1
|
Rahmani A, Soleymani A, Almukhtar M, Behzad Moghadam K, Vaziri Z, Hosein Tabar Kashi A, Adabi Firoozjah R, Jafari Tadi M, Zolfaghari Dehkharghani M, Valadi H, Moghadamnia AA, Gasser RB, Rostami A. Exosomes, and the potential for exosome-based interventions against COVID-19. Rev Med Virol 2024; 34:e2562. [PMID: 38924213 DOI: 10.1002/rmv.2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Since late 2019, the world has been devastated by the coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with more than 760 million people affected and ∼seven million deaths reported. Although effective treatments for COVID-19 are currently limited, there has been a strong focus on developing new therapeutic approaches to address the morbidity and mortality linked to this disease. An approach that is currently being investigated is the use of exosome-based therapies. Exosomes are small, extracellular vesicles that play a role in many clinical diseases, including viral infections, infected cells release exosomes that can transmit viral components, such as miRNAs and proteins, and can also include receptors for viruses that facilitate viral entry into recipient cells. SARS-CoV-2 has the ability to impact the formation, secretion, and release of exosomes, thereby potentially facilitating or intensifying the transmission of the virus among cells, tissues and individuals. Therefore, designing synthetic exosomes that carry immunomodulatory cargo and antiviral compounds are proposed to be a promising strategy for the treatment of COVID-19 and other viral diseases. Moreover, exosomes generated from mesenchymal stem cells (MSC) might be employed as cell-free therapeutic agents, as MSC-derived exosomes can diminish the cytokine storm and reverse the suppression of host anti-viral defences associated with COVID-19, and boost the repair of lung damage linked to mitochondrial activity. The present article discusses the significance and roles of exosomes in COVID-19, and explores potential future applications of exosomes in combating this disease. Despite the challenges posed by COVID-19, exosome-based therapies could represent a promising avenue for improving patient outcomes and reducing the impact of this disease.
Collapse
Affiliation(s)
- Abolfazl Rahmani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Soleymani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Kimia Behzad Moghadam
- Independent Researcher, Former University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Zahra Vaziri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Hosein Tabar Kashi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reza Adabi Firoozjah
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Jafari Tadi
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Maryam Zolfaghari Dehkharghani
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, Babol University of Medical Sciences, Babol, Iran
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Robin B Gasser
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
2
|
Meng S, Wei Q, Chen S, Liu X, Cui S, Huang Q, Chu Z, Ma K, Zhang W, Hu W, Li S, Wang Z, Tian L, Zhao Z, Li H, Fu X, Zhang C. MiR-141-3p-Functionalized Exosomes Loaded in Dissolvable Microneedle Arrays for Hypertrophic Scar Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305374. [PMID: 37724002 DOI: 10.1002/smll.202305374] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-β2 to suppress the TGF-β2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-β2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.
Collapse
Affiliation(s)
- Sheng Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengqiu Chen
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Ziqiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shiyi Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zihao Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Lige Tian
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zhiliang Zhao
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Haihong Li
- Department of Burns and Plastic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| |
Collapse
|
3
|
Wan H, Wang L, Huo B, Qiao Z, Zhang Y. CIZ1 aggravates gastric cancer progression via mediating FBXL19-AS1 and miR-339-3p. Heliyon 2023; 9:e21061. [PMID: 37954363 PMCID: PMC10637910 DOI: 10.1016/j.heliyon.2023.e21061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Gastric cancer (GC) remains a prevalent malignancy with high morbidity and mortality. CDKN1A interacting zinc finger protein 1 (CIZ1) has been demonstrated to have oncogenic functions in the development of cancers. We detected CIZ1 expression via quantitative real-time PCR (RT-qPCR). The protein level of CIZ1 was measured through Western blot. We noticed that CIZ1 expression was markedly enhanced in GC cells. Furthermore, functional experiments including colony formation assay, EdU staining assay, transwell assay, TUNEL staining assay and flow cytometry analysis uncovered that CIZ1 silencing attenuated cell malignant phenotypes in GC. Through bioinformatics tools and mechanism assays, we explored the up-stream mechanism of CIZ1 and determined that CIZ1 was modulated by FBXL19 antisense RNA 1 (FBXL19-AS1) and microRNA-339-3p (miR-339-3p). Additionally, miR-339-3p exerted a negative role on GC development in vitro, and FBXL19-AS1 depletion also had the inhibitory impacts on the progression of GC in vitro. Eventually, the finding that CIZ1 overexpression reversed the effects of FBXL19-AS1 silencing on GC development was validated by rescue assays. In a word, CIZ1 functioned as a tumor promoter in GC, indicating that CIZ1 might be a promising target for GC treatment.
Collapse
Affiliation(s)
- Houmin Wan
- Department of Gastrointestinal Surgery, The NO.4 Municipal Hospital Affiliated to Shandong First Medical University, Jinan, 250031, Shandong Province, China
| | - Lianzhen Wang
- Department of Gastrointestinal Surgery, The NO.4 Municipal Hospital Affiliated to Shandong First Medical University, Jinan, 250031, Shandong Province, China
| | - Bin Huo
- Department of Gastrointestinal Surgery, The NO.4 Municipal Hospital Affiliated to Shandong First Medical University, Jinan, 250031, Shandong Province, China
| | - Zhongpeng Qiao
- Department of Gastrointestinal Surgery, The NO.4 Municipal Hospital Affiliated to Shandong First Medical University, Jinan, 250031, Shandong Province, China
| | - Yingli Zhang
- Department of Obstetrics, The NO.4 Municipal Hospital Affiliated to Shandong First Medical University, Jinan, 250031, Shandong Province, China
| |
Collapse
|
4
|
Wang Y, Hong Z, Wei S, Ye Z, Chen L, Qiu C. Investigating the role of LncRNA PSMG3-AS1 in gastric cancer: implications for prognosis and therapeutic intervention. Cell Cycle 2023; 22:2161-2171. [PMID: 37946320 PMCID: PMC10732658 DOI: 10.1080/15384101.2023.2278942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
LncRNAs are widely linked to the complex development of gastric cancer, which is acknowledged worldwide as the third highest contributor to cancer-related deaths and the fifth most common form of cancer. The primary focus of this study is to examine the role of LncRNA PSMG3-AS1 in a group of individuals with gastric cancer. The results of our study indicate that PSMG3-AS1 is highly expressed in over 20 different types of cancer. Significantly, there was a clear association found between the expression of PSMG3-AS1 and a multitude of TMB and MSI tumors. PSMG3-AS1 exhibited significant upregulation in gastric cancer patients compared to healthy individuals within the gastric cancer cohort. The prognosis of gastric cancer patients is intrinsically associated with PSMG3-AS1, as confirmed by survival analysis and ROC curves. Furthermore, we created a disruption vector based on LncRNA PSMG3-AS1 and introduced it into AGS and MKN-45 cells, which are human gastric cancer cells. Significant decreases in the expression of the PSMG3-AS1 gene were noticed in both intervention groups compared to the NC group, reflecting the protein level expressions. Significantly, the proliferative and invasive capabilities of MKN-45 and AGS cells were notably reduced following transfection with PSMG3-AS1 siRNA. The results of our study indicate that disruption of the LncRNA PSMG3-AS1 gene may impact the CAV1/miR-451a signaling pathway, thereby leading to a reduction in the ability of gastric cancer cells to multiply and invade.
Collapse
Affiliation(s)
- Yi Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhongshi Hong
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shenghong Wei
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Zaisheng Ye
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Luchuan Chen
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Chengzhi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
5
|
Jin Y, Jiang D. GATA6-AS1 via Sponging miR-543 to Regulate PTEN/AKT Signaling Axis Suppresses Cell Proliferation and Migration in Gastric Cancer. Mediators Inflamm 2023; 2023:9340499. [PMID: 37273453 PMCID: PMC10238141 DOI: 10.1155/2023/9340499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/16/2022] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and lethal cancers worldwide. In view of the prominent roles of long noncoding RNAs (lncRNAs) in cancers, we investigated the specific role and underlying mechanism of GATA binding protein 6 antisense RNA 1 (GATA6-AS1) in GC. Quantitative real-time polymerase chain reaction (qRT-PCR) detected GATA6-AS1 expression in GC cell lines. Functional assays were conducted to explore the role of GATA6-AS1 in GC. Furthermore, mechanism investigations were implemented to uncover the interaction among GATA6-AS1, microRNA-543 (miR-543), and phosphatase and tensin homolog (PTEN). In the present study, it was found that GATA6-AS1 expression is significantly downregulated in GC cell lines. Functionally, GATA6-AS1 markedly suppresses GC cell growth and migration in vitro and in vivo tumorigenesis. Besides tumor suppressor, GATA6-AS1 serves as a miR-543 sponge. Specifically speaking, GATA6-AS1 acts as a competing endogenous RNA (ceRNA) of miR-543 to upregulate the expression of PTEN, thus inactivating AKT signaling pathway to inhibit GC progression. In conclusion, this study has manifested that GATA6-AS1 inhibits GC cell proliferation and migration as a sponge of miR-543 by regulating PTEN/AKT signaling axis, offering new perspective into developing novel GC therapies.
Collapse
Affiliation(s)
- Yi Jin
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110001 Liaoning, China
| | - Daqing Jiang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110001 Liaoning, China
| |
Collapse
|
6
|
Sun S, Zou Y, Xu N, Wang K, Rong S, Lv J, Hu B, Mai Y, Zhu D, Ding L. Long non-coding RNA ATB expedites non-small cell lung cancer progression by the miR-200b/fibronectin 1 axis. J Clin Lab Anal 2023; 37:e24822. [PMID: 36806318 PMCID: PMC10020841 DOI: 10.1002/jcla.24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) ATB belongs to an active modulator in multiple cancers, but its expression along with potential underlying non-small cell lung cancer (NSCLC) is obscure. Our study aimed to investigate the role and potential mechanism of LncRNA ATB in NSCLC. METHODS LncRNA ATB expression in NSCLC tissues and cell lines was detected by qRT-PCR. Effects of LncRNA ATB on NSCLC cell proliferation, migration and invasion were assessed by MTS, colony formation and transwell assays. The connection among LncRNA ATB, miR-200b and fibronectin 1 (FN1) was determined by bioformatics prediction and luciferase reporter assay. RESULTS In this research, upregulation of LncRNA ATB was discovered in NSCLC tissue samples and cell lines. LncRNA ATB was positively related to advanced tumor phase as well as lymph node metastasis. Cell function assays reflected LncRNA ATB expedited NSCLC cells proliferation, migration and invasion. LncRNA ATB promoted fibronectin 1 (FN1) expression via inhibiting miR-200b. Furthermore, LncRNA ATB depletion suppressed NSCLC cells proliferation, migration and invasion, while miR-200b inhibitor or pcDNA-FN1 rescued these effects. CONCLUSION In summary, our outcomes elucidated that LncRNA ATB/miR-200b axis expedited NSCLC cells proliferation, migration and invasion by up-regulating FN1.
Collapse
Affiliation(s)
- Shifang Sun
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Yifan Zou
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Ningjie Xu
- School of MedicineNingbo UniversityNingboChina
| | - Kaiyue Wang
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Shanshan Rong
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Jiarong Lv
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Bin Hu
- School of MedicineNingbo UniversityNingboChina
| | - Yifeng Mai
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Decai Zhu
- Department of Geriatrics MedicineThe Affiliated Hospital of Medical School of Ningbo UniversityNingboChina
| | - Liren Ding
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Zhejiang University Medical CollegeHangzhouChina
| |
Collapse
|
7
|
Anbiyaiee A, Ramazii M, Bajestani SS, Meybodi SM, Keivan M, Khoshnam SE, Farzaneh M. The function of LncRNA-ATB in cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1-9. [PMID: 35597865 DOI: 10.1007/s12094-022-02848-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023]
Abstract
Cancer as a progressive and complex disease is caused by early chromosomal changes and stimulated cellular transformation. Previous studies reported that long non-coding RNAs (lncRNAs) play pivotal roles in the initiation, maintenance, and progression of cancer cells. LncRNA activated by TGF-β (ATB) has been shown to be dysregulated in different types of cancer. Aberrant expression of lncRNA-ATB plays an important role in the progression of diverse malignancies. High expression of LncRNA-ATB is associated with cancer cell growth, proliferation, metastasis, and EMT. LncRNA-ATB by targeting various signaling pathways and microRNAs (miRNAs) can trigger cancer pathogenesis. Therefore, lncRNA-ATB can be a novel target for cancer prediction and diagnosis. In this review, we will focus on the function of lncRNA-ATB in various types of human cancers.
Collapse
Affiliation(s)
- Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | | | | | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Khanbabaei H, Ebrahimi S, García-Rodríguez JL, Ghasemi Z, Pourghadamyari H, Mohammadi M, Kristensen LS. Non-coding RNAs and epithelial mesenchymal transition in cancer: molecular mechanisms and clinical implications. J Exp Clin Cancer Res 2022; 41:278. [PMID: 36114510 PMCID: PMC9479306 DOI: 10.1186/s13046-022-02488-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process for embryonic development during which epithelial cells acquire mesenchymal characteristics, and the underlying mechanisms confer malignant features to carcinoma cells such as dissemination throughout the organism and resistance to anticancer treatments. During the past decades, an entire class of molecules, called non-coding RNA (ncRNA), has been characterized as a key regulator of almost every cellular process, including EMT. Like protein-coding genes, ncRNAs can be deregulated in cancer, acting as oncogenes or tumor suppressors. The various forms of ncRNAs, including microRNAs, PIWI-interacting RNAs, small nucleolar RNAs, transfer RNA-derived RNA fragments, long non-coding RNAs, and circular RNAs can orchestrate the complex regulatory networks of EMT at multiple levels. Understanding the molecular mechanism underlying ncRNAs in EMT can provide fundamental insights into cancer metastasis and may lead to novel therapeutic approaches. In this review, we describe recent advances in the understanding of ncRNAs in EMT and provide an overview of recent ncRNA applications in the clinic.
Collapse
|
9
|
Zhang W, Ren W, Han D, Zhao G, Wang H, Guo H, Zheng Y, Ji Z, Gao W, Yuan B. LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells. J Zhejiang Univ Sci B 2022; 23:502-514. [PMID: 35686528 DOI: 10.1631/jzus.b2101052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Long noncoding RNAs (lncRNAs) are expressed in different species and different tissues, and perform different functions, but little is known about their involvement in the synthesis or secretion of follicle-stimulating hormone (FSH). In general, we have revealed lncRNA‒microRNA (miRNA)‒messenger RNA (mRNA) interactions that may play important roles in rat primary pituitary cells. In this study, a new lncRNA was identified for the first time. First, we analyzed the gene expression of lncRNA-m18as1 in different tissues and different stages by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and observed the localization of lncRNA-m18as1 with fluorescence in situ hybridization, which indicated that this lncRNA was distributed mainly in the cytoplasm. Next, we used RT-qPCR and enzyme-linked immunosorbent assay (ELISA) to analyze the regulation of FSH synthesis and secretion after overexpression or knockdown of lncRNA-m18as1 and found that lncRNA-m18as1 was positively correlated with FSH synthesis and secretion. In addition, mothers against decapentaplegic homolog 2 (Smad2) was highly expressed in our sequencing results. We also screened miR-18a-5p from our sequencing results as a miRNA that may bind to lncRNA-m18as1 and Smad2. We used RNA immunoprecipitation-qPCR (RIP-qPCR) and/or dual luciferase assays to confirm that lncRNA-m18as1 interacted with miR-18a-5p and miR-18a-5p interacted with Smad2. Fluorescence in situ hybridization (FISH) showed that lncRNA-m18as1 and miR-18a-5p were localized mainly in the cytoplasm. Finally, we determined the relationship among lncRNA-m18as1, miR-18a-5p, and the Smad2/3 pathway. Overall, we found that lncRNA-m18as1 acts as a molecular sponge of miR-18a-5p to regulate the synthesis and secretion of FSH through the Smad2/3 pathway.
Collapse
Affiliation(s)
- Weidi Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenzhi Ren
- Jilin Provincial Model Animal Engineering Research Center, Jilin University, Changchun 130062, China
| | - Dongxu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Guokun Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haoqi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Bao Yuan
- Jilin Provincial Model Animal Engineering Research Center, Jilin University, Changchun 130062, China. ,
| |
Collapse
|
10
|
Uthaya Kumar DB, Motakis E, Yurieva M, Kohar V, Martinek J, Wu TC, Khoury J, Grassmann J, Lu M, Palucka K, Kaminski N, Koff JL, Williams A. Bronchial epithelium epithelial-mesenchymal plasticity forms aberrant basaloid-like cells in vitro. Am J Physiol Lung Cell Mol Physiol 2022; 322:L822-L841. [PMID: 35438006 PMCID: PMC9142163 DOI: 10.1152/ajplung.00254.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Although epithelial-mesenchymal transition (EMT) is a common feature of fibrotic lung disease, its role in fibrogenesis is controversial. Recently, aberrant basaloid cells were identified in fibrotic lung tissue as a novel epithelial cell type displaying a partial EMT phenotype. The developmental origin of these cells remains unknown. To elucidate the role of EMT in the development of aberrant basaloid cells from the bronchial epithelium, we mapped EMT-induced transcriptional changes at the population and single-cell levels. Human bronchial epithelial cells grown as submerged or air-liquid interface (ALI) cultures with or without EMT induction were analyzed by bulk and single-cell RNA-Sequencing. Comparison of submerged and ALI cultures revealed differential expression of 8,247 protein coding (PC) and 1,621 long noncoding RNA (lncRNA) genes and revealed epithelial cell-type-specific lncRNAs. Similarly, EMT induction in ALI cultures resulted in robust transcriptional reprogramming of 6,020 PC and 907 lncRNA genes. Although there was no evidence for fibroblast/myofibroblast conversion following EMT induction, cells displayed a partial EMT gene signature and an aberrant basaloid-like cell phenotype. The substantial transcriptional differences between submerged and ALI cultures highlight that care must be taken when interpreting data from submerged cultures. This work supports that lung epithelial EMT does not generate fibroblasts/myofibroblasts and confirms ALI cultures provide a physiologically relevant system to study aberrant basaloid-like cells and mechanisms of EMT. We provide a catalog of PC and lncRNA genes and an interactive browser (https://bronc-epi-in-vitro.cells.ucsc.edu/) of single-cell RNA-Seq data for further exploration of potential roles in the lung epithelium in health and lung disease.
Collapse
Affiliation(s)
- Dinesh Babu Uthaya Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | | | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Johad Khoury
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
11
|
Functional mechanism and clinical implications of miR-141 in human cancers. Cell Signal 2022; 95:110354. [PMID: 35550172 DOI: 10.1016/j.cellsig.2022.110354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
Cancer is caused by the abnormal proliferation of local tissue cells under the control of many oncogenic factors. MicroRNAs (miRNAs) are a class of evolutionarily conserved, approximately 22-nucleotide noncoding small RNAs that influence transcriptional regulationby binding to the 3'-untranslated region of target messenger RNA. As a member of the miRNA family, miR-141 acts as a suppressor or an oncomiR in various cancers and regulates cancer cell proliferation, apoptosis, invasion, and metastasis through a variety of signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and constitutive activation of nuclear factor-κB (NF-κB). Target gene validation and pathway analysis have provided mechanistic insight into the role of this miRNA in different tissues. This review also outlines novel findings that suggest miR-141 may be useful as a noninvasive biomarker and as a therapeutic target in several cancers.
Collapse
|
12
|
Yang G, Tian Y, Li C, Xia J, Qi Y, Yao W, Hao C. LncRNA UCA1 regulates silicosis-related lung epithelial cell-to-mesenchymal transition through competitive adsorption of miR-204-5p. Toxicol Appl Pharmacol 2022; 441:115977. [DOI: 10.1016/j.taap.2022.115977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
|
13
|
Deng Y, Zhang L, Luo R. LncRNA SNHG11 accelerates the progression of lung adenocarcinoma via activating Notch pathways. Pathol Res Pract 2022; 234:153849. [DOI: 10.1016/j.prp.2022.153849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
14
|
Chen J, Zheng Q, Liu F, Jin H, Wu X, Xi Y. LINC00152 acts as a competing endogenous RNA of HMGA1 to promote the growth of gastric cancer cells. J Clin Lab Anal 2022; 36:e24192. [PMID: 35014092 PMCID: PMC8841176 DOI: 10.1002/jcla.24192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) play important roles in almost every stage of cancer development. Given the competing endogenous RNA (ceRNA) hypothesis for the regulation of gene expression, we investigated the role of LINC00152 as a ceRNA in gastric cancer (GC) cells. Methods Gastric cancer cell lines were used in this study. Mimics of miRNAs and siRNA were used to evaluate the interaction between LINC00152 and HMGA1. The quantitative real‐time polymerase chain reaction was performed for analyzing gene expression at the transcriptional level. Flow cytometry assay of cell cycle and western blot analysis of related protein expression levels were performed. Online databases such as TCGA and TIMER were used to determine the possibility of HMGA1 and LINC00152 as GC markers and their role in immune infiltration. Results Treating GC cell lines with LINC00152 siRNAs downregulated the expression of HMGA1. The cell cycle was arrested in the S phase following a reduction in LINC00152 or HMGA1 expression, whereas the expression of the cell cycle inhibitor P27 increased. In this study, we showed that acting as a ceRNA of HMGA1, LINC00152 has the same function as HMGA1, considering that it could control the cell cycle and promote GC cell proliferation. The TCGA database showed that LINC00152 might be used as a diagnostic marker for GC. Conclusions These findings provide mechanistic insights into the role of LINC00152 as a ceRNA to regulate HMGA1 expression in GC cells, where it can promote the proliferation of the GC cells by regulating the expression of the P27.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Experimental Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China.,Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Qingfang Zheng
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Fang Liu
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China.,Ningbo Haishu District Center for Disease Control and Prevention, Ningbo, China
| | - Han Jin
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaoyue Wu
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Yang Xi
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Meng L, Zhang Y, He X, Hu C. LncRNA H19 modulates neuropathic pain through miR-141/GLI2 axis in chronic constriction injury (CCI) rats. Transpl Immunol 2022; 71:101526. [PMID: 34999183 DOI: 10.1016/j.trim.2021.101526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The participation of long non-coding RNAs (lncRNAs) in progressions of chronic pain has been evaluated. We explored mechanisms of lncRNA H19 in chronic constriction injury (CCI)-induced neuropathic pain model in vivo. METHODS The expressions of lncRNA H19, microRNA-141, and GLI Family Zinc Finger 2 (GLI2) in CCI rats were determined by using RT-qPCR. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used as neuropathic pain index implying mechanical allodynia and thermal hyperalgesia. The protein concentrations of IL-1β, IL-6 and TNF-α in rats were examined by ELISA assay. RT-qPCR analyzed gene expression changes of lncRNA H19, miR-141 and GLI2. Online bioinformatics predictions supported that the bindings between miR-141 and GLI2 and dual luciferase reporter method, and RNA pull-down assays determined connections within lncRNA H19, miR-141 and GLI2 in HEK 293 cells. RESULTS LncRNA H19 was upregulated in the tissues of rats. Also, thermal hyperalgesia and mechanical allodynia were inhibited by lncRNA H19 suppression in rats. Moreover, IL-1β, IL-6 and TNF-α protein concentrations were suppressed by the downregulation of lncRNA H19 in rats. Furthermore, miR-141 was reduced in CCI rats and restored by the lncRNA H19 knockdown, suggesting the potential negative associations of miR-141 with lncRNA H19. GLI2 targeted miR-141 and GLI2 was increased in CCI rats. Additionally, the neuropathic pain was inhibited by the inhibition of GLI2 in rats, which was reversed by the miR-141 inhibitors. CONCLUSION LncRNA H19 aggravated the neuropathic pain of CCI rats through miR-141/GLI2 axis, implying that lncRNA H19 might be a biomarker for the inflammation-related neuropathic pain.
Collapse
Affiliation(s)
- Lifeng Meng
- Anesthesia Department, Zhuji People's Hospital of Zhejiang Province, China
| | - Yanfeng Zhang
- Anesthesia pain Department, The First Affiliated Hospital of Zhejiang University Hospital, China
| | - Xiner He
- Nurse of Operating Room, Zhuji People's Hospital of Zhejiang Province, China
| | - Changen Hu
- Department of Anesthesiology, Shaoxing Central Hospital, No.1 Huayu Road, Shaoxing City, Zhejiang Province 313030, China.
| |
Collapse
|
16
|
Hu KQ, Ao XS. Long non-coding RNA DLGAP1 antisense RNA 1 accelerates glioma progression via the microRNA-628-5p/DEAD-box helicase 59 pathway. Clinics (Sao Paulo) 2022; 77:100002. [PMID: 35113786 PMCID: PMC8903805 DOI: 10.1016/j.clinsp.2021.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/15/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Abnormal expression of long non-coding RNAs (lncRNAs) plays a prominent role in glioma progression. However, the biological function and mechanism of lncRNA DLGAP1 antisense RNA 1 (DLGAP1-AS1) in gliomas are still unknown. METHODS The authors assessed DLGAP1-AS1 and miR-628-5p expression in glioma tissues and cell lines using quantitative real-time polymerase chain reaction (qRT-PCR) and evaluated their effects on glioma cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) using the cell counting kit-8 (CCK-8) assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay, Transwell assay, and western blot, respectively. The expression of DEAD-box helicase 59 (DDX59) was quantified using western blotting, and a dual-luciferase reporter gene assay was performed to detect the interaction between DLGAP1-AS1 and miR-628-5p. RESULTS The authors observed increased DLGAP1-AS1 expression in glioma tissues and cell lines with higher WHO grades and shorter survival time. DLGAP1-AS1 promoted the proliferation, migration, invasion, and EMT of glioma cells, while miR-628-5p counteracted these effects. The authors identified DLGAP1-AS1 as a molecular sponge of miR-628-5p in glioma cells as the biological functions of DLGAP1-AS1 are partially mediated via miR-628-5p. In addition, DLGAP1-AS1 upregulated DDX59 expression by inhibiting miR-628-5p expression. CONCLUSION The DLGAP1-AS1/miR-628-5p/DDX59 axis regulates glioma progression.
Collapse
Affiliation(s)
- Ke-Qi Hu
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, China
| | - Xiang-Sheng Ao
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, China.
| |
Collapse
|
17
|
Lv H, Zhou D, Liu G. LncRNA LINC00963 promotes colorectal cancer cell proliferation and metastasis by regulating miR‑1281 and TRIM65. Mol Med Rep 2021; 24:781. [PMID: 34498706 PMCID: PMC8436205 DOI: 10.3892/mmr.2021.12421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Reportedly, long-chain non-coding RNA LINC00963 features prominently in cancer biology. However, functional details of LINC00963 in colorectal cancer (CRC) remain to be elucidated. Reverse transcription-quantitative (RT-q)PCR was performed to examine LINC00963 and microRNA (miR)-1281 expression levels in 53 matched pairs of cancerous and non-cancerous tissues from patients with CRC. Tripartite motif-containing 65 (TRIM65) protein expression in CRC cells was detected via western blot analysis. Furthermore, LINC00963 overexpression plasmid, LINC00963 small interfering RNA, miR-1281 mimics or miR-1281 inhibitors were transfected into CRC cells, and Cell Counting Kit-8, colony formation and Transwell assays were adopted to study the effects of LINC00963 and miR-1281 on the malignant phenotypes of CRC cells. Bioinformatics analysis, dual-luciferase, RNA pull-down and immunoprecipitation assays, RT-qPCR and western blot analysis were performed to investigate the regulatory relationship between LINC00963, miR-1281 and TRIM65. LINC00963 was highly expressed in CRC tissues and cells, while miR-1281 was downregulated. Functionally, LINC00963 facilitated the proliferation, colony formation, migration and invasion of CRC cells, and increased the expression levels of Ki67, matrix metalloproteinase (MMP)2 and MMP9, while miR-1281 had the opposite biological functions. Mechanistically, LINC00963 sponged miR-1281 and repressed its expression in CRC cells, resulting in the upregulation of TRIM65. LINC00963 positively regulates TRIM65 in CRC progression by repressing miR-1281 expression, showing potential as a therapeutic target for treating CRC.
Collapse
Affiliation(s)
- Haidong Lv
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Dixia Zhou
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Guoqing Liu
- Department of Tumor Surgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
18
|
Long noncoding RNA TTTY15 promotes growth and metastasis of esophageal squamous cell carcinoma by sponging microRNA-337-3p to upregulate the expression of JAK2. Anticancer Drugs 2021; 31:1038-1045. [PMID: 32868648 DOI: 10.1097/cad.0000000000000960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long noncoding RNA (lncRNA) testis-specific transcript, Y-linked 15 (TTTY15) plays an important regulatory role in prostate cancer, but its role in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to explore the expression pattern, biological function and underlying mechanism of TTTY15 in ESCC. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of TTTY15 and microRNA (miR)-337-3p in ESCC tissues and cell lines. Cell counting kit-8 method was used to detect the proliferation of ESCC cells. Transwell method was used to determine the migration and invasion of ESCC cells. Luciferase reporter assay was used to verify the interaction between TTTY15 and miR-337-3p. Western blot was used to analyze the effects of TTTY15 and miR-337-3p on Janus kinase 2 (JAK2) expression. In the present study, we demonstrated that the expression level of TTTY15 was significantly upregulated in ESCC tissues, while the expression of miR-337-3p was downregulated. In ESCC samples, the expression levels of TTTY15 and miR-337-3p were negatively correlated. TTTY15 knockdown could significantly reduce the proliferation, migration and invasion of ESCC cells, and miR-337-3p mimics had similar effects. In addition, overexpression of TTTY15 inhibited miR-337-3p by binding with it. TTTY15 could indirectly modulate JAK2, and overexpression of TTTY15 could reverse the inhibitory effects of miR-337-3p on malignant phenotypes of ESCC cells. In conclusion, TTTY15 plays an oncogenic role in ESCC by targeting miR-337-3p/JAK2 axis.
Collapse
|
19
|
Xu H, Wang X, Zhang Y, Zheng W, Zhang H. GATA6-AS1 inhibits ovarian cancer cell proliferation and migratory and invasive abilities by sponging miR-19a-5p and upregulating TET2. Oncol Lett 2021; 22:718. [PMID: 34429758 PMCID: PMC8371982 DOI: 10.3892/ol.2021.12979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
GATA6 antisense RNA 1 (GATA6-AS1) has been reported to be involved in the progression of several types of cancer. In the present study, the role of GATA6-AS1 in ovarian cancer (OC) was explored. Reverse transcription quantitative PCR was used to detect the expression of GATA6-AS1, microRNA (miR)-19a-5p and tet methylcytosine dioxygenase 2 (TET2) in OC and adjacent normal tissues. Furthermore, OC cells with GATA-AS1 either knocked down or overexpressed were established. The Cell Counting Kit-8 assay was used to evaluate cell proliferation and a Transwell assay was used to assess the migratory and invasive abilities of OC cells. A dual luciferase reporter gene assay was used to determine whether GATA6-AS1 and miR-19a-5p, and miR-19a-5p and TET2, may interact with each other. The results demonstrated that GATA6-AS1 expression level was decreased in OC tissues and cells compared with control groups. In addition, GATA6-AS1 overexpression significantly inhibited the proliferation and migratory and invasive abilities of OC cells, whereas GATA6-AS1 downregulation had the opposite effects. Furthermore, GATA6-AS1 adsorbed miR-19a-5p to repress its expression and GTA6-AS1 indirectly upregulated TET2 expression. Taken together, the findings from this study suggested that GATA6-AS1 could inhibit the proliferation and migratory and invasive abilities of OC cells via regulation of the miR-19a-5p/TET2 axis.
Collapse
Affiliation(s)
- Hua Xu
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiao Wang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yinghong Zhang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wei Zheng
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Huijie Zhang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
20
|
Circulating Long Non-Coding RNAs as Novel Potential Biomarkers for Osteogenic Sarcoma. Cancers (Basel) 2021; 13:cancers13164214. [PMID: 34439367 PMCID: PMC8392488 DOI: 10.3390/cancers13164214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Circulating cell-free nucleic acids recently became attractive targets to develop non-invasive diagnostic tools for cancer detection. Along with DNA and mRNAs, transcripts lacking coding potential (non-coding RNAs, ncRNAs) directly involved in the process of tumor pathogenesis have been recently detected in liquid biopsies. Interestingly, circulating ncRNAs exhibit specific expression patterns associated with cancer and suggest their role as novel biomarkers. However, the potential of circulating long ncRNAs (c-lncRNAs) to be markers in osteosarcoma (OS) is still elusive. In this study we performed a systematic review to identify thirteen c-lncRNAs whose altered expression in blood associate with OS. We herein discuss the potential impact that these c-lncRNAs may have on clinical decision-making in the management of OS. Overall, we aimed to provide novel insights that can contribute to the development of future precision medicine in oncology.
Collapse
|
21
|
Chen T, Huang B, Pan Y. Long Non-coding RNA MAFG-AS1 Promotes Cell Proliferation, Migration, and EMT by miR-3196/STRN4 in Drug-Resistant Cells of Liver Cancer. Front Cell Dev Biol 2021; 9:688603. [PMID: 34386494 PMCID: PMC8353155 DOI: 10.3389/fcell.2021.688603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to participate in the development and progression of several different types of cancer. Past studies indicated that lncRNA MAFG-antisense 1 (AS1) promotes colorectal cancer. However, the role of MAFG-AS1 in hepatocellular carcinoma (HCC) remains unclear. The aim of the present study is to examine the effect of lncRNA MAFG-AS1 on drug resistance HCC. The results indicated that MAFG-AS1 is upregulated in drug-resistant cells. Further, MAFG-AS1 promotes growth and migration of HCC by upregulating STRN4 through absorbing miR-3196. Thus, LncRNA MAFA-AS1 may become a novel target to treat HCC patients.
Collapse
Affiliation(s)
- Tianming Chen
- Department of Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Bin Huang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yaozhen Pan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
22
|
Ye J, Li J, Zhao P. Roles of ncRNAs as ceRNAs in Gastric Cancer. Genes (Basel) 2021; 12:genes12071036. [PMID: 34356052 PMCID: PMC8305186 DOI: 10.3390/genes12071036] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
Although ignored in the past, with the recent deepening of research, significant progress has been made in the field of non-coding RNAs (ncRNAs). Accumulating evidence has revealed that microRNA (miRNA) response elements regulate RNA. Long ncRNAs, circular RNAs, pseudogenes, miRNAs, and messenger RNAs (mRNAs) form a competitive endogenous RNA (ceRNA) network that plays an essential role in cancer and cardiovascular, neurodegenerative, and autoimmune diseases. Gastric cancer (GC) is one of the most common cancers, with a high degree of malignancy. Considerable progress has been made in understanding the molecular mechanism and treatment of GC, but GC’s mortality rate is still high. Studies have shown a complex ceRNA crosstalk mechanism in GC. lncRNAs, circRNAs, and pseudogenes can interact with miRNAs to affect mRNA transcription. The study of the involvement of ceRNA in GC could improve our understanding of GC and lead to the identification of potential effective therapeutic targets. The research strategy for ceRNA is mainly to screen the different miRNAs, lncRNAs, circRNAs, pseudogenes, and mRNAs in each sample through microarray or sequencing technology, predict the ceRNA regulatory network, and, finally, conduct functional research on ceRNA. In this review, we briefly discuss the proposal and development of the ceRNA hypothesis and the biological function and principle of ceRNAs in GC, and briefly introduce the role of ncRNAs in the GC’s ceRNA network.
Collapse
Affiliation(s)
- Junhong Ye
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China;
| | - Jifu Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China;
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China;
- Correspondence: ; Tel.: +86-23-6825-0885
| |
Collapse
|
23
|
Li Y, Lu L, Wu X, Li Q, Zhao Y, Du F, Chen Y, Shen J, Xiao Z, Wu Z, Hu W, Cho CH, Li M. The Multifaceted Role of Long Non-Coding RNA in Gastric Cancer: Current Status and Future Perspectives. Int J Biol Sci 2021; 17:2737-2755. [PMID: 34345204 PMCID: PMC8326121 DOI: 10.7150/ijbs.61410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer (GC) is one of the major public health concerns. Long non-coding RNAs (lncRNAs) have been increasingly demonstrated to possess a strong correlation with GC and play a critical role in GC occurrence, progression, metastasis and drug resistance. Many studies have shed light on the understanding of the underlying mechanisms of lncRNAs in GC. In this review, we summarized the updated research about lncRNAs in GC, focusing on their roles in Helicobacter pylori infection, GC metastasis, tumor microenvironment regulation, drug resistance and associated signaling pathways. LncRNAs may serve as novel biomarkers for diagnosis and prognosis of GC and potential therapeutic targets. The research gaps and future directions were also discussed.
Collapse
Affiliation(s)
- Yifan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province,Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.,Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| |
Collapse
|
24
|
Luo J, You H, Zhan J, Guo G, Cheng X, Zheng G. Long non-coding RNA TPT1-AS1 alleviates cell injury and promotes the production of extracellular matrix by targeting the microRNA-324-5p/CDK16 axis in human dermal fibroblasts after thermal injury. Exp Ther Med 2021; 22:843. [PMID: 34149889 PMCID: PMC8210258 DOI: 10.3892/etm.2021.10275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are associated with the healing of burn wounds in the dermis. The present study aimed to probe the role and regulatory network of the lncRNA TPT1 antisense RNA 1 (TPT1-AS1) in human dermal fibroblasts (HDFs) following thermal injury. A model of thermally injured cells was constructed with HDFs. The levels of TPT1-AS1, microRNA (miR)-324-5p and cyclin-dependent kinase (CDK)16 were determined through reverse transcription-quantitative PCR. Cell viability, cell cycle distribution, cell apoptosis rate and extracellular matrix (ECM) synthesis were assessed with a series of in vitro gain-of-function experiments and MTT, flow cytometry and western blot analyses. The binding ability of miR-324-5p and TPT1-AS1 (or the 3' untranslated region of CDK16) was identified via bioinformatics analysis and luciferase reporter assay. It was found that TPT1-AS1 and CDK16 were downregulated, but miR-324-5p was upregulated, in the HDFs after thermal injury. TPT1-AS1 elevation induced cell viability and ECM synthesis but attenuated cell cycle arrest at the G0/G1 stage and decreased the cell apoptosis rate of thermally injured HDFs. In addition, TPT1-AS1 sponged miR-324-5p to modulate CDK16 expression. Moreover, silencing CDK16 weakened the impacts of TPT1-AS1 upregulation on cell function and ECM synthesis in heat-treated HDFs. In summary, TPT1-AS1 relieved cell injury and induced ECM synthesis by sponging miR-324-5p and targeting CDK16 in the HDFs after thermal injury, implying a protective role for TPT1-AS1 in the burn wound healing process.
Collapse
Affiliation(s)
- Jinhua Luo
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haoyuan You
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianhua Zhan
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guanghua Guo
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xing Cheng
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guoyu Zheng
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
25
|
Khoothiam K, Boonbanjong P, Iempridee T, Luksirikul P, Japrung D. Isothermal detection of lncRNA using T7 RNA polymerase mediated amplification coupled with fluorescence-based sensor. Anal Biochem 2021; 629:114212. [PMID: 33872579 DOI: 10.1016/j.ab.2021.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
In this study, the isothermal detection of a cervical cancer-associated long non-coding RNA (lncRNA), namely, lncRNA-ATB, was performed for the first time with high selectivity and sensitivity via a T7 RNA polymerase transcription-mediated amplification system combined with a graphene oxide (GO) fluorescence-based sensor. Specific lncRNA primers with the T7 promoter overhang were designed and further had with the efficient amplification ability of T7 RNA polymerase. This detection platform distinguished the target lncRNA-ATB from other lncRNAs. In addition, the super fluorescence quenching ability of GO resulted in the development of a switch on/off fluorescence sensor. The resulting platform was able to detect target lncRNAs from samples of cervical cancer cell lines (HeLa) and human sera with high selectivity and a low detection limit of 1.96 pg. Therefore, the assay developed in this study demonstrated a high potential as an alternative tool for lncRNA quantification in clinical diagnosis.
Collapse
Affiliation(s)
- Krissana Khoothiam
- Division of Microbiology and Parasitology, School of Medical Science, University of Phayao, Phayao, Thailand
| | - Poramin Boonbanjong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand
| | - Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand
| | - Patraporn Luksirikul
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand.
| |
Collapse
|
26
|
MiR-141-3p overexpression suppresses the malignancy of osteosarcoma by targeting FUS to degrade LDHB. Biosci Rep 2021; 40:225113. [PMID: 32484203 PMCID: PMC7286874 DOI: 10.1042/bsr20193404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/27/2022] Open
Abstract
Osteosarcoma (OS) is a common malignant bone cancer. Lactate dehydrogenase B (LDHB) has been revealed to act as a tumor promoter in several cancers. It is also revealed to be correlated with poor prognosis in OS, but its molecular mechanism in OS remains veiled. Our work illustrated that LDHB was overexpressed in OS tissues and cells, and it could enhance cell proliferation, migration, and invasion in OS. Subsequently, it was confirmed that fused in sarcoma (FUS) could bind with LDHB to positively regulate the stability of LDHB messenger RNA (mRNA). Besides, FUS expression was revealed to be elevated in OS tissues and positively correlate with LDHB expression. Furthermore, miR-141-3p, down-regulated in OS cells, was identified as the upstream regulator of FUS in OS cells. Besides, miR-141-3p overexpression decreased mRNA and protein levels of FUS and LDHB. More importantly, overexpression of miR-141-3p could impair FUS overexpression-mediated promotion on LDHB mRNA stability and expression. Finally, rescue assays indicated that miR-141-3p regulated OS cells cellular process via regulating LDHB. In sum, miR-141-3p targets FUS to degrade LDHB, thereby attenuating the malignancy of OS cells.
Collapse
|
27
|
Guo T, Wang W, Ji Y, Zhang M, Xu G, Lin S. LncRNA PROX1-AS1 Facilitates Gastric Cancer Progression via miR-877-5p/PD-L1 Axis. Cancer Manag Res 2021; 13:2669-2680. [PMID: 33776485 PMCID: PMC7989960 DOI: 10.2147/cmar.s275352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Growing evidences imply that multiple long non-coding RNAs (lncRNAs) play a significant role in the treatment of cancer. Therefore, it is of great significance to discover new biomarkers or therapeutic targets of gastric cancer (GC). However, the potential molecular mechanism of lncPROX1-AS1 in GC remains unknown. The objective of current study is to investigate the effect of PROX1-AS1 in GC. Methods Thus, we detect that PROX1-AS1 is over-expressed in tissues and cell lines of GC using qRT-PCR analysis. CCK-8, colony formation, flow cytometry, wounding healing and transwell analyses were performed to explore the effect of PROX1-AS1 on GC malignant behaviors. Results It is further disclosed that silencing of PROX1-AS1 represses cell proliferation, migration, and invasion, whereas promotes cell apoptosis in GC. Bioinformatics analysis suggests that miR-877-5p is negatively regulated by PROX1-AS1 and ectopic of miR-877-5p alleviates the malignant behaviors of GC. Subsequently, miR-877-5p suppresses the activity of PD-L1-3ʹ UTR. At last, rescue assays demonstrated that the GC progression is suppressed by sh-PROX1-AS1 and facilitated on account of miR-877-5p inhibitors and then is retrieved by sh-PD-L1. Discussion Our findings reveal that PROX1-AS1 exerts its role via miR-877-5p/PD-L1 axis in the GC progression, suggesting that PROX1-AS1 may represent a new therapeutic target for the diagnosis and treatment of GC patients.
Collapse
Affiliation(s)
- TianWei Guo
- Department of Pathology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, People's Republic of China
| | - Wei Wang
- Department of Pathology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - YueXia Ji
- Department of Pathology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, People's Republic of China
| | - Min Zhang
- Department of Pathology, Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - GuoYing Xu
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, Jiangsu, People's Republic of China
| | - Sen Lin
- The Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an, Huai'an, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Zou Y, Sun Z, Sun S. LncRNA HCG18 contributes to the progression of hepatocellular carcinoma via miR-214-3p/CENPM axis. J Biochem 2021; 168:535-546. [PMID: 32663252 DOI: 10.1093/jb/mvaa073] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/18/2020] [Indexed: 01/04/2023] Open
Abstract
Long non-coding RNA (lnc) HCG18 has been reported to contribute progression of a variety of tumours. However, its roles in hepatocellular carcinoma (HCC) remains unknown. In the current study, we intended to uncover the biological functions of HCG18 in HCC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression of HCG18, microRNA-214-3p (miR-214-3p) and centromere protein M (CENPM) messenger RNA (mRNA). The role of HCG18 in the growth and migration were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, wound healing assay and flow cytometry in vitro and animal experiments in vivo. The results showed that HCG18 was highly expressed in HCC tissues. HCG18 silencing inhibited the proliferation and migration while induced the apoptosis of HCC cells. Besides, miR-214-3p was down-regulated in HCC cells. Further experiments revealed that miR-214-3p could directly bind to HCG18 and exerted an anti-tumour role to counteracted siHCG18-1-mediated influence in HCC cells. Moreover, miR-214-3p could directly interact with CENPM mRNA and down-regulating the expression of CENPM. While HCG18 could up-regulate the expression of CENPM through acting as a sponge of miR-214-3p. Therefore, those results suggested HCG18 functioned as an oncogene to promote the proliferation and migration of HCC cells via miR-214-3p/CENPM axis.
Collapse
Affiliation(s)
- Yuepei Zou
- Zhengzhou University, No. 100 Science Ave, Gaoxin District, Zhengzhou 450001, China
| | - Zhonghua Sun
- Medical Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Jinan 250011, China
| | - Shuangming Sun
- Security and Anti-Terrorism Department, People's Public Security University of China, No. 1 Muxidinanli, Xicheng District, Beijing 100038, China
| |
Collapse
|
29
|
Liu W, Zhang Y, Luo B. Long Non-coding RNAs in Gammaherpesvirus Infections: Their Roles in Tumorigenic Mechanisms. Front Microbiol 2021; 11:604536. [PMID: 33519750 PMCID: PMC7843584 DOI: 10.3389/fmicb.2020.604536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression at the epigenetic, transcriptional, or posttranscriptional level by interacting with protein, DNA, and RNA. Emerging evidence suggests that various lncRNAs are abnormally expressed and play indispensable roles in virus-triggered cancers. Besides, a growing number of studies have shown that virus-encoded lncRNAs participate in tumorigenesis. However, the functions of most lncRNAs in tumors caused by oncogenic viruses and their underlying mechanisms remain largely unknown. In this review, we summarize current findings regarding lncRNAs involved in cancers caused by Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV). Additionally, we discuss the contribution of lncRNAs to tumor occurrence, development, invasion, and metastasis; the roles of lncRNAs in key signaling pathways and their potential as biomarkers and therapeutic targets for tumor diagnostics and treatment.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.,Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Sun W, Jiang C, Ji Y, Xiao C, Song H. Long Noncoding RNAs: New Regulators of Resistance to Systemic Therapies for Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8853269. [PMID: 33506041 PMCID: PMC7808844 DOI: 10.1155/2021/8853269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is the second leading cause of cancer mortality and the fourth most commonly diagnosed malignant disease, with approximately 951,000 new cases diagnosed and approximately 723,000 cases of mortality each year. The highest mortality rate of GC is in East Asia, and the lowest is in North America. A large number of studies have demonstrated that GC patients are characterized by higher morbidity, metastasis rates, and mortality and lower early diagnosis rates, radical resection rates, and 5-year survival rates. All cases of GC can be divided into two important stages, namely, early- and advanced-stage GC, and the stage mainly determines the treatment strategy for and the therapeutic effect in GC patients. Patients with early-stage GC undergo radical surgery followed by chemotherapy, and the 5-year survival rate can be as high as 90%. However, patients with advanced-stage GC cannot undergo radical surgery because they are at risk for metastasis; therefore, they can choose only radiotherapy or chemotherapy and have a poor prognosis. Based on the lack of specific clinical manifestations and detection methods, most GC patients (>70%) are diagnosed in the advanced stage; therefore, continued efforts toward developing treatments have been focused on advanced-stage GC patients and include molecular targeted therapy, immunotherapy, and small molecular therapy. Nevertheless, in recent years, accumulating evidence has indicated that small molecules, especially long noncoding RNAs (lncRNAs), are involved in the occurrence, development, and progression of GC, and their abundantly dysregulated expression has been identified in GC tissues and cell lines. Therefore, lncRNAs are considered easily detectable molecules and ideal biomarkers or target-specific agents for the future diagnosis or treatment of GC. In this review, we primarily discuss the status of GC, the role of lncRNAs in GC, and the emerging systemic treatments for GC.
Collapse
Affiliation(s)
- Weihong Sun
- Department of Internal Medicine-Oncology Affiliated Qingdao Central Hospital, Qingdao University, 127 Siliu South Road, Qingdao 266042, China
- Department of Internal Medicine-Oncology Qingdao Tumor Hospital, 127 Siliu South Road, Qingdao 266042, China
| | - Changqing Jiang
- Department of Pathology Qingdao Municipal Hospital, Donghai Middle Road, Qingdao 266071, China
| | - Ying Ji
- Department of Internal Medicine-Oncology Affiliated Qingdao Central Hospital, Qingdao University, 127 Siliu South Road, Qingdao 266042, China
- Department of Internal Medicine-Oncology Qingdao Tumor Hospital, 127 Siliu South Road, Qingdao 266042, China
| | - Chao Xiao
- Department of Internal Medicine-Oncology Affiliated Qingdao Central Hospital, Qingdao University, 127 Siliu South Road, Qingdao 266042, China
- Department of Internal Medicine-Oncology Qingdao Tumor Hospital, 127 Siliu South Road, Qingdao 266042, China
| | - Haiping Song
- Department of Internal Medicine-Oncology Affiliated Qingdao Central Hospital, Qingdao University, 127 Siliu South Road, Qingdao 266042, China
- Department of Internal Medicine-Oncology Qingdao Tumor Hospital, 127 Siliu South Road, Qingdao 266042, China
| |
Collapse
|
31
|
Chen XJ, An N. Long noncoding RNA ATB promotes ovarian cancer tumorigenesis by mediating histone H3 lysine 27 trimethylation through binding to EZH2. J Cell Mol Med 2020; 25:37-46. [PMID: 33336896 PMCID: PMC7810921 DOI: 10.1111/jcmm.15329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) remains one of the most lethal gynecological malignancies. The unfavourable prognosis is mainly due to the lack of early‐stage diagnosis, drug resistance and recurrence. Therefore, it needs to investigate the mechanism of OC tumorigenesis and identify effective biomarkers for the clinical diagnosis. It is reported that long noncoding RNAs (lncRNAs) play important roles during the tumorigenesis of OC. Therefore, the present study aimed to study the role and clinical significance of LncRNAs ATB (lnc‐ATB) in the development and progression of OC. In our research, lnc‐ATB expression in OC tissues was elevated compared with adjacent normal tissues and high expression of lnc‐ATB was associated with poor outcomes of OC patients. The silencing of lnc‐ATB blocked cell proliferation, invasion and migration in SKOV3 and A2780 cells. RNA immunoprecipitation and RNA pull‐down results showed that lnc‐ATB positively regulated the expression of EZH2 via directly interacting with EZH2. Besides, the overexpression of EZH2 partly rescued lnc‐ATB silencing‐inducing inhibition of cell proliferation, invasion and migration. Chromatin immunoprecipitation assay results demonstrated that the silencing of lnc‐ATB reduced the occupancy of caudal‐related homeobox protein 1, Forkhead box C1, Large tumour suppressor kinase 2, cadherin‐1 and disabled homolog 2 interacting protein promoters on EZH2 and H3K27me3. These data revealed the oncogenic of lnc‐ATB and provided a novel biomarker for OC diagnosis. Furthermore, these findings indicated the mechanism of lnc‐ATB functioning in the progression of OC, which provided a new target for OC therapy.
Collapse
Affiliation(s)
- Xue-Juan Chen
- Department of Gynecology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Na An
- Department of Gynecology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
32
|
Ye L, Feng W, Weng H, Yuan C, Liu J, Wang Z. MAFG-AS1 aggravates the progression of pancreatic cancer by sponging miR-3196 to boost NFIX. Cancer Cell Int 2020; 20:591. [PMID: 33298078 PMCID: PMC7724861 DOI: 10.1186/s12935-020-01669-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A host of researches have demonstrated the regulation of long non-coding RNAs (lncRNAs) in the progression of pancreatic cancers (PC). In this study, our main task was to analyze the function of MAF bZIP transcription factor G antisense RNA 1 (MAFG-AS1) in PC. METHODS RT-qPCR measured gene expression. Functional experiments, including EdU assay, flow cytometry analysis, TUNEL assay and transwell assay, assessed the biological changes of PC cells. RNA pull down assay, luciferase reporter assay and RIP assay verified the interaction between RNAs. RESULTS MAFG-AS1 was lowly expressed in normal pancreatic samples but up-regulated in PC tissues and cell lines. Besides, MAFG-AS1 silence suppressed cell proliferation and migration whereas promoted cell apoptosis in PC. Mechanism assays verified that miR-3196 could bind with MAFG-AS1. Moreover, miR-3196 was discovered to be lowly expressed in PC cell lines, and its overexpression inhibited PC cell growth and migration. Importantly, nuclear factor I X (NFIX), overexpressed in PC cell lines, was validated to be positively modulated by MAFG-AS1 through absorbing miR-3196. Moreover, overexpression of NFIX could countervail the restraining effects of MAFG-AS1 knockdown on the growth and migration of PC cells. CONCLUSION MAFG-AS1 had an oncogenic function in the progression of PC via regulating miR-3196/NFIX pathway, and decreasing MAFG-AS1 expression could attenuate PC progression.
Collapse
Affiliation(s)
- Liqing Ye
- Department of Hepato-Billiary Surgery, Dongguan People's Hospital, Southern Medical University, Guangming Road, Dongcheng District, Dongguan, 523059, Guangdong, China
| | - Weijian Feng
- Department of Hepato-Billiary Surgery, Dongguan People's Hospital, Southern Medical University, Guangming Road, Dongcheng District, Dongguan, 523059, Guangdong, China
| | - Hanqin Weng
- Department of Hepato-Billiary Surgery, Dongguan People's Hospital, Southern Medical University, Guangming Road, Dongcheng District, Dongguan, 523059, Guangdong, China.
| | - Chongde Yuan
- Department of Hepato-Billiary Surgery, Dongguan People's Hospital, Southern Medical University, Guangming Road, Dongcheng District, Dongguan, 523059, Guangdong, China
| | - Jia Liu
- Department of Hepato-Billiary Surgery, Dongguan People's Hospital, Southern Medical University, Guangming Road, Dongcheng District, Dongguan, 523059, Guangdong, China
| | - Zaiguo Wang
- Department of Hepato-Billiary Surgery, Dongguan People's Hospital, Southern Medical University, Guangming Road, Dongcheng District, Dongguan, 523059, Guangdong, China
| |
Collapse
|
33
|
Gu Y, Zhang S. High-throughput sequencing identification of differentially expressed microRNAs in metastatic ovarian cancer with experimental validations. Cancer Cell Int 2020; 20:517. [PMID: 33100909 PMCID: PMC7579798 DOI: 10.1186/s12935-020-01601-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Background Ovarian cancer (OC) is a common gynecological cancer and characterized by high metastatic potential. MicroRNAs (miRNAs, miRs) have the promise to be harnessed as prognostic and therapeutic biomarkers for OC. Herein, we sought to identify differentially expressed miRNAs and mRNAs in metastatic OC, and to validate them with functional experiments. Methods Differentially expressed miRNAs and mRNAs were screened from six pairs of primary OC tissues and metastatic tissues using a miRStar™ Human Cancer Focus miRNA and Target mRNA PCR Array. Then, gene expression profiling results were verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot assays. The binding affinity between miR-7-5p and TGFβ2 was validated by dual-luciferase reporter assay. Expression of miR-7-5p and TGFβ2 was manipulated to assess their roles in malignant phenotypes of highly metastatic HO-8910PM cells. Results MiRNA profiling and sequencing identified 12 miRNAs and 10 mRNAs that were differentially expressed in metastatic tissues. Gene ontology and Pathway analyses determined that 3 differentially expressed mRNAs (ITGB3, TGFβ2 and TNC) were related to OC metastasis. The results of RT-qPCR confirmed that the decrease of miR-7-5p was most significant in OC metastasis, while TGFβ2 was up-regulated in OC metastasis. Moreover, miR-7-5p targeted and negatively regulated TGFβ2. MiR-7-5p overexpression accelerated HO-8910PM cell viability and invasion, and TGFβ2 overexpression reversed the results. Meanwhile, simultaneous miR-7-5p and TGFβ2 overexpression rescued the cell activities. Conclusions This study characterizes differentially expressed miRNAs and mRNAs in metastatic OC, where miR-7-5p and its downstream target were most closely associated with metastatic OC. Overexpression of miR-7-5p targets and inhibits TGFβ2 expression, thereby inhibiting the growth and metastasis of OC.
Collapse
Affiliation(s)
- Yang Gu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004 Liaoning P. R. China
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004 Liaoning P. R. China
| |
Collapse
|
34
|
Guo X, Li M. LINC01089 is a tumor-suppressive lncRNA in gastric cancer and it regulates miR-27a-3p/TET1 axis. Cancer Cell Int 2020; 20:507. [PMID: 33088215 PMCID: PMC7568383 DOI: 10.1186/s12935-020-01561-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignancies around the world. Recently, the role of long non-coding RNA (lncRNA) in cancer biology has become a hot research topic. This work aimed to explore the biological function and underlying mechanism of LINC01089 in GC. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to investigate the expression of LINC01089 in GC tissues and cells. The relationship between the expression level of LINC01089 and the clinicopathological parameters of GC was assessed. Cell models of LINC01089 overexpression, LINC01089 knockdown, miR-27a-3p overexpression, and miR-27a-3p inhibition were established by transfection. CCK-8 assay, BrdU assay, and Transwell assay were utilized to investigate the malignant biological behaviors of GC cell lines after transfection. Dual luciferase activity reporter assay, Pearson’s correlation analysis, and Western blot were utilized to the regulatory relationships among LINC01089, miR-27a-3p and tet methylcytosine dioxygenase 1 (TET1). Result LINC01089 down-regulation was observed in GC tissues and cell lines. Low expression level of LINC01089 in GC tissues was markedly linked to larger tumor size, higher T stage, as well as lymphatic metastasis of the patients. Functional experiments implied that LINC01089 overexpression impeded the proliferation, migration, as well as invasion of GC cells, whereas LINC01089 knockdown promoted the above malignant phenotypes. Additionally, up-regulation of miR-27a-3p was also observed in GC tissues. Functional experiments also showed that, miR-27a-3p overexpression boosted the malignant biological behaviors of GC cells; on the contrast, these phenotypes were impeded by miR-27a-3p inhibition. Moreover, LINC01089 interacted with and repressed miR-27a-3p, and miR-27a-3p antagonized the impact of LINC01089 on GC cells. Additionally, TET1 was verified as a target gene of miR-27a-3p, and could be positively regulated by LINC01089. Conclusion LINC01089 impedes the proliferation, migration, and invasion of GC cells by adsorbing miR-27a-3p and up-regulating the expression of TET1.
Collapse
Affiliation(s)
- Xufeng Guo
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430000 Hubei China
| | - Ming Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Zhangzhidong Road, Wuchang District, Wuhan, 430000 Hubei China
| |
Collapse
|
35
|
Landeros N, Santoro PM, Carrasco-Avino G, Corvalan AH. Competing Endogenous RNA Networks in the Epithelial to Mesenchymal Transition in Diffuse-Type of Gastric Cancer. Cancers (Basel) 2020; 12:cancers12102741. [PMID: 32987716 PMCID: PMC7598708 DOI: 10.3390/cancers12102741] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The diffuse-type of gastric cancer is associated with epithelial to mesenchymal transition. Loss of E-cadherin expression is the hallmark of this process and is largely due to the upregulation of the transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, miRNA and lncRNAs can also participate through these transcription factors which directly target E-cadherin. The competing endogenous RNA (ceRNA) network hypothesis state that lncRNA can sponge the miRNA pool that targets these transcripts. Based on the lack of said networks in the epithelial to mesenchymal transition, we performed a prediction analysis that resulted in novel ceRNA networks which will expand our knowledge of the molecular basis of the diffuse-type of gastric cancer. Abstract The diffuse-type of gastric cancer (DGC), molecularly associated with epithelial to mesenchymal transition (EMT), is increasing in incidence. Loss of E-cadherin expression is the hallmark of the EMT process and is largely due to the upregulation of the EMT-inducing transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, ncRNA, such as miRNA and lncRNAs, can also participate in the EMT process through the direct targeting of E-cadherin and other EMT-inducing transcription factors. Additionally, lncRNA can sponge the miRNA pool that targets these transcripts through competing endogenous RNA (ceRNA) networks. In this review, we focus on the role of ncRNA in the direct deregulation of E-cadherin, as well as EMT-inducing transcription factors. Based on the relevance of the ceRNA network hypothesis, and the lack of said networks in EMT, we performed a prediction analysis for all miRNAs and lncRNAs that target E-cadherin, as well as EMT-inducing transcription factors. This analysis resulted in novel predicted ceRNA networks for E-cadherin and EMT-inducing transcription factors (EMT-TFs), as well as the expansion of the molecular basis of the DGC.
Collapse
Affiliation(s)
- Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Pablo M. Santoro
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Gonzalo Carrasco-Avino
- Department of Pathology, Hospital Clinico Universidad de Chile and Clinica Las Condes, Santiago 7550000, Chile;
| | - Alejandro H. Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
- Correspondence: ; Tel.: +56-2235-48289
| |
Collapse
|
36
|
Liu Y, Lin W, Dong Y, Li X, Lin Z, Jia J, Zou W, Pan Y. Long noncoding RNA HCG18 up-regulates the expression of WIPF1 and YAP/TAZ by inhibiting miR-141-3p in gastric cancer. Cancer Med 2020; 9:6752-6765. [PMID: 32725768 PMCID: PMC7520348 DOI: 10.1002/cam4.3288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Accumulating works show that lncRNAs play critical roles in the development of gastric cancer (GC). LncRNA HLA complex group 18 (HCG18) was implicated in the progression of bladder cancer and glioma, but its role in GC is unknown. METHODS RT-PCR was used to detect HCG18 and miR-141-3p expression in GC specimen. GC cell lines (AGS and MKN-28) were exploited as cell model. The biological effect of HCG18 on cancer cells was probed by CCK-8, colony formation, flow cytometry, Transwell and wound-healing experiments in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Interaction between HCG18 and miR-141-3p was determined by bioinformatics analysis, RT-PCR, and luciferase reporter experiments. Downstream gene expression of miR-141-3p, including Wiskott-Aldrich syndrome protein interacting protein family member 1 (WIPF1), Yes associated protein 1 (YAP), and tafazzin (TAZ) were detected using Western blot. RESULTS HCG18 was markedly up-regulated in GC specimens, while miR-141-3p was markedly down-regulated. Down-regulation of HCG18 inhibited viability, migration, and invasion of GC cells, while miR-141-3p transfection led to opposite effect. HCG18 could down-regulate miR-141-3p through adsorbing it, and a negative association between HCG18 and miR-141-3p was found in GC specimens. HCG18 promoted WIPF1, YAP and TAZ expression, nonetheless, such influence was reversed by co-transfecting with miR-141-3p. CONCLUSION HCG18 was aberrantly up-regulated in GC tissues, and it indirectly regulated the activity of Hippo signaling through counteracting miR-141-3p expression.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Wenji Lin
- Department of RadiologyQuanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Yangyang Dong
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Xinyu Li
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Zhibin Lin
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Jing Jia
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Wenbing Zou
- Department of Gastrointestinal Surgery (#2)Quanzhou First Hospital Affiliated to Fujian Medical UniversityQuanzhouChina
| | - Yu Pan
- Department of General SurgeryFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
37
|
El-Ashmawy NE, Hussien FZ, El-Feky OA, Hamouda SM, Al-Ashmawy GM. Serum LncRNA-ATB and FAM83H-AS1 as diagnostic/prognostic non-invasive biomarkers for breast cancer. Life Sci 2020; 259:118193. [PMID: 32763293 DOI: 10.1016/j.lfs.2020.118193] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
AIMS Circulating long non-coding RNAs (lncRNAs) have proven to be useful non-invasive tools for diagnosis of various cancers. FAM83H antisense RNA 1 (FAM83H-AS1) and lncRNA activated by TGF β (lncRNA-ATB) are two lncRNAs that have been shown to play an important role in different cancer types including breast cancer. The primary aim of our study was to investigate the potential role of serum FAM83H-AS1 and lncRNA-ATB as diagnostic/prognostic markers for breast cancer patients. MAIN METHODS Serum expression levels of FAM83H-AS1 and lncRNA-ATB were analyzed in 90 breast cancer patients and 30 age- and sex-matched healthy controls using RT-qPCR. KEY FINDINGS We found that FAM83H-AS1 and lncRNA-ATB were significantly overexpressed in sera of breast cancer patients compared to controls (p = 0.000 for both). Analysis of receiver operating characteristic curve demonstrated that lncRNA-ATB had a higher area under curve (AUC) value than the conventional tumor marker cancer antigen 15-3 (CA15-3) (AUC: 0.844, p = 0.000 versus 0.738, p = 0.002) for early diagnosis of breast cancer in patients with stage I-II. On the other hand, FAM83H-AS1 showed a significant correlation with tumor-node metastasis (TNM) stages, large tumor size and lymph node metastasis, suggesting a prognostic rather than diagnostic value. SIGNIFICANCE This is the first study to demonstrate that serum lncRNA-ATB could be used as a non-invasive diagnostic marker for early stages of breast cancer. Furthermore, serum FAM83H-AS1 has a potential ability for monitoring of progression and staging of breast cancer.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31511, Egypt
| | - Fatma Z Hussien
- Department of Clinical Oncology, Faculty of Medicine, Tanta University, 31511, Egypt
| | - Ola A El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31511, Egypt
| | - Sara M Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31511, Egypt
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, 31511, Egypt.
| |
Collapse
|
38
|
Shen X, Li Y, He F, Kong J. LncRNA CDKN2B-AS1 Promotes Cell Viability, Migration, and Invasion of Hepatocellular Carcinoma via Sponging miR-424-5p. Cancer Manag Res 2020; 12:6807-6819. [PMID: 32801906 PMCID: PMC7414928 DOI: 10.2147/cmar.s240000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Hepatocellular carcinoma (HCC) results in high mortality and metastasis. In this study, the effects of long non-coding RNA (lncRNA) CDKN2B-AS1 on the progression of HCC were investigated. Materials and Methods LncRNA CDKN2B-AS1 expression of HCC cancer and adjacent tissues, and HCC cells were detected. Subsequently, CDKN2B-AS1 was overexpressed and silenced in HCC cells to observe the effects of CDKN2B-AS1 on the cell viability, migration, invasion, and epithelial–mesenchymal transition (EMT) of HCC cells by performing cell counting kit-8 (CCK-8), wound-healing, Transwell, and Western blot. The target gene of CDKN2B-AS1 was predicted and verified to be miR-424-5p, whose expression in HCC cells with up- or down-regulation of CDKN2B-AS1 expression was determined. Moreover, the effects of miR-424-5p on cell viability, migration, and invasion and EMT of HCC cells were investigated with miR-424-5p up-regulation or down-regulation, together with overexpression or silencing of CDKN2B-AS1. Results CDKN2B-AS1 expression was increased in HCC tissues and cells. Silencing of CDKN2B-AS1 suppressed cell viability, migration, invasion, and EMT, while overexpression of CDKN2B-AS1 produced the opposite results. Furthermore, CDKN2B-AS1 was predicted and verified to target miR-424-5p and was confirmed to negatively modulate miR-424-5p expression. Moreover, overexpression of miR-424-5p partially suppressed the previously high cell viability, migration, and invasion, and activated EMT resulted from up-regulation of CDKN2B-AS1, while silencing of miR-424-5p elevated the cellular processes inhibited by silencing the expression of CDKN2B-AS1. Conclusion The present study revealed that high-expressed CDKN2B-AS1 may associate with the progression of HCC by affecting the cell viability, migration, invasion, and EMT of HCC cells by negatively regulating miR-424-5p.
Collapse
Affiliation(s)
- Xinying Shen
- Department of Interventional Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yong Li
- Department of Interventional Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Fan He
- Department of Interventional Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Jian Kong
- Department of Interventional Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
39
|
Yin G, Tian P, BuHe A, Yan W, Li T, Sun Z. LncRNA LINC00689 Promotes the Progression of Gastric Cancer Through Upregulation of ADAM9 by Sponging miR-526b-3p. Cancer Manag Res 2020; 12:4227-4239. [PMID: 32581594 PMCID: PMC7280092 DOI: 10.2147/cmar.s231042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Increasing studies have demonstrated that noncoding RNAs, including miRNAs and lncRNAs, have vital roles in mediating cancer progression. However, the expression features and biological functions of LINC00689 in gastric cancer (GC) remain largely unknown. This study was designed to investigate the functions of LINC00689, miR-526b-3p and ADAM9 as well as their interactions in GC. Methods Real time PCR(RT-PCR) was used to detect the expression of LINC0068, miR-526b-3p and ADAM9 in both GC tissues or cell lines. Gain- and loss- of functions of assays were conducted to verify the role of LINC0068, miR-526b-3p and ADAM9 in GC development. Cell proliferation were determined by CCK8 assay and transwell assay and scratch wound-healing assay were used to test cell invasion and migration. Further, the relationships between LINC00689 and miR-526b-3p, miR-526b-3p and ADAM9 were predicted by bioinformatics analysis and then proved by Luciferase reporter assay and RNA Immunoprecipitation(RIP) assay. Results We found that LINC00689 was upregulated in GC tissues and positively correlated with advanced tumor stage and tumor size, while miR-526b-3p was downregulated. Furthermore, gain- and loss-of-function experiments revealed that LINC00689 promoted the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of GC cells, while miR-526b-3p had the opposite effects. The underlying mechanisms indicated that LINC00689 functioned as a competing endogenous RNA (ceRNA) by sponging miR-526b-3p in GC cells. Further investigations confirmed that ADAM9 was a direct target of miR-526b-3p and positively modulated the progression of GC. Conclusion Our study suggests that LINC00689 functions as a novel oncogenic lncRNA in the development of GC by promoting ADAM9 expression through suppression of miR-526b-3p.
Collapse
Affiliation(s)
- Gang Yin
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - PeiRong Tian
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - Amin BuHe
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - Wei Yan
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - TianXiong Li
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - ZhiPeng Sun
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| |
Collapse
|
40
|
Baicalin Represses C/EBP β via Its Antioxidative Effect in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8951907. [PMID: 32566108 PMCID: PMC7261332 DOI: 10.1155/2020/8951907] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/19/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the gradual loss of dopaminergic (DA) neurons in the substantia nigra (SN) and the formation of intracellular Lewy bodies (LB) in the brain, which aggregates α-synuclein (α-Syn) as the main component. The interest of flavonoids as potential neuroprotective agents is increasing due to its high efficiency and low side effects. Baicalin is one of the flavonoid compounds, which is a predominant flavonoid isolated from Scutellaria baicalensis Georgi. However, the key molecular mechanism by which Baicalin can prevent the PD pathogenesis remains unclear. In this study, we used bioinformatic assessment including Gene Ontology (GO) to elucidate the correlation between oxidative stress and PD pathogenesis. RNA-Seq methods were used to examine the global expression profiles of noncoding RNAs and found that C/EBPβ expression was upregulated in PD patients compared with healthy controls. Interestingly, Baicalin could protect DA neurons against reactive oxygen species (ROS) and decreased C/EBPβ and α-synuclein expression in pLVX-Tet3G-α-synuclein SH-SY5Y cells. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mouse model, the results revealed that treatment with Baicalin improved the PD model's behavioral performance and reduced dopaminergic neuron loss in the substantia nigra, associated with the inactivation of proinflammatory cytokines and oxidative stress. Hence, our study supported that Baicalin repressed C/EBPβ via redox homeostasis, which may be an effective potential treatment for PD.
Collapse
|
41
|
LncRNA-ATB in cancers: what do we know so far? Mol Biol Rep 2020; 47:4077-4086. [PMID: 32248383 DOI: 10.1007/s11033-020-05415-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023]
Abstract
Cancer-related deaths did not apparently decrease in the past decades despite aggressive treatments. It's reported that cancer will become the leading cause of death worldwide in the twenty-first century. Increasing evidence has revealed that lncRNAs will emerge as promising cancer biomarkers or therapeutic targets in cancer treatment. LncRNA-ATB, a long noncoding RNA activated by TGF-β, was found to be abnormally expressed in certain cancers and participate in the development and progression of tumors. In addition, aberrant lncRNA-ATB expression was also associated with clinical characteristics of tumors. The purpose of this review is to summarize functions and underlying mechanisms of lncRNA-ATB in tumors, and discuss whether lncRNA-ATB can be a biomarker and therapeutic target in cancers.
Collapse
|
42
|
Fattahi S, Kosari-Monfared M, Golpour M, Emami Z, Ghasemiyan M, Nouri M, Akhavan-Niaki H. LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: A novel approach to personalized medicine. J Cell Physiol 2020; 235:3189-3206. [PMID: 31595495 DOI: 10.1002/jcp.29260] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Gastric cancer is the third leading cause of cancer death with 5-year survival rate of about 30-35%. Since early detection is associated with decreased mortality, identification of novel biomarkers for early diagnosis and proper management of patients with the best response to therapy is urgently needed. Long noncoding RNAs (lncRNAs) due to their high specificity, easy accessibility in a noninvasive manner, as well as their aberrant expression under different pathological and physiological conditions, have received a great attention as potential diagnostic, prognostic, or predictive biomarkers. They may also serve as targets for treating gastric cancer. In this review, we highlighted the role of lncRNAs as tumor suppressors or oncogenes that make them potential biomarkers for the diagnosis and prognosis of gastric cancer. Relatively, lncRNAs such as H19, HOTAIR, UCA1, PVT1, tissue differentiation-inducing nonprotein coding, and LINC00152 could be potential diagnostic and prognostic markers in patients with gastric cancer. Also, the impact of lncRNAs such as ecCEBPA, MLK7-AS1, TUG1, HOXA11-AS, GAPLINC, LEIGC, multidrug resistance-related and upregulated lncRNA, PVT1 on gastric cancer epigenetic and drug resistance as well as their potential as therapeutic targets for personalized medicine was discussed.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Department of Genetics, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Genetics, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Biochemistry, North Research Center, Pasteur Institute, Amol, Iran
| | | | - Monireh Golpour
- Department of Immunology, Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakieh Emami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ghasemiyan
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Nouri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
43
|
Du X, Liu L, Li Q, Zhang L, Pan Z, Li Q. NORFA, long intergenic noncoding RNA, maintains sow fertility by inhibiting granulosa cell death. Commun Biol 2020; 3:131. [PMID: 32188888 PMCID: PMC7080823 DOI: 10.1038/s42003-020-0864-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) have been proved to be involved in regulating female reproduction. However, to what extent lincRNAs are involved in ovarian functions and fertility is incompletely understood. Here we show that a lincRNA, NORFA is involved in granulosa cell apoptosis, follicular atresia and sow fertility. We found that NORFA was down-regulated during follicular atresia, and inhibited granulosa cell apoptosis. NORFA directly interacted with miR-126 and thereby preventing it from binding to TGFBR2 3'-UTR. miR-126 enhanced granulosa cell apoptosis by attenuating NORFA-induced TGF-β signaling pathway. Importantly, a breed-specific 19-bp duplication was detected in NORFA promoter, which proved association with sow fertility through enhancing transcription activity of NORFA by recruiting transcription factor NFIX. In summary, our findings identified a candidate lincRNA for sow prolificacy, and provided insights into the mechanism of follicular atresia and female fertility.
Collapse
Affiliation(s)
- Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lu Liu
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qiqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
44
|
lncRNA PCAT18 inhibits proliferation, migration and invasion of gastric cancer cells through miR-135b suppression to promote CLDN11 expression. Life Sci 2020; 249:117478. [PMID: 32119960 DOI: 10.1016/j.lfs.2020.117478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Gastric cancer is a severe disease with a high occurrence rate worldwide. And lncRNAs are demonstrated to be responsible for cancer growth and metastasis. So, it is of great importance to explore the lncRNAs involved mechanism of gastric cancer occurrence and development deeply. METHODS Transfection was conducted to build over-expression and down-expression models. Moreover, RT-qPCR and western blot were used to detect the transcriptional and translational levels. The biological functions such as proliferation, migration and invasion of AGS cells were evaluated by MTT analysis, colony formation assay, scarification detection and transwell assay, respectively. The potential binding of miR-135b and its downstream and upstream molecules was validated by dual luciferase reporter gene assay or RIP. Also, the in-vivo mice model was further used to demonstrate the role of lncRNA PCAT18 in gastric cancer. RESULTS PCAT18 down-expression promoted proliferation, migration and invasion of gastric cancer cells. Furtherly, over-expression of miR-135b also promoted these biological characteristics of AGS cells. Importantly, we found that PCAT18 could bind miR-135b which also was bound with CLDN11. We found that miR-135b is negatively correlated with CLDN11; PCAT18 and CLDN11 are positively correlated. Moreover, miR-135b mimics could down-regulate protein level of CLDN11, whereas CLDN11 could reverse this effect. In in-vivo experiment, PCAT18 over-expression restrained tumor growth and metastasis. CONCLUSIONS Over-expressed lncRNA PCAT18 inhibits proliferation, migration and invasion of gastric cancer cells through regulation of miR-135b/CLDN11.
Collapse
|
45
|
Yang X, Tao H, Wang C, Chen W, Hua F, Qian H. lncRNA-ATB promotes stemness maintenance in colorectal cancer by regulating transcriptional activity of the β-catenin pathway. Exp Ther Med 2020; 19:3097-3103. [PMID: 32256798 PMCID: PMC7086234 DOI: 10.3892/etm.2020.8558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/17/2020] [Indexed: 01/15/2023] Open
Abstract
Long non-coding RNA activated by transforming growth factor-β (ATB) was recently reported to be involved in a wide range of physiological and pathological processes. However, the role of ATB in colorectal cancer (CRC) stemness remains unclear. In the present study, the functional role of ATB in maintaining stemness of CRC was determined using colony formation and sphere formation assays, and xenograft models. Reverse transcription-quantitative PCR, western blotting and immunohistochemistry were performed to investigate the mechanisms underlying the effects of ATB. Knockdown of ATB impaired colony formation and sphere formation in CRC cells, accompanied by an inhibition of colon tumor growth. Further results suggested that ATB regulated the transcriptional activity of the β-catenin pathway by inhibiting β-catenin expression. In addition, the results confirmed the role of β-catenin in ATB-mediated regulation of stemness in CRC. Collectively, the results indicated that ATB is a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Xiaojin Yang
- Department of General Surgery, First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China.,Department of General Surgery, First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| | - Hanchuan Tao
- Department of General Surgery, First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China.,Department of General Surgery, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| | - Cheng Wang
- Department of Neurology, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| | - Weijun Chen
- Department of General Surgery, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| | - Fu Hua
- Department of General Surgery, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| | - Haixin Qian
- Department of General Surgery, First Affiliated Hospital of Soochow University, Soochow, Jiangsu 215006, P.R. China
| |
Collapse
|
46
|
Li J, Xia R, Liu T, Cai X, Geng G. LncRNA-ATB Promotes Lung Squamous Carcinoma Cell Proliferation, Migration, and Invasion by Targeting microRNA-590-5p/NF90 Axis. DNA Cell Biol 2020; 39:459-473. [PMID: 31934791 DOI: 10.1089/dna.2019.5193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer with highest morbidity and mortality seriously threatens human health worldwide. Long noncoding RNAs (lncRNAs) exert important biological functions by acting as microRNA, which is implicated in tumorigenesis and cancer development. Previous work has reported that lncRNA-ATB expression was significantly upregulated in lung adenocarcinoma tissues and promoted tumor progression; however, the mechanisms of lncRNA-ATB in lung squamous carcinoma (LSC) are still fairly elusive. In our study, lncRNA-ATB expression also markedly increases in LSC tissues and cell lines in comparison to the adjacent normal tissues and normal lung epithelial cells, respectively. Functional experiments indicate that lncRNA-ATB overexpression improves the proliferative, migratory, and invasive capabilities of normal lung epithelial cells compared with control group. Furthermore, the migratory and invasive abilities are strikingly inhibited in lncRNA-ATB silenced LSC cells. Mechanistically, lncRNA-ATB directly binds to microRNA-590-5p and downregulates microRNA-590-5p level, leading to the upregulation of NF-90 expression. In addition, lncRNA-ATB overexpression promotes the epithelial-mesenchymal transition process, where lncRNA-ATB overexpression facilitates the expression of mesenchymal phenotype related molecules N-cadherin and vimentin, while restrains the expression of epithelial phenotype related proteins E-cadherin and CK-19, compared to the control. Conversely, microRNA-590-5p mimics can reverse the results caused by lncRNA-ATB overexpression. Taken together, our initial data suggest that lncRNA-ATB overexpression may promote the progression of LSC by modulating the microRNA-590-5p/NF-90 axis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China.,Teaching Hospital of Fujian Medical University, Xiamen, P.R. China
| | - Rongmu Xia
- School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Tao Liu
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, P.R. China
| | - Xuemin Cai
- School of Medicine, Xiamen University, Xiamen, P.R. China
| | - Guojun Geng
- Teaching Hospital of Fujian Medical University, Xiamen, P.R. China.,Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| |
Collapse
|
47
|
Huang J, Chen YX, Zhang B. IGF2-AS affects the prognosis and metastasis of gastric adenocarcinoma via acting as a ceRNA of miR-503 to regulate SHOX2. Gastric Cancer 2020; 23:23-38. [PMID: 31183590 DOI: 10.1007/s10120-019-00976-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Disorder of long non-coding RNAs (LncRNAs) is found in various types of cancers and demonstrated to be associated with tumor occurrence and development. Our study found that lncRNA insulin growth factor 2 antisense (IGF2-AS) is up-regulated in gastric adenocarcinoma (GAC) tissues and correlated with poor prognosis in patients with GAC. Cell counting kit-8 (CCK8), colony formation, wound healing and transwell assays revealed that knockdown of IGF2-AS in BGC823 and SGC7901 cells significantly suppressed cell proliferation, migration and invasion. While, overexpression of IGF2-AS in AGS and MGC803 cells exhibited the opposite effects. RNA-FISH and subcellular fractionation assay found that most IGF2-AS was distributed in the cytoplasm, suggesting that IGF2-AS functioned as a potential ceRNA. RNA binding protein immunoprecipitation (RIP) assays further confirmed this assumption. By informatics prediction and luciferase reporter assay, we found that IGF2-AS functioned as an efficient miR-503 sponge and the level of miR-503 showed an inverse correlation with IGF2-AS. Short stature homeobox 2 (SHOX2) is predicted and verified as a target of miR-503. Moreover, IGF2-AS expression exhibited a negative correlation with miR-503 and a positive correlation with IGF2-AS. Subsequent rescue assay revealed that down-regulation of miR-503 or restoration of SHOX2 canceled IGF2-AS depletion-induced depression in proliferation and motility of BGC823 and SGC7901 cells. Meanwhile, up-regulation of miR-503 or down-regulation of SHOX2 decreased IGF2-AS overexpression induced promotion in proliferation and motility of AGS and MGC803 cells. In vivo tumorigenicity assay showed that knockdown of IGF2-AS significantly reduced tumor volume. Taken together, our results demonstrated that IGF2-AS takes important regulatory parts in GAC development by functioning as a ceRNA to regulate SHOX2 via sponging miR-503.
Collapse
Affiliation(s)
- Ju Huang
- Queen Mary School of Nanchang University, Nanchang, 330031, Jiangxi, China
| | - You-Xiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bo Zhang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
48
|
Ghafouri-Fard S, Taheri M. Long non-coding RNA signature in gastric cancer. Exp Mol Pathol 2019; 113:104365. [PMID: 31899194 DOI: 10.1016/j.yexmp.2019.104365] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023]
Abstract
Gastric cancer as a common human malignancy has been associated with aberrant expressions of several coding and non-coding genes. Long non-coding RNAs (lncRNAs) as regulators of gene expressions at different genomic, transcriptomic and post-transcriptomic levels are among putative biomarkers and therapeutic targets in gastric cancer. In the present study, we have searched available literature and listed lncRNAs that are involved in the pathogenesis of gastric cancer. In addition, we discuss associations between expressions of these lncRNAs and tumoral features or risk factors for gastric cancer. Based on the established role of lncRNAs in regulation of genomic stability, cell cycle, apoptosis, angiogenesis and other aspects of cell physiology, the potential of these transcripts as therapeutic targets in gastric cancer should be evaluated in future studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Xun J, Wang C, Yao J, Gao B, Zhang L. Long Non-Coding RNA HOTAIR Modulates KLF12 to Regulate Gastric Cancer Progression via PI3K/ATK Signaling Pathway by Sponging miR-618. Onco Targets Ther 2019; 12:10323-10334. [PMID: 31819516 PMCID: PMC6885573 DOI: 10.2147/ott.s223957] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) has been reported to dysregulate in many tumors. However, the mechanism of HOTAIR was rarely reported in GC. Methods The levels of HOTAIR, microRNA-618 (miR-618) and Krueppel-like factor 12 (KLF12) in GC tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability and apoptotic rate were assessed via cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. The migrating and invading abilities were tested by Transwell assay. The protein levels of KLF12, p-PI3K, PI3K, p-ATK and ATK were measured by Western blot assay. These interactions between miR-618 and HOTAIR or KLF12 were predicted by DIANA tools, and then, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to validate these interactions. Besides, the xenograft tumor experiment was performed to further verify the roles of HOTAIR in GC. Results The levels of HOTAIR and KLF12 were significantly upregulated and the level of miR-618 was strikingly downregulated in GC tissues and cells. miR-618 was verified as a direct target of HOTAIR or KLF12. HOTAIR silencing blocked GC progression and PI3K/ATK signaling pathway by sponging miR-618 and also restrained xenograft tumor growth in vivo. miR-618 inhibited GC progression and PI3K/ATK signaling pathway by targeting KLF12. Mechanistically, HOTAIR modulated KLF12 expression by sponging miR-618 in GC cells. Conclusion These data unraveled that HOTAIR promoted GC progression through PI3K/ATK signaling pathway via miR-618/KLF12 axis.
Collapse
Affiliation(s)
- Jin Xun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Chunfeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Jianning Yao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Bing Gao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Lianfeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| |
Collapse
|
50
|
Yue G, Chen C, Bai L, Wang G, Huang Y, Wang Y, Cui H, Xiao Y. Knockdown of long noncoding RNA DLEU1 suppresses the progression of renal cell carcinoma by downregulating the Akt pathway. Mol Med Rep 2019; 20:4551-4557. [PMID: 31702026 PMCID: PMC6797951 DOI: 10.3892/mmr.2019.10705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence has indicated that long noncoding RNAs (lncRNAs) are involved in the tumorigenesis and progression of various types of cancer. The lncRNA deleted in lymphocytic leukemia 1 (DLEU1) has been reported to be dysregulated in cancer cells and thus associated with tumor development; however, the role of DLEU1 in renal cell carcinoma (RCC) remains unclear. In the present study, DLEU1 was knocked down using small interfering RNA in the RCC cell lines KETR3 and 786‑O to determine the role of DLEU1. Cell Counting Kit‑8, colony formation, Transwell and flow cytometry assays were performed to assess the effects of DLEU1 on cell proliferation, migration, invasion and apoptosis in KETR3 and 786‑O cells. The protein expression levels of factors associated with apoptosis and epithelial‑mesenchymal transition (EMT) were examined by western blot. The results demonstrated that silencing DLEU1 decreased the growth capacity, migration and invasion of KETR3 and 786‑O cells. Additionally, loss of DLEU1 was observed to stimulate the mitochondrial pathway of cell apoptosis via regulation of the expression of Bcl‑2/Bax, cleaved caspase‑3 and cleaved caspase‑9 in KETR3 and 786‑O cells. Furthermore, DLEU1 knockdown significantly inhibited the protein kinase B (Akt) pathway by downregulating the expression of phosphorylated‑Akt, cyclin D1 and P70S6 kinase. In addition, depletion of DLEU1 was observed to impair the process of EMT in RCC cells via the upregulation of E‑cadherin, and downregulation of N‑cadherin and vimentin. Collectively, these results indicated a pro‑oncogenic role of DLEU1 in the progression and development of RCC via modulation of the Akt pathway and EMT phenotype.
Collapse
MESH Headings
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Down-Regulation
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Proto-Oncogene Proteins c-akt/biosynthesis
- Proto-Oncogene Proteins c-akt/genetics
- RNA, Long Noncoding/biosynthesis
- RNA, Long Noncoding/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Genquan Yue
- Department of Urology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Caixia Chen
- Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Ligang Bai
- Department of Urology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Guoqiang Wang
- Department of Urology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Yong Huang
- Department of Urology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Yunbin Wang
- Department of Urology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Hongwei Cui
- Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Yunfeng Xiao
- The Center for New Drug Safety Evaluation and Research of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| |
Collapse
|