1
|
Lanzer JD, Wienecke LM, Ramirez Flores RO, Zylla MM, Kley C, Hartmann N, Sicklinger F, Schultz JH, Frey N, Saez-Rodriguez J, Leuschner F. Single-cell transcriptomics reveal distinctive patterns of fibroblast activation in heart failure with preserved ejection fraction. Basic Res Cardiol 2024; 119:1001-1028. [PMID: 39311911 PMCID: PMC11628589 DOI: 10.1007/s00395-024-01074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 12/10/2024]
Abstract
Inflammation, fibrosis and metabolic stress critically promote heart failure with preserved ejection fraction (HFpEF). Exposure to high-fat diet and nitric oxide synthase inhibitor N[w]-nitro-l-arginine methyl ester (L-NAME) recapitulate features of HFpEF in mice. To identify disease-specific traits during adverse remodeling, we profiled interstitial cells in early murine HFpEF using single-cell RNAseq (scRNAseq). Diastolic dysfunction and perivascular fibrosis were accompanied by an activation of cardiac fibroblast and macrophage subsets. Integration of fibroblasts from HFpEF with two murine models for heart failure with reduced ejection fraction (HFrEF) identified a catalog of conserved fibroblast phenotypes across mouse models. Moreover, HFpEF-specific characteristics included induced metabolic, hypoxic and inflammatory transcription factors and pathways, including enhanced expression of Angiopoietin-like 4 (Angptl4) next to basement membrane compounds, such as collagen IV (Col4a1). Fibroblast activation was further dissected into transcriptional and compositional shifts and thereby highly responsive cell states for each HF model were identified. In contrast to HFrEF, where myofibroblast and matrifibrocyte activation were crucial features, we found that these cell states played a subsidiary role in early HFpEF. These disease-specific fibroblast signatures were corroborated in human myocardial bulk transcriptomes. Furthermore, we identified a potential cross-talk between macrophages and fibroblasts via SPP1 and TNFɑ with estimated fibroblast target genes including Col4a1 and Angptl4. Treatment with recombinant ANGPTL4 ameliorated the murine HFpEF phenotype and diastolic dysfunction by reducing collagen IV deposition from fibroblasts in vivo and in vitro. In line, ANGPTL4, was elevated in plasma samples of HFpEF patients and particularly high levels associated with a preserved global-longitudinal strain. Taken together, our study provides a comprehensive characterization of molecular fibroblast activation patterns in murine HFpEF, as well as the identification of Angiopoietin-like 4 as central mechanistic regulator with protective effects.
Collapse
Affiliation(s)
- Jan D Lanzer
- Institute for Computational Biomedicine, Heidelberg University, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Internal Medicine II, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Laura M Wienecke
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Ricardo O Ramirez Flores
- Institute for Computational Biomedicine, Heidelberg University, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Maura M Zylla
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Celina Kley
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Niklas Hartmann
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Florian Sicklinger
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | - Norbert Frey
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany.
| | - Florian Leuschner
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany.
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Araki K, Watanabe-Nakayama T, Sasaki D, Sasaki YC, Mio K. Molecular Dynamics Mappings of the CCT/TRiC Complex-Mediated Protein Folding Cycle Using Diffracted X-ray Tracking. Int J Mol Sci 2023; 24:14850. [PMID: 37834298 PMCID: PMC10573753 DOI: 10.3390/ijms241914850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The CCT/TRiC complex is a type II chaperonin that undergoes ATP-driven conformational changes during its functional cycle. Structural studies have provided valuable insights into the mechanism of this process, but real-time dynamics analyses of mammalian type II chaperonins are still scarce. We used diffracted X-ray tracking (DXT) to investigate the intramolecular dynamics of the CCT complex. We focused on three surface-exposed loop regions of the CCT1 subunit: the loop regions of the equatorial domain (E domain), the E and intermediate domain (I domain) juncture near the ATP-binding region, and the apical domain (A domain). Our results showed that the CCT1 subunit predominantly displayed rotational motion, with larger mean square displacement (MSD) values for twist (χ) angles compared with tilt (θ) angles. Nucleotide binding had a significant impact on the dynamics. In the absence of nucleotides, the region between the E and I domain juncture could act as a pivotal axis, allowing for greater motion of the E domain and A domain. In the presence of nucleotides, the nucleotides could wedge into the ATP-binding region, weakening the role of the region between the E and I domain juncture as the rotational axis and causing the CCT complex to adopt a more compact structure. This led to less expanded MSD curves for the E domain and A domain compared with nucleotide-absent conditions. This change may help to stabilize the functional conformation during substrate binding. This study is the first to use DXT to probe the real-time molecular dynamics of mammalian type II chaperonins at the millisecond level. Our findings provide new insights into the complex dynamics of chaperonins and their role in the functional folding cycle.
Collapse
Affiliation(s)
- Kazutaka Araki
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan;
| | - Takahiro Watanabe-Nakayama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Daisuke Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan (Y.C.S.)
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan (Y.C.S.)
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan;
| |
Collapse
|
3
|
Scalia F, Lo Bosco G, Paladino L, Vitale AM, Noori L, Conway de Macario E, Macario AJL, Bucchieri F, Cappello F, Lo Celso F. Structural and Dynamic Disturbances Revealed by Molecular Dynamics Simulations Predict the Impact on Function of CCT5 Chaperonin Mutations Associated with Rare Severe Distal Neuropathies. Int J Mol Sci 2023; 24:ijms24032018. [PMID: 36768350 PMCID: PMC9917133 DOI: 10.3390/ijms24032018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Mutations in genes encoding molecular chaperones, for instance the genes encoding the subunits of the chaperonin CCT (chaperonin containing TCP-1, also known as TRiC), are associated with rare neurodegenerative disorders. Using a classical molecular dynamics approach, we investigated the occurrence of conformational changes and differences in physicochemical properties of the CCT5 mutations His147Arg and Leu224Val associated with a sensory and a motor distal neuropathy, respectively. The apical domain of both variants was substantially but differently affected by the mutations, although these were in other domains. The distribution of hydrogen bonds and electrostatic potentials on the surface of the mutant subunits differed from the wild-type molecule. Structural and dynamic analyses, together with our previous experimental data, suggest that genetic mutations may cause different changes in the protein-binding capacity of CCT5 variants, presumably within both hetero- and/or homo-oligomeric complexes. Further investigations are necessary to elucidate the molecular pathogenic pathways of the two variants that produce the two distinct phenotypes. The data and clinical observations by us and others indicate that CCT chaperonopathies are more frequent than currently believed and should be investigated in patients with neuropathies.
Collapse
Affiliation(s)
- Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: (F.S.); (F.C.)
| | - Giosuè Lo Bosco
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Mathematics and Computer Science, University of Palermo, 90123 Palermo, Italy
| | - Letizia Paladino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran 1417653911, Iran
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore—Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore—Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: (F.S.); (F.C.)
| | - Fabrizio Lo Celso
- Department of Physics and Chemistry—Emilio Segrè, University of Palermo, 90128 Palermo, Italy
- Ionic Liquids Laboratory, Institute of Structure of Matter, Italian National Research Council (ISM-CNR), 00133 Rome, Italy
| |
Collapse
|
4
|
Li W, Liu J, Zhao H. Prognostic Power of a Chaperonin Containing TCP-1 Subunit Genes Panel for Hepatocellular Carcinoma. Front Genet 2021; 12:668871. [PMID: 33897772 PMCID: PMC8061729 DOI: 10.3389/fgene.2021.668871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/15/2021] [Indexed: 02/05/2023] Open
Abstract
Chaperonin containing TCP-1 (T-complex protein 1) (CCT) is a large molecular weight complex that contains nine subunits (TCP1, CCT2, CCT3, CCT4, CCT5, CCT6A, CCT6B, CCT7, CCT8). This study aimed to reveal key genes which encode CCT subunits for prognosis and establish prognostic gene signatures based on CCT subunit genes. The data was downloaded from The Cancer Genome Atlas, International Cancer Genome Consortium and Gene Expression Omnibus. CCT subunit gene expression levels between tumor and normal tissues were compared. Corresponding Kaplan-Meier analysis displayed a distinct separation in the overall survival of CCT subunit genes. Correlation analysis, protein-protein interaction network, Gene Ontology analysis, immune cells infiltration analysis, and transcription factor network were performed. A nomogram was constructed for the prediction of prognosis. Based on multivariate Cox regression analysis and shrinkage and selection method for linear regression model, a three-gene signature comprising CCT4, CCT6A, and CCT6B was constructed in the training set and significantly associated with prognosis as an independent prognostic factor. The prognostic value of the signature was then validated in the validation and testing set. Nomogram including the signature showed some clinical benefit for overall survival prediction. In all, we built a novel three-gene signature and nomogram from CCT subunit genes to predict the prognosis of hepatocellular carcinoma, which may support the medical decision for HCC therapy.
Collapse
Affiliation(s)
- Wenli Li
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Jun Liu
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Hetong Zhao
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
5
|
Kudryavtseva SS, Stroylova YY, Kurochkina LP, Muronetz VI. The chaperonin TRiC is blocked by native and glycated prion protein. Arch Biochem Biophys 2020; 683:108319. [PMID: 32101762 DOI: 10.1016/j.abb.2020.108319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/08/2023]
Abstract
Eukaryotic double-ring chaperonin TRiC is an ATP-dependent protein-folding machine. Most of its substrates are known to form large ordered structures from multiple polypeptide chains. Since these structures are similar to fibrillar and oligomeric forms of amyloidogenic proteins, we hypothesized that TRiC may play a role in the development of neurodegenerative diseases of amyloid nature including prion diseases. Enzyme-linked immunosorbent assay showed that monomeric, oligomeric and fibrillar forms of prion protein (PrP) bind strongly to chaperonin TRiC, whereas glycation reduces the prion protein affinity for chaperonin. Nevertheless, dynamic light scattering, electron microscopy and thioflavin T fluorescence confirmed that all studied forms of PrP undergo an amyloid transformation after interaction with chaperonin, but different forms of prion protein are capable of having different effects on the functional state of TRiC. For example, prion protein monomers completely block its ability to reactivate the chaperonin's natural substrate - sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS). At the same time, PrP oligomers and fibrils only partially prevent the reactivation of GAPDS upon the action of TRiC. The monomeric forms of prion protein glycated by methylglyoxal do not inhibit, but only slow down the chaperone-dependent reactivation of GAPDS. Thus, the interaction of amyloidogenic proteins with chaperonins could cause cell malfunction.
Collapse
Affiliation(s)
- S S Kudryavtseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Y Y Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - L P Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - V I Muronetz
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
6
|
Yi X, Wang Z, Ren J, Zhuang Z, Liu K, Wang K, He R. Overexpression of chaperonin containing T-complex polypeptide subunit zeta 2 (CCT6b) suppresses the functions of active fibroblasts in a rat model of joint contracture. J Orthop Surg Res 2019; 14:125. [PMID: 31072365 PMCID: PMC6507144 DOI: 10.1186/s13018-019-1161-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Joint contracture is a fibrous disease characterized as joint capsule fibrosis that results in joint dysfunction and disability. The purpose of this study was to analyze the biological activities of chaperonin containing T-complex polypeptide (CCT) subunits and to determine the role of CCT chaperone in joint contracture in a rat model. METHODS In this study, the rat model of joint contracture was established by immobilizing the rat knee for 8 weeks. Then, fibroblasts were isolated from the posterior joint capsule and were cultured for functional analysis such as qRT-PCR, Western blot, transwell assay, and collagen assay. The effect of CCT subunit was determined by employing a lentivirus containing target gene and transfecting it into fibroblasts. RESULTS Results of qRT-PCR and Western blot showed that among all CCT subunits, CCT6b significantly decreased in the fibroblasts from contractive joints compared to cells from normal joints (p < 0.05). Overexpression of CCT6b by transfection of lentivirus containing CCT6b gene to active fibroblasts significantly inhibited fibrous marker (α-SMA, COL-1) expressions, fibroblast migration, and collagen synthesis (all p < 0.05). Moreover, fibrosis-related chaperone CCT7 expression was decreased with CCT6b overexpression (p < 0.05). CONCLUSION The biological activities of CCT subunits in fibroblasts from the joint contracture rat model were analyzed in this study. CCT6b significantly decreased in the active fibroblasts, and overexpression of CCT6b significantly inhibited fibroblast functions. These findings indicate that CCT6b appears to be a potential molecular biomarker and therapeutic target for the novel therapies of joint contracture.
Collapse
Affiliation(s)
- Xiaoyou Yi
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Zhe Wang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Jianhua Ren
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Ze Zhuang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Kaihua Liu
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Kun Wang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Ronghan He
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| |
Collapse
|
7
|
Araki K, Ushioda R, Kusano H, Tanaka R, Hatta T, Fukui K, Nagata K, Natsume T. A crosslinker-based identification of redox relay targets. Anal Biochem 2016; 520:22-26. [PMID: 28048978 DOI: 10.1016/j.ab.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Abstract
Thiol-based redox control is among the most important mechanisms for maintaining cellular redox homeostasis, with essential participation of cysteine thiols of oxidoreductases. To explore cellular redox regulatory networks, direct interactions among active cysteine thiols of oxidoreductases and their targets must be clarified. We applied a recently described thiol-ene crosslinking-based strategy, named divinyl sulfone (DVSF) method, enabling identification of new potential redox relay partners of the cytosolic oxidoreductases thioredoxin (TXN) and thioredoxin domain containing 17 (TXNDC17). Applying multiple methods, including classical substrate-trapping techniques, will increase understanding of redox regulatory mechanisms in cells.
Collapse
Affiliation(s)
- Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan.
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Hidewo Kusano
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Riko Tanaka
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | | | - Kazuhiko Fukui
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Robotic Biology Institute, Inc., Tokyo 135-0064, Japan
| |
Collapse
|