri Shah
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Antonia Bock
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Björn C. Frye
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany; (B.C.F.); (U.R.)
| | - Ute Raffetseder
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany; (B.C.F.); (U.R.)
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | | | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
- Correspondence: (P.R.M.); (J.A.L.); Tel.: +49-391-6713236 (P.R.M.); +49-391-6724703 (J.A.L.)
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
- Correspondence: (P.R.M.); (J.A.L.); Tel.: +49-391-6713236 (P.R.M.); +49-391-6724703 (J.A.L.)
| |
Collapse
|
12
|
Y-Box Binding Proteins in mRNP Assembly, Translation, and Stability Control. Biomolecules 2020; 10:biom10040591. [PMID: 32290447 PMCID: PMC7226217 DOI: 10.3390/biom10040591] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Y-box binding proteins (YB proteins) are DNA/RNA-binding proteins belonging to a large family of proteins with the cold shock domain. Functionally, these proteins are known to be the most diverse, although the literature hardly offers any molecular mechanisms governing their activities in the cell, tissue, or the whole organism. This review describes the involvement of YB proteins in RNA-dependent processes, such as mRNA packaging into mRNPs, mRNA translation, and mRNA stabilization. In addition, recent data on the structural peculiarities of YB proteins underlying their interactions with nucleic acids are discussed.
Collapse
|
13
|
Dephosphorylation of YB-1 is Required for Nuclear Localisation During G 2 Phase of the Cell Cycle. Cancers (Basel) 2020; 12:cancers12020315. [PMID: 32013098 PMCID: PMC7072210 DOI: 10.3390/cancers12020315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 01/25/2023] Open
Abstract
Elevated levels of nuclear Y-box binding protein 1 (YB-1) are linked to poor prognosis in cancer. It has been proposed that entry into the nucleus requires specific proteasomal cleavage. However, evidence for cleavage is contradictory and high YB-1 levels are prognostic regardless of cellular location. Here, using confocal microscopy and mass spectrometry, we find no evidence of specific proteolytic cleavage. Doxorubicin treatment, and the resultant G2 arrest, leads to a significant increase in the number of cells where YB-1 is not found in the cytoplasm, suggesting that its cellular localisation is variable during the cell cycle. Live cell imaging reveals that the location of YB-1 is linked to progression through the cell cycle. Primarily perinuclear during G1 and S phases, YB-1 enters the nucleus as cells transition through late G2/M and exits at the completion of mitosis. Atomistic modelling and molecular dynamics simulations show that dephosphorylation of YB-1 at serine residues 102, 165 and 176 increases the accessibility of the nuclear localisation signal (NLS). We propose that this conformational change facilitates nuclear entry during late G2/M. Thus, the phosphorylation status of YB-1 determines its cellular location.
Collapse
|
14
|
Inhibition of Transcription Induces Phosphorylation of YB-1 at Ser102 and Its Accumulation in the Nucleus. Cells 2019; 9:cells9010104. [PMID: 31906126 PMCID: PMC7016903 DOI: 10.3390/cells9010104] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/04/2023] Open
Abstract
The Y-box binding protein 1 (YB-1) is an RNA/DNA-binding protein regulating gene expression in the cytoplasm and the nucleus. Although mostly cytoplasmic, YB-1 accumulates in the nucleus under stress conditions. Its nuclear localization is associated with aggressiveness and multidrug resistance of cancer cells, which makes the understanding of the regulatory mechanisms of YB-1 subcellular distribution essential. Here, we report that inhibition of RNA polymerase II (RNAPII) activity results in the nuclear accumulation of YB-1 accompanied by its phosphorylation at Ser102. The inhibition of kinase activity reduces YB-1 phosphorylation and its accumulation in the nucleus. The presence of RNA in the nucleus is shown to be required for the nuclear retention of YB-1. Thus, the subcellular localization of YB-1 depends on its post-translational modifications (PTMs) and intracellular RNA distribution.
Collapse
|
15
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain. Nat Commun 2019; 10:4119. [PMID: 31511520 PMCID: PMC6739334 DOI: 10.1038/s41467-019-12049-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs are non-coding RNAs, and are enriched in the CNS. Dorsal horn neurons of the spinal cord contribute to pain-like hypersensitivity after nerve injury in rodents. Here we show that spinal nerve ligation is associated with an increase in expression of circAnks1a in dorsal horn neurons, in both the cytoplasm and the nucleus. Downregulation of circAnks1a by siRNA attenuates pain-like behaviour induced by nerve injury. In the cytoplasm, we show that circAnks1a promotes the interaction between transcription factor YBX1 and transportin-1, thus facilitating the nucleus translocation of YBX1. In the nucleus, circAnks1a binds directly to the Vegfb promoter, increases YBX1 recruitment to the Vegfb promoter, thereby facilitating transcription. Furthermore, cytoplasmic circAnks1a acts as a miRNA sponge in miR-324-3p-mediated posttranscriptional regulation of VEGFB expression. The upregulation of VEGFB contributes to increased excitability of dorsal horn neurons and pain behaviour induced by nerve injury. We propose that circAnks1a and VEGFB are regulators of neuropathic pain. Circular RNAs are non-coding RNAs that are enriched in the CNS, but their role in chronic pain is not known. Here the authors show that CircAnks1a in dorsal horn neurons contributes to pain-like hypersensitivity in a rodent model of neuropathic pain, via a VEGF mechanism.
Collapse
|
17
|
Jans DA, Martin AJ, Wagstaff KM. Inhibitors of nuclear transport. Curr Opin Cell Biol 2019; 58:50-60. [PMID: 30826604 DOI: 10.1016/j.ceb.2019.01.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Central to eukaryotic cell function, transport into and out of the nucleus is largely mediated by members of the Importin (IMP) superfamily of transporters of α- and β-types. The first inhibitor of nuclear transport, leptomycin B (LMB), was shown to be a specific inhibitor of the IMPβ homologue Exportin 1 (EXP1) almost 20 years ago, but it has only been in the last five or so years that new inhibitors of nuclear export as well as import have been identified and characterised. Of utility in biological research, these inhibitors include those that target-specific EXPs/IMPs, with accompanying toxicity profiles, as well as agents that specifically target particular nuclear import cargoes. Both types of inhibitors have begun to be tested in preclinical/clinical studies, with particular focus on limiting various types of cancer or treating viral infection, and the most advanced agent targeting EXP1 (Selinexor) has progressed successfully through >40 clinical trials for a range of high-grade cancers and is approaching FDA approval for a number of indications. Selectively inhibiting the nucleocytoplasmic trafficking of specific proteins of interest remains a challenge, but progress in the area of the host-pathogen interface holds promise for the future.
Collapse
Affiliation(s)
- David A Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Alexander J Martin
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Kylie M Wagstaff
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
18
|
Tanaka T, Kasai M, Kobayashi S. Mechanism responsible for inhibitory effect of indirubin 3′-oxime on anticancer agent-induced YB-1 nuclear translocation in HepG2 human hepatocellular carcinoma cells. Exp Cell Res 2018; 370:454-460. [DOI: 10.1016/j.yexcr.2018.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022]
|
19
|
Tiwari A, Rebholz S, Maier E, Dehghan Harati M, Zips D, Sers C, Rodemann HP, Toulany M. Stress-Induced Phosphorylation of Nuclear YB-1 Depends on Nuclear Trafficking of p90 Ribosomal S6 Kinase. Int J Mol Sci 2018; 19:ijms19082441. [PMID: 30126195 PMCID: PMC6121600 DOI: 10.3390/ijms19082441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/24/2022] Open
Abstract
Ionizing radiation (IR) and epidermal growth factor (EGF) stimulate Y-box binding protein-1 (YB-1) phosphorylation at Ser-102 in KRAS wild-type (KRASwt) cells, whereas in KRAS mutated (KRASmut) cells, YB-1 is constitutively phosphorylated, independent of IR or EGF. YB-1 activity stimulates the repair of IR-induced DNA double-strand breaks (DSBs) in the nucleus. Thus far, the YB-1 nuclear translocation pattern after cell exposure to various cellular stressors is not clear. In the present study, we investigated the pattern of YB-1 phosphorylation and its possible translocation to the nucleus in KRASwt cells after exposure to IR, EGF treatment, and conditional expression of mutated KRAS(G12V). IR, EGF, and conditional KRAS(G12V) expression induced YB-1 phosphorylation in both the cytoplasmic and nuclear fractions of KRASwt cells. None of the stimuli induced YB-1 nuclear translocation, while p90 ribosomal s6 kinase (RSK) translocation was enhanced in KRASwt cells after any of the stimuli. EGF-induced RSK translocation to the nucleus and nuclear YB-1 phosphorylation were completely blocked by the EGF receptor kinase inhibitor erlotinib. Likewise, RSK inhibition blocked RSK nuclear translocation and nuclear YB-1 phosphorylation after irradiation and KRAS(G12V) overexpression. In summary, acute stimulation of YB-1 phosphorylation does not lead to YB-1 translocation from the cytoplasm to the nucleus. Rather, irradiation, EGF treatment, or KRAS(G12V) overexpression induces RSK activation, leading to its translocation to the nucleus, where it activates already-existing nuclear YB-1. Our novel finding illuminates the signaling pathways involved in nuclear YB-1 phosphorylation and provides a rationale for designing appropriate targeting strategies to block YB-1 in oncology as well as in radiation oncology.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Simone Rebholz
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Eva Maier
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mozhgan Dehghan Harati
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Daniel Zips
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Christine Sers
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - H Peter Rodemann
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mahmoud Toulany
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
20
|
Matsumoto K, Kose S, Kuwahara I, Yoshimura M, Imamoto N, Yoshida M. Y-box protein-associated acidic protein (YBAP1/C1QBP) affects the localization and cytoplasmic functions of YB-1. Sci Rep 2018; 8:6198. [PMID: 29670170 PMCID: PMC5906478 DOI: 10.1038/s41598-018-24401-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
The Y-box proteins are multifunctional nucleic acid-binding proteins involved in various aspects of gene regulation. The founding member of the Y-box protein family, YB-1, functions as a transcription factor as well as a principal component of messenger ribonucleoprotein particles (mRNPs) in somatic cells. The nuclear level of YB-1 is well correlated with poor prognosis in many human cancers. Previously, we showed that a Y-box protein–associated acidic protein, YBAP1, which is identical to complement component 1, q subcomponent-binding protein (C1QBP, also called gC1qR, hyaluronan-binding protein 1 [HABP1] or ASF/SF2-associated protein p32), relieves translational repression by YB-1. Here we show that the nuclear localization of YB-1 harboring a point mutation in the cold shock domain was inhibited when co-expressed with YBAP1, whereas cytoplasmic accumulation of the wild-type YB-1 was not affected. We showed that YBAP1 inhibited the interaction between YB-1 and transportin 1. In the cytoplasm, YBAP1 affected the accumulation of YB-1 to processing bodies (P-bodies) and partially abrogated the mRNA stabilization by YB-1. Our results, indicating that YBAP1/C1QBP regulates the nucleo-cytoplasmic distribution of YB-1 and its cytoplasmic functions, are consistent with a model that YBAP1/C1QBP acts as an mRNP remodeling factor.
Collapse
Affiliation(s)
- Ken Matsumoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan. .,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan. .,Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan.
| | - Shingo Kose
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Wako, Saitama, Japan
| | - Iku Kuwahara
- Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan
| | - Mami Yoshimura
- Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Wako, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
21
|
Tanaka T, Ohashi S, Saito H, Wada T, Aoyama T, Ichimaru Y, Miyairi S, Kobayashi S. Indirubin 3'-oxime inhibits anticancer agent-induced YB-1 nuclear translocation in HepG2 human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2017; 496:7-11. [PMID: 29274785 DOI: 10.1016/j.bbrc.2017.12.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a disease with poor prognosis. Nuclear accumulation of YB-1 is closely related to the malignancy of HCC. Treatment with anticancer agents often induces translocation of YB-1 from cytoplasm to nucleus and activates the expression of multidrug resistance gene 1 (MDR1). Therefore, any effective inhibitor of this phenomenon would be useful for cancer treatment. Here we examined various indirubin derivatives and found that indirubin 3'-oxime inhibits actinomycin D-induced nuclear transport of YB-1 and suppresses the activation of MDR1 gene expression in the human hepatocellular carcinoma cell line HepG2. Furthermore, use of both indirubin 3'-oxime and actinomycin D in combination increased the anticancer effect on HepG2 cells. Indirubin 3'-oxime is a novel and efficient inhibitor of anticancer agent-induced YB-1 nuclear translocation.
Collapse
Affiliation(s)
- Toru Tanaka
- Department of Biochemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Sachiyo Ohashi
- Department of Biochemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Hiroaki Saito
- Department of Bio-organic Chemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Taira Wada
- Department of Health Science, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Tadashi Aoyama
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Tokyo 101-8308, Japan
| | - Yoshimi Ichimaru
- Department of Bio-organic Chemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Shinichi Miyairi
- Department of Bio-organic Chemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Shunsuke Kobayashi
- Department of Biochemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan.
| |
Collapse
|