1
|
Liu Q, Chen C, Fan Z, Song H, Sha Y, Yu L, Wang Y, Qin W, Yi W. O-GlcNAcase regulates pluripotency states of human embryonic stem cells. Stem Cell Reports 2024; 19:993-1009. [PMID: 38942028 PMCID: PMC11252487 DOI: 10.1016/j.stemcr.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/30/2024] Open
Abstract
Understanding the regulation of human embryonic stem cells (hESCs) pluripotency is critical to advance the field of developmental biology and regenerative medicine. Despite the recent progress, molecular events regulating hESC pluripotency, especially the transition between naive and primed states, still remain unclear. Here we show that naive hESCs display lower levels of O-linked N-acetylglucosamine (O-GlcNAcylation) than primed hESCs. O-GlcNAcase (OGA), the key enzyme catalyzing the removal of O-GlcNAc from proteins, is highly expressed in naive hESCs and is important for naive pluripotency. Depletion of OGA accelerates naive-to-primed pluripotency transition. OGA is transcriptionally regulated by EP300 and acts as a transcription regulator of genes important for maintaining naive pluripotency. Moreover, we profile protein O-GlcNAcylation of the two pluripotency states by quantitative proteomics. Together, this study identifies OGA as an important factor of naive pluripotency in hESCs and suggests that O-GlcNAcylation has a broad effect on hESCs homeostasis.
Collapse
Affiliation(s)
- Qianyu Liu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng Chen
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhiya Fan
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 100026, China
| | - Honghai Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yutong Sha
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liyang Yu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingjie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 100026, China.
| | - Wen Yi
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Wenzel DM, Olivier-Van Stichelen S. The O-GlcNAc cycling in neurodevelopment and associated diseases. Biochem Soc Trans 2022; 50:1693-1702. [PMID: 36383066 PMCID: PMC10462390 DOI: 10.1042/bst20220539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Proper neuronal development is essential to growth and adult brain function. Alterations at any step of this highly organized sequence of events, due to genetic mutations or environmental factors, triggers brain malformations, which are leading causes of diseases including epilepsy, intellectual disabilities, and many others. The role of glycosylation in neuronal development has been emphasized for many years, notably in studying human congenital disorders of glycosylation (CDGs). These diseases highlight that genetic defects in glycosylation pathways are almost always associated with severe neurological abnormalities, suggesting that glycosylation plays an essential role in early brain development. Congenital disorders of O-GlcNAcylation are no exception, and all mutations of the O-GlcNAc transferase (OGT) are associated with X-linked intellectual disabilities (XLID). In addition, mouse models and in vitro mechanistic studies have reinforced the essential role of O-GlcNAcylation in neuronal development and signaling. In this review, we give an overview of the role of O-GlcNAcylation in this critical physiological process and emphasize the consequences of its dysregulation.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, U.S.A
| | | |
Collapse
|
3
|
Ogura C, Nishihara S. Dermatan-4- O-Sulfotransferase-1 Contributes to the Undifferentiated State of Mouse Embryonic Stem Cells. Front Cell Dev Biol 2021; 9:733964. [PMID: 34631712 PMCID: PMC8495257 DOI: 10.3389/fcell.2021.733964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) have the properties of self-renewal and pluripotency. Various signals and growth factors maintain their undifferentiated state and also regulate their differentiation. Glycosaminoglycans are present on the cell surface and in the cell matrix as proteoglycans. Previously, we and other groups reported that the glycosaminoglycan heparan sulfate contributes to both maintenance of undifferentiated state and regulation of mESC differentiation. It has been shown that chondroitin sulfate is needed for pluripotency and differentiation of mESCs, while keratan sulfate is a known marker of human ESCs or induced pluripotent stem cells. We also found that DS promotes neuronal differentiation from mESCs and human neural stem cells; however, the function of DS in the maintenance of mESCs has not yet been revealed. Here, we investigated the role of DS in mESCs by knockdown (KD) or overexpression (O/E) of the dermatan-4-O-sulfotransferase-1 (D4ST1) gene. We found that the activity of the ESC self-renewal marker alkaline phosphatase was reduced in D4ST1 KD mESCs, but, in contrast, increased in D4ST1 O/E mESCs. D4ST1 KD promoted endodermal differentiation, as indicated by an increase in Cdx2 expression. Conversely, Cdx2 expression was decreased by D4ST1 O/E. Wnt signaling, which is also involved in endodermal differentiation, was activated by D4ST1 KD and suppressed by D4ST1 O/E. Collectively, these results demonstrate that D4ST1 contributes to the undifferentiated state of mESCs. Our findings provide new insights into the function of DS in mESCs.
Collapse
Affiliation(s)
- Chika Ogura
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Japan.,Glycan and Life System Integration Center (GaLSIC), Soka University, Hachioji, Japan
| |
Collapse
|
4
|
Regulation of 3-O-Sulfation of Heparan Sulfate During Transition from the Naïve to the Primed State in Mouse Embryonic Stem Cells. Methods Mol Biol 2021. [PMID: 34626399 DOI: 10.1007/978-1-0716-1398-6_35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Mouse embryonic stem cells (mESCs), which are established from the inner cell mass of pre-implantation mouse blastocysts, rapidly expand and form dome-shaped colonies. The pluripotent state of mESCs has been defined as the "naïve" state. On the other hand, characteristics of mouse epiblast stem cells (mEpiSCs), which are derived from the epiblast of mouse post-implantation blastocysts, has been described as the "primed" state. Human embryonic stem cells/induced pluripotent stem cells (hESCs/iPSCs) are also defined as primed state cells because their gene expression pattern and signal requirement are similar to those of mEpiSCs. Both mEpiSCs and hESCs/iPSCs proliferate slowly and form flat colonies. It is therefore difficult to genetically modify primed state cells and apply them to regenerative medicine. Therefore, stable methods of reversion from the primed to the naïve state are required. Clarifying the molecular mechanisms that underpin the primed-to-naïve transition is essential for the use of such cells in basic research and regenerative medicine applications. However, this is a challenging task, since the mechanisms involved in the transition from the naïve to the primed state are still unclear. Here, we induced mEpiSC-like cells (mEpiSCLCs) from mESCs. During induction of mEpiSCLCs, we suppressed expression of 3-O-sulfated heparan sulfate (HS), the HS4C3 epitope, by shRNA-mediated knockdown of HS 3-O-sulfotransferases-5 (3OST-5, formally Hs3st5). The reduction in the level of HS 3-O-sulfation was confirmed by immunostaining with an anti-HS4C3 antibody. This protocol provides an efficient method for stable gene knockdown in mESCs and for the differentiation of mESCs to mEpiSCLCs.
Collapse
|
5
|
Tazhitdinova R, Timoshenko AV. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells 2020; 9:cells9081792. [PMID: 32731422 PMCID: PMC7465113 DOI: 10.3390/cells9081792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.
Collapse
|
6
|
Jariwala KA, Sherazi AA, Tazhitdinova R, Shum K, Guevorguian P, Karagiannis J, Staples JF, Timoshenko AV. The association between increasing levels of O-GlcNAc and galectins in the liver tissue of hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Cell Tissue Res 2020; 381:115-123. [PMID: 32157440 DOI: 10.1007/s00441-020-03185-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Post-translational glycosylation of proteins with O-linked β-N-acetylglucosamine (O-GlcNAcylation) and changes of galectin expression profiles are essential in many cellular stress responses. We examine this regulation in the liver tissue of hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus) representing a biological model of hypometabolism and physiological stress resistance. The tissue levels of O-GlcNAcylated proteins as well as galectin-1 and galectin-3 proteins detected by immunodot blot assay were significantly lower by 4.6-5.4-, 2.2-2.3- and 2.5-2.9-fold, respectively, in the non-hibernating summer squirrels compared with those in winter, whether hibernating or aroused. However, there were no differences in the expression of genes encoding enzymes involved in O-GlcNAc cycle (O-GlcNAc transferase and O-GlcNAcase) and such galectins as LGALS1, LGALS2, LGALS3, LGALS4 and LGALS9. Only the expression of LGALS8 gene in the liver tissue was significantly decreased by 37.6 ± 0.1% in hibernating ground squirrels relative to summer animals. Considering that the expression of a proven genetic biomarker ELOVL6 encoding ELOVL fatty acid elongase 6 was readily upregulated in non-hibernating animals by 11.3-32.9-fold, marginal differential changes in the expression of galectin genes cannot be classified as biomarkers of hibernation. Thus, this study provides evidence that hibernation in Ictidomys tridecemlineatus is associated with increasing O-GlcNAcylation of liver proteins and suggests that the contribution of galectins deserves further studies at the protein level.
Collapse
Affiliation(s)
- Komal A Jariwala
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Ali A Sherazi
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Rada Tazhitdinova
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Kathryn Shum
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Philipp Guevorguian
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Jim Karagiannis
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - James F Staples
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Alexander V Timoshenko
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| |
Collapse
|
7
|
Pravata VM, Muha V, Gundogdu M, Ferenbach AT, Kakade PS, Vandadi V, Wilmes AC, Borodkin VS, Joss S, Stavridis MP, van Aalten DMF. Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proc Natl Acad Sci U S A 2019; 116:14961-14970. [PMID: 31296563 PMCID: PMC6660750 DOI: 10.1073/pnas.1900065116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein-protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T > A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.
Collapse
Affiliation(s)
- Veronica M Pravata
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Villo Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Mehmet Gundogdu
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Andrew T Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Poonam S Kakade
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vasudha Vandadi
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Ariane C Wilmes
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vladimir S Borodkin
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Shelagh Joss
- West of Scotland Genetic Service, Queen Elizabeth University Hospital, G51 4TF Glasgow, United Kingdom
| | - Marios P Stavridis
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom;
| |
Collapse
|
8
|
Lima VV, Dela Justina V, Dos Passos RR, Volpato GT, Souto PCS, San Martin S, Giachini FR. O-GlcNAc Modification During Pregnancy: Focus on Placental Environment. Front Physiol 2018; 9:1263. [PMID: 30298013 PMCID: PMC6160872 DOI: 10.3389/fphys.2018.01263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
Successful placentation is a key event for fetal development, which commences following embryo implantation into the uterine wall, eliciting decidualization, placentation, and remodeling of blood vessels to provide physiological exchange between embryo-fetus and mother. Several signaling pathways are recruited to modulate such important processes and specific proteins that regulate placental function are a target for the glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc), or O-GlcNAcylation. This is a reversible post-translational modification on nuclear and cytoplasmic proteins, mainly controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation has been implicated as a modulator of proteins, both in physiological and pathological conditions and, more recently, O-GlcNAc has also been shown to be an important modulator in placental tissue. In this mini-review, the interplay between O-GlcNAcylation of proteins and placental function will be addressed, discussing the possible implications of this post-translational modification through placental development and pregnancy.
Collapse
Affiliation(s)
- Victor Vitorino Lima
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil
| | | | | | - Gustavo Tadeu Volpato
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Paula Cristina S Souto
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Sebastian San Martin
- Biomedical Research Center, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernanda Regina Giachini
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil.,Institute of Biological Science, Federal University of Goias, Goiânia, Brazil
| |
Collapse
|
9
|
Nishihara S. Glycans in stem cell regulation: from
Drosophila
tissue stem cells to mammalian pluripotent stem cells. FEBS Lett 2018; 592:3773-3790. [DOI: 10.1002/1873-3468.13167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Shoko Nishihara
- Laboratory of Cell Biology Department of Bioinformatics Graduate School of Engineering Soka University Hachioji Japan
| |
Collapse
|
10
|
Lagerlöf O. O-GlcNAc cycling in the developing, adult and geriatric brain. J Bioenerg Biomembr 2018; 50:241-261. [PMID: 29790000 PMCID: PMC5984647 DOI: 10.1007/s10863-018-9760-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Hundreds of proteins in the nervous system are modified by the monosaccharide O-GlcNAc. A single protein is often O-GlcNAcylated on several amino acids and the modification of a single site can play a crucial role for the function of the protein. Despite its complexity, only two enzymes add and remove O-GlcNAc from proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Global and local regulation of these enzymes make it possible for O-GlcNAc to coordinate multiple cellular functions at the same time as regulating specific pathways independently from each other. If O-GlcNAcylation is disrupted, metabolic disorder or intellectual disability may ensue, depending on what neurons are affected. O-GlcNAc's promise as a clinical target for developing drugs against neurodegenerative diseases has been recognized for many years. Recent literature puts O-GlcNAc in the forefront among mechanisms that can help us better understand how neuronal circuits integrate diverse incoming stimuli such as fluctuations in nutrient supply, metabolic hormones, neuronal activity and cellular stress. Here the functions of O-GlcNAc in the nervous system are reviewed.
Collapse
Affiliation(s)
- Olof Lagerlöf
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
11
|
Dahan P, Lu V, Nguyen RMT, Kennedy SAL, Teitell MA. Metabolism in pluripotency: Both driver and passenger? J Biol Chem 2018; 294:5420-5429. [PMID: 29463682 DOI: 10.1074/jbc.tm117.000832] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) are highly proliferative cells characterized by robust metabolic demands to power rapid division. For many years considered a passive component or "passenger" of cell-fate determination, cell metabolism is now starting to take center stage as a driver of cell fate outcomes. This review provides an update and analysis of our current understanding of PSC metabolism and its role in self-renewal, differentiation, and somatic cell reprogramming to pluripotency. Moreover, we present evidence on the active roles metabolism plays in shaping the epigenome to influence patterns of gene expression that may model key features of early embryonic development.
Collapse
Affiliation(s)
- Perrine Dahan
- From the Departments of Pathology and Laboratory Medicine and
| | - Vivian Lu
- Molecular and Medical Pharmacology and
| | | | - Stephanie A L Kennedy
- From the Departments of Pathology and Laboratory Medicine and.,the Department of Biology, California State University at Northridge, Northridge, California 91330
| | - Michael A Teitell
- From the Departments of Pathology and Laboratory Medicine and .,the California NanoSystems Institute.,Department of Bioengineering, and.,Molecular Biology Institute, UCLA, Los Angeles, California 90095, and.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, California 90095.,the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095
| |
Collapse
|
12
|
Miura T, Kume M, Kawamura T, Yamamoto K, Hamakubo T, Nishihara S. O-GlcNAc on PKCζ Inhibits the FGF4-PKCζ-MEK-ERK1/2 Pathway via Inhibition of PKCζ Phosphorylation in Mouse Embryonic Stem Cells. Stem Cell Reports 2017; 10:272-286. [PMID: 29249667 PMCID: PMC5768893 DOI: 10.1016/j.stemcr.2017.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) differentiate into multiple cell types during organismal development. Fibroblast growth factor 4 (FGF4) signaling induces differentiation from ESCs via the phosphorylation of downstream molecules such as mitogen-activated protein kinase/extracellular signal-related kinase (MEK) and extracellular signal-related kinase 1/2 (ERK1/2). The FGF4-MEK-ERK1/2 pathway is inhibited to maintain ESCs in the undifferentiated state. However, the inhibitory mechanism of the FGF4-MEK-ERK1/2 pathway in ESCs is uncharacterized. O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a post-translational modification characterized by the attachment of a single N-acetylglucosamine (GlcNAc) to the serine and threonine residues of nuclear or cytoplasmic proteins. Here, we showed that the O-GlcNAc on the phosphorylation site of PKCζ inhibits PKCζ phosphorylation (activation) and, consequently, the FGF4-PKCζ-MEK-ERK1/2 pathway in ESCs. Our results demonstrate the mechanism for the maintenance of the undifferentiated state of ESCs via the inhibition of the FGF4-PKCζ-MEK-ERK1/2 pathway by O-GlcNAcylation on PKCζ. PKCζ activates the MEK-ERK1/2 pathway by FGF4 stimulation O-GlcNAc on the phosphorylation site of PKCζ inhibits PKCζ activation in ESCs FGF4-PKCζ-MEK-ERK1/2 pathway is inhibited by O-GlcNAc on PKCζ in ESCs
Collapse
Affiliation(s)
- Taichi Miura
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan; National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masahiko Kume
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Takeshi Kawamura
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Takao Hamakubo
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
13
|
Olivier-Van Stichelen S, Wang P, Comly M, Love DC, Hanover JA. Nutrient-driven O-linked N-acetylglucosamine ( O-GlcNAc) cycling impacts neurodevelopmental timing and metabolism. J Biol Chem 2017; 292:6076-6085. [PMID: 28246173 DOI: 10.1074/jbc.m116.774042] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Nutrient-driven O-GlcNAcylation is strikingly abundant in the brain and has been linked to development and neurodegenerative disease. We selectively targeted the O-GlcNAcase (Oga) gene in the mouse brain to define the role of O-GlcNAc cycling in the central nervous system. Brain knockout animals exhibited dramatically increased brain O-GlcNAc levels and pleiotropic phenotypes, including early-onset obesity, growth defects, and metabolic dysregulation. Anatomical defects in the Oga knockout included delayed brain differentiation and neurogenesis as well as abnormal proliferation accompanying a developmental delay. The molecular basis for these defects included transcriptional changes accompanying differentiating embryonic stem cells. In Oga KO mouse ES cells, we observed pronounced changes in expression of pluripotency markers, including Sox2, Nanog, and Otx2. These findings link the O-GlcNAc modification to mammalian neurogenesis and highlight the role of this nutrient-sensing pathway in developmental plasticity and metabolic homeostasis.
Collapse
Affiliation(s)
| | - Peng Wang
- From the Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Marcy Comly
- From the Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Dona C Love
- From the Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - John A Hanover
- From the Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|