1
|
Wu N, Cai J, Jiang J, Lin Y, Wang X, Zhang W, Kang M, Zhang P. Biomarkers of lymph node metastasis in esophageal cancer. Front Immunol 2024; 15:1457612. [PMID: 39399490 PMCID: PMC11466839 DOI: 10.3389/fimmu.2024.1457612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Esophageal cancer (EC) is among the most aggressive malignancies, ranking as the seventh most prevalent malignant tumor worldwide. Lymph node metastasis (LNM) indicates localized spread of cancer and often correlates with a poorer prognosis, emphasizing the necessity for neoadjuvant systemic therapy before surgery. However, accurate identification of LNM in EC presents challenges due to the lack of satisfactory diagnostic techniques. Imaging techniques, including ultrasound and computerized tomography scans, have low sensitivity and accuracy in assessing LNM. Additionally, the existing serological detection lacks precise biomarkers. The intricate and not fully understood molecular processes involved in LNM of EC contribute to current detective limitations. Recent research has shown potential in using various molecules, circulating tumor cells (CTCs), and changes in the microbiota to identify LNM in individuals with EC. Through summarizing potential biomarkers associated with LNM in EC and organizing the underlying mechanisms involved, this review aims to provide insights that facilitate biomarker development, enhance our understanding of the underlying mechanisms, and ultimately address the diagnostic challenges of LNM in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| |
Collapse
|
2
|
Ye W, Wang J, Zheng J, Jiang M, Zhou Y, Wu Z. Association between Higher Expression of Vav1 in Hepatocellular Carcinoma and Unfavourable Clinicopathological Features and Prognosis. Protein Pept Lett 2024; 31:706-713. [PMID: 39301900 DOI: 10.2174/0109298665330781240830042601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE The aim was to investigate the potential relationship between Vav1 protein and prognosis in patients with hepatocellular carcinoma (HCC). METHODS Samples were collected from 96 patients with HCC. For each patient, cancerous tissue and adjacent non-cancerous tissue were obtained. The Vav1 expression levels in these tissues were determined using immunohistochemistry. Chi-square and Fisher's exact tests were used to analyse the associations between Vav1 expression and clinicopathological characteristics. Kaplan- Meier analysis was used to assess the relationship between Vav1 expression and 5-year overall survival (OS). RESULTS The expression level of Vav1 protein in primary tumour samples (64.46%; 59/96) was higher (33.33%; 32/96; P<0.001). Moreover, the high expression rate of Vav1 was correlated with tumour differentiation, TNM stage, and tumour recurrence (P<0.05). Univariate and multivariate Cox analysis further demonstrated that tumour differentiation, TNM stage, vascular invasion, tumour recurrence and Vav1 expression were independent prognostic factors for 5-year OS. Notably, follow-up analysis determined that patients with HCC with higher Vav1 expression levels have lower survival rates (P<0.05). CONCLUSION Vav1 may serve as a promising molecular prognostic biomarker for patients diagnosed with HCC.
Collapse
Affiliation(s)
- Weikang Ye
- Department of General Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| | - Jin Wang
- Department of General Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| | - Jie Zheng
- Department of General Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| | - Ming Jiang
- Department of General Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| | - Yinong Zhou
- Department of General Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| | - Zhixiang Wu
- Department of Emergency Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| |
Collapse
|
3
|
Shalom B, Salaymeh Y, Risling M, Katzav S. Unraveling the Oncogenic Potential of VAV1 in Human Cancer: Lessons from Mouse Models. Cells 2023; 12:cells12091276. [PMID: 37174676 PMCID: PMC10177506 DOI: 10.3390/cells12091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
VAV1 is a hematopoietic signal transducer that possesses a GDP/GTP nucleotide exchange factor (GEF) that is tightly regulated by tyrosine phosphorylation, along with adapter protein domains, such as SH2 and SH3. Research on VAV1 has advanced over the years since its discovery as an in vitro activated oncogene in an NIH3T3 screen for oncogenes. Although the oncogenic form of VAV1 first identified in the screen has not been detected in human clinical tumors, its wild-type and mutant forms have been implicated in mammalian malignancies of various tissue origins, as well as those of the hematopoietic system. This review article addresses the activity of human VAV1 as an overexpressed or mutated gene and also describes the differences in the distribution of VAV1 mutations in the hematopoietic system and in other tissues. The knowledge accumulated thus far from GEMMs expressing VAV1 is described, with the conclusion that GEMMs of both wild-type VAV1 and mutant VAV1 do not form tumors, yet these will be generated when additional molecular insults, such as loss of p53 or KRAS mutation, occur.
Collapse
Affiliation(s)
- Batel Shalom
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yaser Salaymeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Matan Risling
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
- Medical Corps, Israel Defense Forces, Tel-Hashomer 02149, Israel
| | - Shulamit Katzav
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
4
|
Vav1 accelerates Ras-driven lung cancer and modulates its tumor microenvironment. Cell Signal 2022; 97:110395. [PMID: 35752351 DOI: 10.1016/j.cellsig.2022.110395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022]
Abstract
The potential impact of Vav1 on human cancer was only recently acknowledged, as it is detected as a mutant or an overexpressed gene in various cancers, including lung cancer. Vav1, which is normally and exclusively expressed in the hematopoietic system functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. To investigate whether Vav1 plays a causative or facilitating role in-vivo in lung cancer development and to examine whether it co-operates with other oncogenes, such as mutant K-Ras, we generated novel mouse strains that express: Vav1 or K-RasG12D in type II pneumocytes, as well as a transgenic mouse line that expresses both Vav1 and K-RasG12D in these cells. Coexpression of Vav1 and K-RasG12D in the lungs dramatically increased malignant lung cancer lesions, and did so significantly faster than K-RasG12D alone, strongly suggesting that these two oncogenes synergize to enhance lung tumor development. Vav1 expression alone had no apparent effects on lung tumorigenesis. The increase in lung cancer in K-RasG12D/Vav1 mice was accompanied by an increase in B-cell, T-cells, and monocyte infiltration in the tumor microenvironment. Concomitantly, ERK phosphorylation was highly elevated in the lungs of K-RasG12 D/Vav1 mice. Also, several cytokines such as IL-4 and IL-13 which play a significant role in the immune system, were elevated in lungs of Vav1 and K-RasG12 D/Vav1 mice. Our findings emphasize the contribution of Vav1 to lung tumor development through its signaling properties.
Collapse
|
5
|
Vav1 Promotes B-Cell Lymphoma Development. Cells 2022; 11:cells11060949. [PMID: 35326399 PMCID: PMC8946024 DOI: 10.3390/cells11060949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Vav1 is normally and exclusively expressed in the hematopoietic system where it functions as a specific GDP/GTP nucleotide exchange factor (GEF), firmly regulated by tyrosine phosphorylation. Mutations and overexpression of Vav1 in hematopoietic malignancies, and in human cancers of various histologic origins, are well documented. To reveal whether overexpression of Vav1 in different tissues suffices for promoting the development of malignant lesions, we expressed Vav1 in transgenic mice by using the ubiquitous ROSA26 promoter (Rosa Vav1). We detected Vav1 expression in epithelial tissues of various organs including pancreas, liver, and lung. While carcinomas did not develop in these organs, surprisingly, we noticed the development of B-cell lymphomas. Rac1-GTP levels did not change in tissues from Rosa Vav1 mice expressing the transgenic Vav1, while ERK phosphorylation increased in the lymphomas, suggesting that signaling pathways are evoked. One of the growth factors analyzed by us as a suspect candidate to mediate paracrine stimulation in the lymphocytes was CSF-1, which was highly expressed in the epithelial compartment of Rosa Vav1 mice. The expression of its specific receptor, CSF-1R, was found to be highly expressed in the B-cell lymphomas. Taken together, our results suggest a potential cross-talk between epithelial cells expressing Vav1, that secrete CSF-1, and the lymphocytes that express CSF-1R, thus leading to the generation of B-cell lymphomas. Our findings provide a novel mechanism by which Vav1 contributes to tumor propagation.
Collapse
|
6
|
Mu D, Long S, Guo L, Liu W. High Expression of VAV Gene Family Predicts Poor Prognosis of Acute Myeloid Leukemia. Technol Cancer Res Treat 2021; 20:15330338211065877. [PMID: 34894858 PMCID: PMC8679409 DOI: 10.1177/15330338211065877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objectives: VAV family genes (VAV1, VAV2, and
VAV3) are associated with prognosis in various cancers;
however, they have not been evaluated in acute myeloid leukemia (AML). In this
study, the prognostic value of VAV expression in AML was evaluated by a
single-center study in combination with bioinformatics analyses.
Methods: The expression and prognostic value of VAVs in
patients with AML were investigated using various databases, including GEPIA,
CCLE, EMBL-EBI, UALCAN, cBioPortal, STRING, and DAVID. Blood samples from 35
patients with AML (non-M3 subtype) and 13 benigh individuals were collected at
our center. VAV expression levels were detected by real-time quantitative PCR
(RT-qPCR) and western blotting. Clinical data were derived from medical records.
Results: Based on data from multiple databases, the expression
levels of VAV1, VAV2, and VAV3 were significantly higher in AML than in control
tissues (P < 0.05). RT-qPCR and western blotting results
showed that VAV expression in mRNA and protein levels were
higher in patients with AML that in the control group (P <
0.05). Complete remission rates were lower and risks were higher in patients
with AML with high VAV1 expression than with low
VAV1 expression (P < 0.05). High levels
of VAV2, VAV3, and VAV1 were related to a poor overall survival, and this
relationship was significant for VAV1 (P < 0.05). High
expression levels of genes correlated with VAV1, such as
SIPA1, SH2D3C, and HMHA1
were also related to a poor prognosis in AML. Functional and pathways enrichment
analyses indicated that the contribution of the VAV family to AML may be
mediated by the NF-κB, cAMP, and other pathways. Conclusion: VAVs
were highly expressed in AML. In particular, VAV1 has prognostic value and is a
promising therapeutic target for AML.
Collapse
Affiliation(s)
- Dan Mu
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Sili Long
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Ling Guo
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Wenjun Liu
- 556508Department of Pediatrics Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,556508Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| |
Collapse
|
7
|
Wang CY, Yu GT, Gao C, Chen J, Li QL, Zhang L, Wu M, Sun ZJ, Li LY. Genome-Wide Enhancer Analysis Reveals the Role of AP-1 Transcription Factor in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:701531. [PMID: 34409068 PMCID: PMC8365880 DOI: 10.3389/fmolb.2021.701531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world, but its epigenomic features have not been determined. Here, we studied the chromatin landscape of active enhancers of HNSCC head tumor tissues by performing H3K27ac and H3K4me1 ChIP-Seq with a Tgfbr1/Pten double conditional knockout HNSCC mouse model. We identified 1,248 gain variant enhancer loci (VELs) and 2,188 lost VELs, as well as 153 gain variant super enhancer loci (VSELs) and 234 lost VSELs. Potentially involved transcription factors were predicted with motif analysis, and we identified AP-1 as one of the critical oncogenic transcription factors in HNSCC and many other types of cancer. Combining transcriptomic and epigenomic data, our analysis also showed that AP-1 and histone modifications coordinately regulate target gene expression in HNSCC. In conclusion, our study provides important epigenomic information for enhancer studies in HNSCC and reveals new mechanism for AP-1 regulating HNSCC.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chuan Gao
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| | - Ji Chen
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| | - Qing-Lan Li
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Zhang J, Wu J, Chen Y, Zhang W. Dlx5 promotes cancer progression through regulation of CCND1 in oral squamous cell carcinoma (OSCC). Biochem Cell Biol 2021; 99:424-434. [PMID: 34283652 DOI: 10.1139/bcb-2020-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genetic studies have revealed a critical role of the distal-less homeobox gene 5 (Dlx5) in the pathogenesis of ovarian cancer, lung cancer, and T-cell lymphoma; however, the role and underlying mechanisms of Dlx5 in oral squamous cell carcinoma (OSCC) are largely unknown. In this study, we demonstrated that Dlx5 is up-regulated in OSCC tissues and cell lines, compared with their control groups. The results from our immunohistochemistry (IHC) analyses show that high expression levels of Dlx5 correlated with advanced TNM stages (P = 0.0001), lymph node metastasis (P = 0.0049), poor cellular differentiation (P = 0.0491), location of the tumors (P = 0.0132), and poor prognosis for the patient. We also demonstrated that knockdown of Dlx5 inhibited the viability, proliferation, and colony formation of OSCC cell lines CAL-27 and WSU-HN6 cells, probably by blocking cell cycle in the G1 phase. Furthermore, we revealed that Dlx5 exerts its biological functions via direct regulation of CCND1 in CAL-27 and WSU-HN6 cells. Ultimately, we have demonstrated that silencing of Dlx5 inhibits the growth of xenograft tumors in vivo, and that Dlx5 affects the progression of OSCC both in vitro and in vivo via directly regulating CCND1, providing a potential diagnostic biomarker and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Jianfei Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Jinyang Wu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Yang Chen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Wenbin Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
9
|
Vav1 Sustains the In Vitro Differentiation of Normal and Tumor Precursors to Insulin Producing Cells Induced by all-Trans Retinoic Acid (ATRA). Stem Cell Rev Rep 2020; 17:673-684. [PMID: 33165749 PMCID: PMC8036226 DOI: 10.1007/s12015-020-10074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
All-trans retinoic acid (ATRA) promotes the development and the function of insulin producing cells and induces partial differentiation of pancreatic tumor cells. A number of evidences clearly indicate that the ATRA mediated signaling may have a substantial role in therapeutic approaches based on restoration of functional β-cells. Among the proteins up-regulated by ATRA, Vav1 is involved in maturation and function of haematopoietic cells and is essential for retinoids induced differentiation of tumor promyelocytes. The presence of Vav1 in solid tissues, including pancreas, is considered ectopic and no role in the differentiation of human epithelial cells has so far been described. We demonstrated here that Vav1 sustains the maturation to β-cells of the normal precursors human Biliary Tree Stem/progenitor Cells (hBTSCs) induced by a differentiation medium containing ATRA and that, in the mature normal pancreas, insulin-producing cells express variable levels of Vav1. Using pancreatic ductal adenocarcinoma (PDAC)-derived cells, we also revealed that the ATRA induced up-modulation of Vav1 is essential for the retinoid-induced trans-differentiation of neoplastic cells into insulin producing cells. The results of this study identify Vav1 as crucial molecule in ATRA induced maturation of insulin producing cells and suggest this protein as a marker for new strategies ended to restore functional β-cells. Graphical abstract ![]()
Collapse
|
10
|
Salaymeh Y, Farago M, Sebban S, Shalom B, Pikarsky E, Katzav S. Vav1 and mutant K-Ras synergize in the early development of pancreatic ductal adenocarcinoma in mice. Life Sci Alliance 2020; 3:e202000661. [PMID: 32277014 PMCID: PMC7156281 DOI: 10.26508/lsa.202000661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
To explore the contribution of Vav1, a hematopoietic signal transducer, to pancreatic ductal adenocarcinoma (PDAC) development, we generated transgenic mouse lines expressing, Vav1, K-RasG12D, or both K-RasG12D and Vav1 in pancreatic acinar cells. Co-expression of Vav1 and K-RasG12D synergistically enhanced acinar-to-ductal metaplasia (ADM) formation, far exceeding the number of lesions developed in K-RasG12D mice. Mice expressing only Vav1 did not develop ADM. Moreover, the incidence of PDAC in K-RasG12D/Vav1 was significantly higher than in K-RasG12D mice. Discontinuing Vav1 expression in K-RasG12D/Vav1 mice elicited a marked regression of malignant lesions in the pancreas, demonstrating Vav1 is required for generation and maintenance of ADM. Rac1-GTP levels in the K-RasG12D/Vav1 mice pancreas clearly demonstrated an increase in Rac1 activity. Treatment of K-RasG12D and K-RasG12D/Vav1 mice with azathioprine, an immune-suppressor drug which inhibits Vav1's activity as a GDP/GTP exchange factor, dramatically reduced the number of malignant lesions. These results suggest that Vav1 plays a role in the development of PDAC when co-expressed with K-RasG12D via its activity as a GEF for Rac1GTPase.
Collapse
Affiliation(s)
- Yaser Salaymeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Marganit Farago
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Shulamit Sebban
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Batel Shalom
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research and Department of Pathology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Shulamit Katzav
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
11
|
Vav1 mutations: What makes them oncogenic? Cell Signal 2020; 65:109438. [DOI: 10.1016/j.cellsig.2019.109438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022]
|
12
|
Abramov IS, Emelyanova MA, Ryabaya OO, Krasnov GS, Zasedatelev AS, Nasedkina TV. Somatic Mutations Associated with Metastasis in Acral Melanoma. Mol Biol 2019; 53:580-585. [DOI: 10.1134/s0026893319040022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 08/19/2024]
|
13
|
The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LEF1. Biochem Biophys Res Commun 2019; 516:719-725. [PMID: 31253399 DOI: 10.1016/j.bbrc.2019.06.128] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/22/2019] [Indexed: 11/24/2022]
Abstract
Osteosarcoma(OS) is the most common and aggressive malignant bone sarcoma,which occurs in rapidly growing bones in children and adolescents. However, the underlying molecular mechanisms of OS development have not been fully illustrated. N6-Methyladenosine (m6A) is the most prevalent internal chemical modification of mRNAs, which is involved in many pathological processes in cancer development. However, its role and regulatory mechanism in OS remain unknown. In this study, we aimed to investigate the roles of m6A and its methyltransferase METTL3 in OS development. The results showed that m6A level for RNA methylation and the expression level of METTL3 were up-regulated in human OS tissues and OS cell lines. Functionally, lentivirus-mediated METTL3 silence in HOS and SAOS-2 cells inhibited the cell proliferation, migration and invasion ability. Further mechanism analysis suggested that METTL3 silence decreased the m6A methylation and total mRNA level of lymphoid enhancer-binding factor 1 (LEF1), followed by inhibited the activity of Wnt/β-catenin signaling pathway. Moreover, LEF1 over-expression abrogates the repressive effects of METTL3 silence on the proliferation, migration and invasion abilities of OS cells. Together, these results revealed that the m6A methyltransferase METTL3 promotes osteosarcoma cell progression by regulating the m6A level of LEF1 and activating Wnt/β-catenin signaling pathway.
Collapse
|
14
|
Li D, Jin F, Ni T, Tao L, Wang H, Shi Q, Qian Y, Liu Y, Diao Y. Mechanism of Jinlong Capsule (JLC) in Human Esophageal Squamous Cell Carcinoma (ESCC) via the MAPK Signal Pathway. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2019.74.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Vav1 mutations identified in human cancers give rise to different oncogenic phenotypes. Oncogenesis 2018; 7:80. [PMID: 30297765 PMCID: PMC6175932 DOI: 10.1038/s41389-018-0091-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 09/09/2018] [Indexed: 01/26/2023] Open
Abstract
Vav1 is physiologically active as a GDP/GTP nucleotide exchange factor (GEF) in the hematopoietic system. Overexpression of Vav1 in multiple tumor types is known to enhance oncogenicity, yet whether or not Vav1 is a bona fide oncogene is still a matter of debate. Although mutations in Vav1 were recently identified in human cancers of various origins, the functional activities of these mutants are not known. We tested the transforming potential of three mutations identified in human lung adenocarcinoma: E59K, D517E, and L801P. Results from several assays indicative of transforming activities such as rate of proliferation, growth in agar, and generation of tumors in NOD/SCID mice clearly indicated that E59K and D517E are highly transforming but L801P at the SH3 domain is not. The acquired oncogenic activity of these mutants can be attributed to their enhanced activity as GEFs for Rho/Rac GTPases. Deciphering of the mechanisms leading to overactivity of the tested mutants revealed that the E59K mutation facilitates cleavage of a truncated protein that is uncontrollably active as a GEF, while D517E generates a highly stable overexpressed protein that is also more active as a GEF than wild-type Vav1. These findings support the classification of Vav1 as a bona fide oncogene in human cancer.
Collapse
|
16
|
Grassilli S, Brugnoli F, Lattanzio R, Marchisio M, Perracchio L, Piantelli M, Bavelloni A, Capitani S, Bertagnolo V. Vav1 downmodulates Akt in different breast cancer subtypes: a new promising chance to improve breast cancer outcome. Mol Oncol 2018; 12:1012-1025. [PMID: 29658179 PMCID: PMC6026867 DOI: 10.1002/1878-0261.12203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 11/07/2022] Open
Abstract
Targeting different members of the Akt pathways is a promising therapeutic chance in solid tumors including breast cancer. The variable expression levels of Akt isoforms with opposite effects on tumor growth and metastasis, however, make it difficult to select the inhibitors to be used for specific breast tumor subtypes. Using in vitro and in vivo models, we demonstrated here that Vav1, ectopically expressed in invasive breast tumors derived cells, downmodulates Akt acting at expression and/or activation levels depending on tumor subtype. The decreased p‐Akt1 (Ser473) levels are a common effect of Vav1 upmodulation, suggesting that, in breast tumor‐derived cells and independently of their phenotype, Vav1 interferes with signaling pathways ended to specifically recruit Akt1. Only in ER‐negative cell lines, the silencing of Vav1 induced the expression but not the activation of Akt2. A retrospective analysis of early invasive breast tumors allowed to establish the prognostic significance of the p‐Akt/Vav1 relationship. In particular, low Vav1 levels negatively influence the follow‐up of patients with low p‐Akt in their primary tumors and subjected to adjuvant chemotherapy. As the use of specific or pan Akt inhibitors may not be sufficient or may even be detrimental, increasing the levels of Vav1 could be a new approach to improve breast cancer outcomes. This might be particularly relevant for tumors with a triple‐negative phenotype, for which target‐based therapies are not currently available.
Collapse
Affiliation(s)
- Silvia Grassilli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Federica Brugnoli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Rossano Lattanzio
- Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio', Chieti, Italy.,Center on Aging Sciences and Translational Medicine (CeSI-MeT), University 'G. d'Annunzio', Chieti, Italy
| | - Marco Marchisio
- Center on Aging Sciences and Translational Medicine (CeSI-MeT), University 'G. d'Annunzio', Chieti, Italy.,Department of Medicine and Aging Sciences, University 'G. d'Annunzio', Chieti, Italy
| | | | | | - Alberto Bavelloni
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Silvano Capitani
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,LTTA Centre, University of Ferrara, Italy
| | - Valeria Bertagnolo
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| |
Collapse
|