1
|
Qiu H, Yin Y, Qin Z, Li D, Wang P. A patent review of IDO1 inhibitors for cancer (2023 - present): an update. Expert Opin Ther Pat 2025:1-15. [PMID: 40414695 DOI: 10.1080/13543776.2025.2510641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
INTRODUCTION Indoleamine 2,3-dioxygenase 1 (IDO1) is a promising target in cancer immunotherapy, yet its application faces significant challenges due to complex mechanisms of action. Recent advancements in IDO1 inhibitors aim to tackle these issues, potentially paving the way for successful therapeutic development. AREAS COVERED This review highlights patent publications (2023-2024) related to IDO1 inhibitors with potential anti-cancer applications, sourced from Espacenet and Google Scholar. EXPERT OPINION IDO1 exhibits complex mechanisms of action and variable expression across different cancer types, presenting both challenges and opportunities. Its intricate mechanisms in tumor development and immune evasion pose significant challenges for translating IDO1 inhibitors into clinical drugs. However, recent advancements in AI-guided drug design, combination therapies, and improved drug delivery methods offer promising insights for enhancing IDO1 inhibitors, although further data is warranted. Despite these challenges, the increasing availability of IDO1 crystal structures and a deeper understanding of its biological roles support ongoing trials that combine IDO1 inhibitors with other therapies. These developments hold potential for improving therapeutic outcomes in cancer treatment. Moreover, the growing interest in applying IDO1 inhibitors to other diseases could stimulate further research and development of new IDO1 inhibitors, potentially benefiting their application in cancer therapy as well.
Collapse
Affiliation(s)
- Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Yiheng Yin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Ziyu Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Dongdong Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Wujieti B, Feng X, Liu E, Li D, Hao M, Zhou L, Cui W. A theoretical study on the activity and selectivity of IDO/TDO inhibitors. Phys Chem Chem Phys 2024; 26:16747-16764. [PMID: 38818624 DOI: 10.1039/d3cp06036e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO) is a tryptophan (Trp) metabolic enzyme along the kynurenine (NFK) pathway. Under pathological conditions, IDO overexpressed by tumor cells causes depletion of tryptophan and the accumulation of metabolic products, which inhibit the local immune response and form immune escape. Therefore, the suppression of IDO activity is one of the strategies for tumor immunotherapy, and drug design for this target has been the focus of research for more than two decades. Apart from IDO, tryptophan dioxygenase (TDO) of the same family can also catalyze the same biochemical reaction in the human body, but it has different tissue distribution and substrate selectivity from IDO. Based on the principle of drug design with high potency and low cross-reactivity to specific targets, in this subject, the activity and selectivity of IDO and TDO toward small molecular inhibitors were studied from the perspective of thermodynamics and kinetics. The aim was to elucidate the structural requirements for achieving favorable biological activity and selectivity of IDO and TDO inhibitors. Specifically, the interactions of inhibitors from eight families with IDO and TDO were initially investigated through molecular docking and molecular dynamics simulations, and the thermodynamic data for binding of inhibitors were predicted by the molecular mechanics/generalized Born surface area (MM/GBSA) method. Secondly, we explored the free energy landscape of JKloops, the kinetic control element of IDO/TDO, using temperature replica exchange molecular dynamics (T-REMD) simulations and elucidated the connection between the rules of IDO/TDO conformational changes and the inhibitor selectivity mechanism. Furthermore, the binding and dissociation processes of the C1 inhibitor (NLG919) were simulated by the adaptive steering molecular dynamics (ASMD) method, which not only addressed the possible stable, metastable, and transition states for C1 inhibitor-IDO/TDO interactions, but also accurately predicted kinetic data for C1 inhibitor binding and dissociation. In conclusion, we have constructed a complete process from enzyme (IDO/TDO) conformational activation to inhibitor binding/dissociation and used the thermodynamic and kinetic data of each link as clues to verify the control mechanism of IDO/TDO on inhibitor selectivity. This is of great significance for us to understand the design principles of tumor immunotherapy drugs and to avoid drug resistance of immunotherapy drugs.
Collapse
Affiliation(s)
- Baerlike Wujieti
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Xinping Feng
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Erxia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Deqing Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Mingtian Hao
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Luqi Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| |
Collapse
|
3
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
4
|
Hanif N, Sari S. Discovery of novel IDO1/TDO2 dual inhibitors: a consensus Virtual screening approach with molecular dynamics simulations, and binding free energy analysis. J Biomol Struct Dyn 2024:1-17. [PMID: 38498355 DOI: 10.1080/07391102.2024.2329302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The pursuit of effective cancer immunotherapy drugs remains challenging, with overexpression of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2) allowing cancer cells to evade immune attacks. While several IDO1 inhibitors have undergone clinical testing, only three dual IDO1/TDO2 inhibitors have reached human trials. Hence, this study focuses on identifying novel IDO1/TDO2 dual inhibitors through consensus structure-based virtual screening (SBVS). ZINC15 natural products library was refined based on molecular descriptors, and the selected compounds were docked to the holo form IDO1 and TDO2 using two different software programs and ranked according to their consensus docking scores. The top-scoring compounds underwent in silico evaluations for pharmacokinetics, toxicity, CYP3A4 affinity, molecular dynamics (MD) simulations, and MM-GBSA binding free energy calculations. Five compounds (ZINC00000079405/10, ZINC00004028612/11, ZINC00013380497/12, ZINC00014613023/13, and ZINC00103579819/14) were identified as potential IDO1/TDO2 dual inhibitors due to their high consensus docking scores, key residue interactions with the enzymes, favorable pharmacokinetics, and avoidance of CYP3A4 binding. MD simulations of the top three hits with IDO1 indicated conformational changes and compactness, while MM-GBSA analysis revealed strong binding free energy for compounds 10 (ΔG: -20.13 kcal/mol) and 11 (ΔG: -16.22 kcal/mol). These virtual hits signify a promising initial step in identifying candidates as supplementary therapeutics to immune checkpoint inhibitors in cancer treatment. Their potential to deliver potent dual inhibition of IDO1/TDO2, along with safety and favorable pharmacokinetics, makes them compelling. Validation through in vitro and in vivo assays should be conducted to confirm their activity, selectivity, and preclinical potential as holo IDO1/TDO2 dual inhibitors.
Collapse
Affiliation(s)
- Naufa Hanif
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, Yogyakarta, Indonesia
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Stone TW, Williams RO. Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends Pharmacol Sci 2023; 44:442-456. [PMID: 37248103 DOI: 10.1016/j.tips.2023.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Lymphocytes maturing in the thymus (T cells) are key factors in adaptive immunity and the regulation of inflammation. The kynurenine pathway of tryptophan metabolism includes several enzymes and compounds that can modulate T cell function, but manipulating these pharmacologically has not achieved the expected therapeutic activity for the treatment of autoimmune disorders and cancer. With increasing knowledge of other pathways interacting with kynurenines, the expansion of screening methods, and the application of virtual techniques to understanding enzyme structures and mechanisms, details of interactions between kynurenines and other pathways are being revealed. This review surveys some of these alternative approaches to influence T cell function indirectly via the kynurenine pathway and summarizes the most recent work on the development of compounds acting directly on the kynurenine pathway.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
6
|
Mammoli A, Bianconi E, Ruta L, Riccio A, Bigiotti C, Souma M, Carotti A, Rossini S, Suvieri C, Pallotta MT, Grohmann U, Camaioni E, Macchiarulo A. Critical Assessment of a Structure-Based Screening Campaign for IDO1 Inhibitors: Tips and Pitfalls. Int J Mol Sci 2022; 23:ijms23073981. [PMID: 35409342 PMCID: PMC8999677 DOI: 10.3390/ijms23073981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Over the last two decades, indoleamine 2,3-dioxygenase 1 (IDO1) has attracted wide interest as a key player in immune regulation, fostering the design and development of small molecule inhibitors to restore immune response in tumor immunity. In this framework, biochemical, structural, and pharmacological studies have unveiled peculiar structural plasticity of IDO1, with different conformations and functional states that are coupled to fine regulation of its catalytic activity and non-enzymic functions. The large plasticity of IDO1 may affect its ligand recognition process, generating bias in structure-based drug design campaigns. In this work, we report a screening campaign of a fragment library of compounds, grounding on the use of three distinct conformations of IDO1 that recapitulate its structural plasticity to some extent. Results are instrumental to discuss tips and pitfalls that, due to the large plasticity of the enzyme, may influence the identification of novel and differentiated chemical scaffolds of IDO1 ligands in structure-based screening campaigns.
Collapse
Affiliation(s)
- Andrea Mammoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Elisa Bianconi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Luana Ruta
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Alessandra Riccio
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Carlo Bigiotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Maria Souma
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Sofia Rossini
- Department of Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy; (S.R.); (C.S.); (M.T.P.); (U.G.)
| | - Chiara Suvieri
- Department of Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy; (S.R.); (C.S.); (M.T.P.); (U.G.)
| | - Maria Teresa Pallotta
- Department of Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy; (S.R.); (C.S.); (M.T.P.); (U.G.)
| | - Ursula Grohmann
- Department of Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy; (S.R.); (C.S.); (M.T.P.); (U.G.)
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n.1, 06123 Perugia, Italy; (A.M.); (E.B.); (L.R.); (A.R.); (C.B.); (M.S.); (A.C.); (E.C.)
- Correspondence: ; Tel.: +39-(075)-585-5131
| |
Collapse
|
7
|
Röhrig UF, Michielin O, Zoete V. Structure and Plasticity of Indoleamine 2,3-Dioxygenase 1 (IDO1). J Med Chem 2021; 64:17690-17705. [PMID: 34907770 DOI: 10.1021/acs.jmedchem.1c01665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the discovery of the implication of indoleamine 2,3-dioxygenase 1 (IDO1) in tumoral immune resistance in 2003, the search for inhibitors has been intensely pursued both in academia and in pharmaceutical companies, supported by the publication of the first crystal structure of IDO1 in 2006. More recently, it has become clear that IDO1 is an important player in various biological pathways and diseases ranging from neurodegenerative diseases to infection and autoimmunity. Its inhibition may lead to clinical benefit in different therapeutic settings. At present, over 50 experimental structures of IDO1 in complex with different ligands are available in the Protein Data Bank. Our analysis of this wealth of structural data sheds new light on several open issues regarding IDO1's structure and function.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Ludwig Cancer Research─Lausanne Branch, 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, 1066 Epalinges, Switzerland
| |
Collapse
|
8
|
Basran J, Booth ES, Campbell LP, Thackray SJ, Jesani MH, Clayden J, Moody PCE, Mowat CG, Kwon H, Raven EL. Binding of l-kynurenine to X. campestris tryptophan 2,3-dioxygenase. J Inorg Biochem 2021; 225:111604. [PMID: 34571402 DOI: 10.1016/j.jinorgbio.2021.111604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022]
Abstract
The kynurenine pathway is the major route of tryptophan metabolism. The first step of this pathway is catalysed by one of two heme-dependent dioxygenase enzymes - tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) - leading initially to the formation of N-formylkynurenine (NFK). In this paper, we present a crystal structure of a bacterial TDO from X. campestris in complex with l-kynurenine, the hydrolysed product of NFK. l-kynurenine is bound at the active site in a similar location to the substrate (l-Trp). Hydrogen bonding interactions with Arg117 and the heme 7-propionate anchor the l-kynurenine molecule into the pocket. A mechanism for the hydrolysis of NFK in the active site is presented.
Collapse
Affiliation(s)
- Jaswir Basran
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Elizabeth S Booth
- Department of Chemistry, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Laura P Campbell
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Sarah J Thackray
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Mehul H Jesani
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Peter C E Moody
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Christopher G Mowat
- EastChem School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Hanna Kwon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Emma L Raven
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
9
|
Ewida MA, Ewida HA, Ahmed MS, Allam HA, ElBagary RI, George RF, Georgey HH, El-Subbagh HI. Nanomolar potency of imidazo[2,1-b]thiazole analogs as indoleamine 2,3-dioxygenase inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100202. [PMID: 34313342 DOI: 10.1002/ardp.202100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
Novel series of imidazo[2,1-b]thiazole analogs were designed, synthesized, and biologically evaluated as indoleamine 2,3-dioxygenase (IDO1) inhibitors. Imidazo[2,1-b]thiazoles 6, 7, and 8 showed inhibitory profiles against IDO1 at IC50 values of 68.48, 82.39, and 48.48 nM, respectively, compared with IDO5L at IC50 67.40 nM. Benzo[d]imidazo[2,1-b]thiazoles 17, 20, and 22 showed promising IDO1 inhibition at IC50 values of 53.58, 53.16, and 57.95 nM, respectively. Compound 7 showed a growth-inhibitory profile at GI of 39.33% against the MCF7 breast cancer cell line, while 8 proved lethal to ACHN renal cancer cells. Cells treated with compounds 17 and 22 showed a typical apoptosis pattern of DNA fragments that reflected the G0/G1, S, and G2/M phases of the cell cycle, together with a pre-G1 phase corresponding to apoptotic cells, which indicates that cell growth arrest occurred at the S phase. Molecular modeling simulations validated the potential of benzo[d]imidazo[2,1-b]thiazole analogs to chelate iron(III) within the IDO1 binding pocket and, hence, to have a better binding affinity via hydrophobic-hydrophobic interactions.
Collapse
Affiliation(s)
- Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Mahmoud S Ahmed
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ramzia I ElBagary
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Kassab SE, Mowafy S. Structural Basis of Selective Human Indoleamine-2,3-dioxygenase 1 (hIDO1) Inhibition. ChemMedChem 2021; 16:3149-3164. [PMID: 34174026 DOI: 10.1002/cmdc.202100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/23/2021] [Indexed: 11/08/2022]
Abstract
hIDO1 is a heme-dioxygenase overexpressed in the tumor microenvironment and is implicated in the survival of cancer cells. Metabolism of tryptophan to N-formyl-kynurenine by hIDO1 leads to immune suppression to result in cancer cell immune escape. In this article, we discuss the discovery of selective hIDO1 inhibitors for therapeutic intervention that have been promoted to clinical trials and for which crystallographic structural information is available for the respective inhibitor-enzyme complex. The structural insights are based on the complex crystal structures and the relative biological data profiles. The structural basis of selective hIDO1 inhibition, as discussed herein, opens new avenues to the discovery of novel inhibitors with improved activity profiles, selectivity, and distinct structure frameworks.
Collapse
Affiliation(s)
- Shaymaa Emam Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt
| | - Samar Mowafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt.,Department of Chemistry, University of Washington, Seattle, Washington, 98195, United States of America
| |
Collapse
|
11
|
Röhrig UF, Majjigapu SR, Reynaud A, Pojer F, Dilek N, Reichenbach P, Ascencao K, Irving M, Coukos G, Vogel P, Michielin O, Zoete V. Azole-Based Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. J Med Chem 2021; 64:2205-2227. [PMID: 33557523 DOI: 10.1021/acs.jmedchem.0c01968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The heme enzyme indoleamine 2,3-dioxygenase 1 (IDO1) plays an essential role in immunity, neuronal function, and aging through catalysis of the rate-limiting step in the kynurenine pathway of tryptophan metabolism. Many IDO1 inhibitors with different chemotypes have been developed, mainly targeted for use in anti-cancer immunotherapy. Lead optimization of direct heme iron-binding inhibitors has proven difficult due to the remarkable selectivity and sensitivity of the heme-ligand interactions. Here, we present experimental data for a set of closely related small azole compounds with more than 4 orders of magnitude differences in their inhibitory activities, ranging from millimolar to nanomolar levels. We investigate and rationalize their activities based on structural data, molecular dynamics simulations, and density functional theory calculations. Our results not only expand the presently known four confirmed chemotypes of sub-micromolar heme binding IDO1 inhibitors by two additional scaffolds but also provide a model to predict the activities of novel scaffolds.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nahzli Dilek
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - Kelly Ascencao
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
12
|
Arisawa M, Hayami K, Kuboki Y, Ohta K, Lin B, Fumimoto M, Nunomura K, Haruta JI, Fujioka H, Asai A, Murai K. Design, Synthesis, Physical Properties and Indoleamine 2, 3-Dioxygenase 1 Inhibitory Activity of Substituted Indole Derivatives with N-H, N-Methoxymethyl, or N-Mehylthiomethyl Group toward Fragment-Based Drug Discovery. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Feng X, Liao D, Liu D, Ping A, Li Z, Bian J. Development of Indoleamine 2,3-Dioxygenase 1 Inhibitors for Cancer Therapy and Beyond: A Recent Perspective. J Med Chem 2020; 63:15115-15139. [PMID: 33215494 DOI: 10.1021/acs.jmedchem.0c00925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) has received increasing attention due to its immunosuppressive function in connection with various diseases, including cancer. A recent increase in the understanding of IDO1 has significantly contributed to the discovery of numerous novel inhibitors, but the latest clinical outcomes raised questions and have indicated a future direction of IDO1 inhibition for therapeutic approaches. Herein, we present a comprehensive review of IDO1, discussing the latest advances in understanding the IDO1 structure and mechanism, an overview of recent IDO1 inhibitor discoveries and potential therapeutic applications to provide helpful information for medicinal chemists investigating IDO1 inhibitors.
Collapse
Affiliation(s)
- Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongdong Liao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongyu Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - An Ping
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| |
Collapse
|
14
|
Mirgaux M, Leherte L, Wouters J. Influence of the presence of the heme cofactor on the JK-loop structure in indoleamine 2,3-dioxygenase 1. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1211-1221. [DOI: 10.1107/s2059798320013510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 has sparked interest as an immunotherapeutic target in cancer research. Its structure includes a loop, named the JK-loop, that controls the orientation of the substrate or inhibitor within the active site. However, little has been reported about the crystal structure of this loop. In the present work, the conformation of the JK-loop is determined for the first time in the presence of the heme cofactor in the active site through X-ray diffraction experiments (2.44 Å resolution). Molecular-dynamics trajectories were also obtained to provide dynamic information about the loop according to the presence of cofactor. This new structural and dynamic information highlights the importance of the JK-loop in confining the labile heme cofactor to the active site.
Collapse
|
15
|
Mao LF, Wang YW, Zhao J, Xu GQ, Yao XJ, Li YM. Discovery of Icotinib-1,2,3-Triazole Derivatives as IDO1 Inhibitors. Front Pharmacol 2020; 11:579024. [PMID: 33101032 PMCID: PMC7555427 DOI: 10.3389/fphar.2020.579024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 11/15/2022] Open
Abstract
Tumor immunotherapy is considered to be a highlight in cancer treatment in recent years. Indoleamine 2,3-dioxygenase 1 (IDO1) is closely related to the over expression of many cancers, and is therefore a promising target for tumor immunotherapy. To search for novel IDO1-targeting therapeutic agents, 22 icotinib-linked 1,2,3-triazole derivatives were prepared and evaluated for their inhibitory activity against IDO1. The structures of the prepared compounds were confirmed with1H NMR, 13C NMR and HR MS. IDO1 inhibitory activity assay results indicated that 10 of those compounds showed remarkable inhibitory activity against IDO1, among which compound a17 was the most potent with IC50value of 0.37 μM. The binding model between the prepared compounds and IDO1 was studied with molecular modeling study. The current study suggested that icotinib-1,2,3-triazole derivatives could be used as potential inhibitors that preferentially bind to the ferrous form of IDO1 through the formation of coordinate bond with the haem iron.
Collapse
Affiliation(s)
- Long-fei Mao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- School of Chemistry and Chemical Engineering, Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Normal University, Xinxiang, China
| | - Yu-wei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an-Xianyang New Economic Zone, Xianyang, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Normal University, Xinxiang, China
| | - Gui-qing Xu
- School of Chemistry and Chemical Engineering, Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Henan Normal University, Xinxiang, China
| | - Xiao-jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Sun L. Advances in the discovery and development of selective heme-displacing IDO1 inhibitors. Expert Opin Drug Discov 2020; 15:1223-1232. [DOI: 10.1080/17460441.2020.1781811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Mammoli A, Coletti A, Ballarotto M, Riccio A, Carotti A, Grohmann U, Camaioni E, Macchiarulo A. New Insights from Crystallographic Data: Diversity of Structural Motifs and Molecular Recognition Properties between Groups of IDO1 Structures. ChemMedChem 2020; 15:891-899. [PMID: 32190988 DOI: 10.1002/cmdc.202000116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 01/04/2023]
Abstract
A large number of crystallographic structures of IDO1 in different ligand-bound and -unbound states have been disclosed over the last decade. Yet, only a few of them have been exploited for structure-based drug design (SBDD) campaigns. In this study, we analyzed the structural motifs and molecular-recognition properties of three groups of IDO1 structures: 1) structures containing the heme group and inhibitors in the catalytic site; 2) heme-free structures of IDO1; 3) substrate-bound structures of IDO1. The results suggest that unrelated conformations of the enzyme have been solved with different ligand-induced changes of secondary motifs that localize even in regions remote from the catalytic site. Moreover, the study identified an uncharted region of molecular-recognition space covered by IDO1 binding sites that could guide the selection of diverse structures for additional SBDD studies aimed at the identification of novel lead compounds with differentiated chemical scaffolds.
Collapse
Affiliation(s)
- Andrea Mammoli
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| | - Alice Coletti
- Department of Pharmacy, University of Chieti-Pescara, via dei Vestini n. 31, 66100, Chieti, Italy
| | - Marco Ballarotto
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| | - Alessandra Riccio
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, P.le Gambuli, 06132, Perugia, Italy
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo n.1, 06123, Perugia, Italy
| |
Collapse
|
18
|
Pham KN, Lewis-Ballester A, Yeh SR. Structural Basis of Inhibitor Selectivity in Human Indoleamine 2,3-Dioxygenase 1 and Tryptophan Dioxygenase. J Am Chem Soc 2019; 141:18771-18779. [PMID: 31682426 DOI: 10.1021/jacs.9b08871] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan dioxygenase (hTDO) are two of the only three heme-based dioxygenases in humans. They have recently been identified as key cancer immunotherapeutic drug targets. While structures of hIDO1 in complex with inhibitors have been documented, so far there are no structures of hTDO-inhibitor complexes available. Here we use PF-06840003 (IPD), a hIDO1-selective inhibitor in clinical trials, as a structural probe to elucidate inhibitor-selectivity in hIDO1 versus hTDO. Spectroscopic studies show that IPD exhibits 400-fold higher inhibition activity toward hIDO1 with respect to hTDO. Crystallographic structures reveal that the binding pocket of IPD in the active site in hIDO1 is much more flexible as compared to that in hTDO, which offers a molecular explanation for the superior inhibition activity of IPD in hIDO1 with respect to hTDO. In addition to the IPD bound in the active site, a second IPD molecule was identified in an inhibitory site on the proximal side of the heme in hIDO1 and in an exosite that is ∼40 Å away from the active site in hTDO. Taken together the data provide new insights into structure-based design of mono and dual inhibitors targeting hIDO1 and/or hTDO.
Collapse
Affiliation(s)
- Khoa N Pham
- Department of Physiology and Biophysics , Albert Einstein College of Medicine , The Bronx , New York 10461 , United States
| | - Ariel Lewis-Ballester
- Department of Physiology and Biophysics , Albert Einstein College of Medicine , The Bronx , New York 10461 , United States
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics , Albert Einstein College of Medicine , The Bronx , New York 10461 , United States
| |
Collapse
|
19
|
Tsujino H, Uno T, Yamashita T, Katsuda M, Takada K, Saiki T, Maeda S, Takagi A, Masuda S, Kawano Y, Meguro K, Akai S. Correlation of indoleamine-2,3-dioxigenase 1 inhibitory activity of 4,6-disubstituted indazole derivatives and their heme binding affinity. Bioorg Med Chem Lett 2019; 29:126607. [DOI: 10.1016/j.bmcl.2019.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 02/04/2023]
|
20
|
Röhrig UF, Reynaud A, Majjigapu SR, Vogel P, Pojer F, Zoete V. Inhibition Mechanisms of Indoleamine 2,3-Dioxygenase 1 (IDO1). J Med Chem 2019; 62:8784-8795. [PMID: 31525930 DOI: 10.1021/acs.jmedchem.9b00942] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the rate-limiting step in the kynurenine pathway of tryptophan metabolism, which is involved in immunity, neuronal function, and aging. Its implication in pathologies such as cancer and neurodegenerative diseases has stimulated the development of IDO1 inhibitors. However, negative phase III clinical trial results of the IDO1 inhibitor epacadostat in cancer immunotherapy call for a better understanding of the role and the mechanisms of IDO1 inhibition. In this work, we investigate the molecular inhibition mechanisms of four known IDO1 inhibitors and of two quinones in detail, using different experimental and computational approaches. We also determine for the first time the X-ray structure of the highly efficient 1,2,3-triazole inhibitor MMG-0358. Based on our results and a comprehensive literature overview, we propose a classification scheme for IDO1 inhibitors according to their inhibition mechanism, which will be useful for further developments in the field.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group , SIB Swiss Institute of Bioinformatics , 1015 Lausanne , Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Somi Reddy Majjigapu
- Molecular Modeling Group , SIB Swiss Institute of Bioinformatics , 1015 Lausanne , Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Vincent Zoete
- Molecular Modeling Group , SIB Swiss Institute of Bioinformatics , 1015 Lausanne , Switzerland.,Department of Fundamental Oncology , University of Lausanne, Ludwig Lausanne Branch , 1066 Epalinges , Switzerland
| |
Collapse
|
21
|
Yang C, He B, Zheng Q, Wang D, Qin M, Zhang H, Dai W, Zhang Q, Meng X, Wang X. Nano-encapsulated tryptanthrin derivative for combined anticancer therapy via inhibiting indoleamine 2,3-dioxygenase and inducing immunogenic cell death. Nanomedicine (Lond) 2019; 14:2423-2440. [DOI: 10.2217/nnm-2019-0074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We developed a polycaprolactone-based nanoparticle (NP) to encapsulate tryptanthrin derivative CY-1-4 and evaluated its antitumor efficacy. Materials & methods: CY-1-4 NPs were prepared and evaluated for their cytotoxicity and associated mechanisms, indoleamine 2,3-dioxygenase (IDO)-inhibitory ability, immunogenic cell death (ICD)-inducing ability and antitumor efficacy. Results: CY-1-4 NPs were 123 nm in size. In vitro experiments indicated that they could both induce ICD and inhibit IDO. In vivo studies indicated that a medium dose reduced 58% of the tumor burden in a B16-F10-bearing mouse model, decreased IDO expression in tumor tissues and regulated lymphocytes subsets in spleen and tumors. Conclusion: CY-1-4 is a potential antitumor candidate that could act as a single agent with combined functions of IDO inhibition and ICD induction.
Collapse
Affiliation(s)
- Canyu Yang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Qiang Zheng
- State Key Laboratory of Natural & Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Dakuan Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Mengmeng Qin
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
- State Key Laboratory of Natural & Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Xiangbao Meng
- State Key Laboratory of Natural & Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| |
Collapse
|
22
|
Ding Y, Tang F, Xue X, Luo J, Hussain M, Huang Y, Wang Z, Jiang H, Tu Z, Zhang J. Rational design, synthesis and biological evaluation of ubiquinone derivatives as IDO1 inhibitors. Bioorg Chem 2019; 89:102870. [DOI: 10.1016/j.bioorg.2019.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022]
|
23
|
Jain S, Bhardwaj B, Amin SA, Adhikari N, Jha T, Gayen S. Exploration of good and bad structural fingerprints for inhibition of indoleamine-2,3-dioxygenase enzyme in cancer immunotherapy using Monte Carlo optimization and Bayesian classification QSAR modeling. J Biomol Struct Dyn 2019; 38:1683-1696. [PMID: 31057090 DOI: 10.1080/07391102.2019.1615000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) is an extrahepatic, heme-containing and tryptophan-catalyzing enzyme responsible for causing blockade of T-cell proliferation and differentiation by depleting tryptophan level in cancerous cells. Therefore, inhibition of IDO1 may be a useful strategy for immunotherapy against cancer. In this study, 448 structurally diverse IDO1 inhibitors with a wide range of activity has been taken into consideration for classification QSAR analysis through Monte Carlo Optimization by using different splits as well as different combinations of SMILES-based, graph-based and hybrid descriptors. The best model from Monte Carlo optimization was interpreted to find out the good and bad structural fingerprints for IDO1 and further justified by using Bayesian classification QSAR modeling. Among the three splits in Monte Carlo optimization, the statistics of the best model was obtained from Split 3: sensitivity = 0.87, specificity = 0.91, accuracy = 0.89 and MCC = 0.78. In Bayesian classification modeling, the ROC scores for training and test set were found to be 0.91 and 0.86, respectively. The combined modeling analysis revealed that the presence of aryl hydrazyl sulphonyl moiety, furazan ring, halogen substitution, nitro group and hetero atoms in aromatic system can be very useful in designing IDO1 inhibitors. All the good and bad structural fingerprints for IDO1 were identified and are justified by correlating these fragments to the inhibition of IDO1 enzyme. These structural fingerprints will guide the researchers in this field to design better inhibitors against IDO1 enzyme for cancer immunotherapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanskar Jain
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Bhagwati Bhardwaj
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| |
Collapse
|
24
|
Acúrcio RC, Scomparin A, Satchi‐Fainaro R, Florindo HF, Guedes RC. Computer‐aided drug design in new druggable targets for the next generation of immune‐oncology therapies. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
25
|
Discovery of potent indoleamine 2,3-dioxygenase (IDO) inhibitor from alkaloids in Picrasma quassioides by virtual screening and in vitro evaluation. Fitoterapia 2019; 133:137-145. [DOI: 10.1016/j.fitote.2019.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 01/21/2023]
|
26
|
Haji Mazdarani M, Jafarikia M, Nemati F. Investigation of indolamine 2, 3 dioxygenase (IDO-1) gene expression by real-time PCR among patients with lung cancer. J Cell Physiol 2019; 234:13781-13787. [PMID: 30671955 DOI: 10.1002/jcp.28057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/12/2018] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate the expression of IDO-1 gene and cancerous grades of non-small cell lung cancer (NSCLC) and its subclasses among patients with lung cancer using real-time polymerase chain reaction (PCR). MATERIALS AND METHODS A total of 35 clinical samples were collected from patients with NSCLC. To evaluate the IDO-1 gene after the extraction of RNA and complementary DNA (cDNA) synthesis using real-time PCR, the expression of the gene was investigated. The western blot analysis method was used for protein expression. RESULTS The highest grade, IIIa grade included six patients (17.1%). Approximately 74% of adenocarcinoma cases were in T-categories of lung cancer and 25% of patients in IIIa grade. Patients in the IIA and IIB categories belong to the SCC subclass. Results showed that the expression of INDO 5.22 fold gene was more common in patients with lung cancer than NSCLC. Protein expression in western blot analysis in patients compared with normal 3.22 fold change increased. CONCLUSION The evidence shows that IDO-1 is a key parameter that inhibits antitumor immune responses in humans. This study has added interesting data to the IDO community for analyzing the expression of cancerous human cancer cells and cancer tissue in humans. The results showed that IDO-1 not only participates in the process of escape from tumor immunity but can also contribute to the safety of the pretumor area. A wide variety of observed IDO-1 expression values among patients may present serious barriers to the clinical performance of anti- IDO strategies at present.
Collapse
Affiliation(s)
| | - Milad Jafarikia
- Department of Genetic, Islamic Azad University of Varamin, Pishva, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Luo S, Xu K, Xiang S, Chen J, Chen C, Guo C, Tong Y, Tong L. High-resolution structures of inhibitor complexes of human indoleamine 2,3-dioxygenase 1 in a new crystal form. Acta Crystallogr F Struct Biol Commun 2018; 74:717-724. [PMID: 30387777 PMCID: PMC6213978 DOI: 10.1107/s2053230x18012955] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 11/11/2022] Open
Abstract
Human indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-dependent enzyme with important roles in many cellular processes and is a potential target for drug discovery against cancer and other diseases. Crystal structures of IDO1 in complex with various inhibitors have been reported. Many of these crystals belong to the same crystal form and most of the reported structures have resolutions in the range 3.2-2.3 Å. Here, three new crystal forms of human IDO1 obtained by introducing a surface mutation, K116A/K117A, distant from the active site are reported. One of these crystal forms diffracted to 1.5 Å resolution and can be readily used for soaking experiments to determine high-resolution structures of IDO1 in complex with the substrate tryptophan or inhibitors that coordinate the heme. In addition, this mutant was used to produce crystals of a complex with an inhibitor that targets the apo form of the enzyme under the same conditions; the structure of this complex was determined at 1.7 Å resolution. Overall, this mutant represents a robust platform for determining the structures of inhibitor and substrate complexes of IDO1 at high resolution.
Collapse
Affiliation(s)
- Shukun Luo
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ke Xu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Shaoyun Xiang
- Suzhou Kintor Pharmaceuticals Inc., Suzhou Industrial Park, Suzhou 215123, People’s Republic of China
| | - Jie Chen
- Suzhou Kintor Pharmaceuticals Inc., Suzhou Industrial Park, Suzhou 215123, People’s Republic of China
| | - Chunyun Chen
- Suzhou Kintor Pharmaceuticals Inc., Suzhou Industrial Park, Suzhou 215123, People’s Republic of China
| | - Chuangxin Guo
- Suzhou Kintor Pharmaceuticals Inc., Suzhou Industrial Park, Suzhou 215123, People’s Republic of China
| | - Youzhi Tong
- Suzhou Kintor Pharmaceuticals Inc., Suzhou Industrial Park, Suzhou 215123, People’s Republic of China
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
28
|
Cheong JE, Sun L. Targeting the IDO1/TDO2–KYN–AhR Pathway for Cancer Immunotherapy – Challenges and Opportunities. Trends Pharmacol Sci 2018; 39:307-325. [PMID: 29254698 DOI: 10.1016/j.tips.2017.11.007] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jae Eun Cheong
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Jae Eun Cheong
- Center for Drug Discovery and Translational Research and Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anil Ekkati
- Center for Drug Discovery and Translational Research and Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Sun
- Center for Drug Discovery and Translational Research and Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Brant MG, Goodwin-Tindall J, Stover KR, Stafford PM, Wu F, Meek AR, Schiavini P, Wohnig S, Weaver DF. Identification of Potent Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors Based on a Phenylimidazole Scaffold. ACS Med Chem Lett 2018; 9:131-136. [PMID: 29456801 DOI: 10.1021/acsmedchemlett.7b00488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022] Open
Abstract
Inhibition of indoleamine 2,3-dioxygenase (IDO1) is an attractive immunotherapeutic approach for the treatment of a variety of cancers. Dysregulation of this enzyme has also been implicated in other disorders including Alzheimer's disease and arthritis. Herein, we report the structure-based design of two related series of molecules: N1-substituted 5-indoleimidazoles and N1-substituted 5-phenylimidazoles. The latter (and more potent) series was accessed through an unexpected rearrangement of an imine intermediate during a Van Leusen imidazole synthesis reaction. Evidence for the binding modes for both inhibitor series is supported by computational and structure-activity relationship studies.
Collapse
Affiliation(s)
- Michael G. Brant
- Krembil
Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 2S8, Canada
| | - Jake Goodwin-Tindall
- Krembil
Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 2S8, Canada
| | - Kurt R. Stover
- Krembil
Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 2S8, Canada
| | - Paul M. Stafford
- Krembil
Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 2S8, Canada
| | - Fan Wu
- Krembil
Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 2S8, Canada
| | - Autumn R. Meek
- Krembil
Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 2S8, Canada
| | - Paolo Schiavini
- Krembil
Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 2S8, Canada
| | - Stephanie Wohnig
- Krembil
Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 2S8, Canada
| | - Donald F. Weaver
- Krembil
Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 2S8, Canada
- Department
of Chemistry, University of Toronto, Toronto M55 3H6, Canada
- Department
of Medicine, University of Toronto, Toronto M5G 2C4, Canada
| |
Collapse
|
31
|
Alexandre JAC, Swan MK, Latchem MJ, Boyall D, Pollard JR, Hughes SW, Westcott J. New 4-Amino-1,2,3-Triazole Inhibitors of Indoleamine 2,3-Dioxygenase Form a Long-Lived Complex with the Enzyme and Display Exquisite Cellular Potency. Chembiochem 2018; 19:552-561. [PMID: 29240291 DOI: 10.1002/cbic.201700560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 11/09/2022]
Abstract
Indoleamine-2,3 dioxygenase 1 (IDO1) has emerged as a central regulator of immune responses in both normal and disease biology. Due to its established role in promoting tumour immune escape, IDO1 has become an attractive target for cancer treatment. A novel series of highly cell potent IDO1 inhibitors based on a 4-amino-1,2,3-triazole core have been identified. Comprehensive kinetic, biochemical and structural studies demonstrate that compounds from this series have a noncompetitive kinetic mechanism of action with respect to the tryptophan substrate. In co-complex crystal structures, the compounds bind in the tryptophan pocket and make a direct ligand interaction with the haem iron of the porphyrin cofactor. It is proposed that these data can be rationalised by an ordered-binding mechanism, in which the inhibitor binds an apo form of the enzyme that is not competent to bind tryptophan. These inhibitors also form a very tight, long-lived complex with the enzyme, which partially explains their exquisite cellular potency. This novel series represents an attractive starting point for the future development of potent IDO1-targeted drugs.
Collapse
Affiliation(s)
| | - Michael Kenneth Swan
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - Mike John Latchem
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - Dean Boyall
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - John Robert Pollard
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - Stuart Wynn Hughes
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| | - James Westcott
- Vertex Pharmaceuticals (Europe) Limited, 86-88 Jubilee Avenue, Abingdon, Oxfordshire, OX14 4RW, UK
| |
Collapse
|
32
|
Nienhaus K, Nienhaus GU. Different Mechanisms of Catalytic Complex Formation in Two L-Tryptophan Processing Dioxygenases. Front Mol Biosci 2018; 4:94. [PMID: 29354636 PMCID: PMC5758539 DOI: 10.3389/fmolb.2017.00094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023] Open
Abstract
The human heme enzymes tryptophan 2,3-dioxygenase (hTDO) and indoleamine 2,3 dioxygenase (hIDO) catalyze the initial step in L-tryptophan (L-Trp) catabolism, the insertion of dioxygen into L-Trp. Overexpression of these enzymes causes depletion of L-Trp and accumulation of metabolic products, and thereby contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. Understanding the assembly of the catalytically active, ternary enzyme-substrate-ligand complexes is not yet fully resolved, but an essential prerequisite for designing efficient and selective de novo inhibitors. Evidence is mounting that the ternary complex forms by sequential binding of ligand and substrate in a specific order. In hTDO, the apolar L-Trp binds first, decreasing active-site solvation and, as a result, reducing non-productive oxidation of the heme iron by the dioxygen ligand, which may leave the substrate bound to a ferric heme iron. In hIDO, by contrast, dioxygen must first coordinate to the heme iron because a bound substrate would occlude ligand access to the heme iron, so the ternary complex can no longer form. Consequently, faster association of L-Trp at high concentrations results in substrate inhibition. Here, we summarize our present knowledge of ternary complex formation in hTDO and hIDO and relate these findings to structural peculiarities of their active sites.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Nanotechnology and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
33
|
Weng T, Qiu X, Wang J, Li Z, Bian J. Recent discovery of indoleamine-2,3-dioxygenase 1 inhibitors targeting cancer immunotherapy. Eur J Med Chem 2018; 143:656-669. [DOI: 10.1016/j.ejmech.2017.11.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/04/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
|
34
|
Lewis-Ballester A, Pham KN, Batabyal D, Karkashon S, Bonanno JB, Poulos TL, Yeh SR. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1. Nat Commun 2017; 8:1693. [PMID: 29167421 PMCID: PMC5700043 DOI: 10.1038/s41467-017-01725-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/11/2017] [Indexed: 12/24/2022] Open
Abstract
Human indoleamine 2,3-dioxygenase 1 (hIDO1) is an attractive cancer immunotherapeutic target owing to its role in promoting tumoral immune escape. However, drug development has been hindered by limited structural information. Here, we report the crystal structures of hIDO1 in complex with its substrate, Trp, an inhibitor, epacadostat, and/or an effector, indole ethanol (IDE). The data reveal structural features of the active site (Sa) critical for substrate activation; in addition, they disclose a new inhibitor-binding mode and a distinct small molecule binding site (Si). Structure-guided mutation of a critical residue, F270, to glycine perturbs the Si site, allowing structural determination of an inhibitory complex, where both the Sa and Si sites are occupied by Trp. The Si site offers a novel target site for allosteric inhibitors and a molecular explanation for the previously baffling substrate-inhibition behavior of the enzyme. Taken together, the data open exciting new avenues for structure-based drug design. Human indoleamine 2,3-dioxygenase 1 (hIDO1) is an immunotherapeutic target for cancer therapy. Here, the authors present the substrate-, inhibitor- and effector-bound hIDO1 crystal structures, which give insights into the mechanism and reveal a second small molecule binding site, which is of interest for drug design.
Collapse
Affiliation(s)
- Ariel Lewis-Ballester
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Khoa N Pham
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dipanwita Batabyal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.,Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Shay Karkashon
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Thomas L Poulos
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.,Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
35
|
Synthesis and Molecular Modeling Studies of N'-Hydroxyindazolecarboximidamides as Novel Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. Molecules 2017; 22:molecules22111936. [PMID: 29120388 PMCID: PMC6150275 DOI: 10.3390/molecules22111936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive enzyme that is highly overexpressed in various cancer cells and antigen-presenting cells. It has emerged as an attractive therapeutic target for cancer immunotherapy, which has prompted high interest in the development of small-molecule inhibitors. To discover novel IDO1 inhibitors, we designed and synthesized a series of N′-hydroxyindazolecarboximidamides. Among the compounds synthesized, compound 8a inhibited both tryptophan depletion and kynurenine production through the IDO1 enzyme. Molecular docking studies revealed that 8a binds to IDO1 with the same binding mode as the analog, epacadostat (INCB24360). Here, we report the synthesis and biological evaluation of these hydroxyindazolecarboximidamides and present the molecular docking study of 8a with IDO1.
Collapse
|
36
|
Röhrig UF, Zoete V, Michielin O. The Binding Mode of N-Hydroxyamidines to Indoleamine 2,3-Dioxygenase 1 (IDO1). Biochemistry 2017; 56:4323-4325. [PMID: 28731684 DOI: 10.1021/acs.biochem.7b00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an important target in cancer immunotherapy. The most advanced clinical compound, epacadostat (INCB024360), binds to the heme cofactor of IDO1 through an N-hydroxyamidine function. Conflicting binding modes have recently been proposed, reporting iron binding either through the hydroxyamidine oxygen or through the hydroxyamidine nitrogen atom. Here, we use quantum chemical calculations, docking, and quantum mechanics/molecular mechanics calculations based on available X-ray data to resolve this issue and to propose a physically meaningful binding mode. Our findings will aid the design of novel IDO1 ligands based on this pharmacophore.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics , 1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics , 1015 Lausanne, Switzerland.,Department of Fundamental Oncology, Ludwig Lausanne Branch, University of Lausanne , 1066 Epalinges, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics , 1015 Lausanne, Switzerland.,Department of Oncology, University of Lausanne and Centre Hospitalier Universitaire Vaudois (CHUV) , 1011 Lausanne, Switzerland
| |
Collapse
|
37
|
Gao D, Li Y. Identification and preliminary structure–activity relationships of 1-Indanone derivatives as novel indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors. Bioorg Med Chem 2017; 25:3780-3791. [DOI: 10.1016/j.bmc.2017.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 01/22/2023]
|