1
|
Lei Z, Wang H, Zhai Y, Sun M, Chen S, Yin P, Wang X. Insights into the mediation of Ca 2+ signaling in the promoting effects of LETX-VI on the synthesis and release of dopamine. J Cell Commun Signal 2023:10.1007/s12079-023-00783-6. [PMID: 37702818 DOI: 10.1007/s12079-023-00783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Latroeggtoxin-VI (LETX-VI) is an active protein and was previously demonstrated to have effects on the synthesis and release of dopamine. Hererin, the involvement of Ca2+ signaling in the effects of LETX-VI on dopamine was systematically investigated, using PC12 cells as a neuron model. LETX-VI was shown to promote dopamine release from PC12 cells both in the presence and absence of extracellular Ca2+; however the presence of extracellular Ca2+ was favorable for enhancing the promoting effects of LETX-VI on dopamine, because LETX-VI facilitated the influx of extracellular Ca2+ through the L-type calcium channels in plasma membrane (PM) to increase cytosolic Ca2+ concentration. LETX-VI was able to penetrate the PM of PC12 cells to act on the Ca2+ channel proteins IP3Rs and RyRs in the endoplasm reticulum (ER) membrane, opening the Ca2+ channels and promoting the release of ER Ca2+ to elevate cytosolic Ca2+ level. With the help of intracellular Ca2+ chelator BAPTA, the elevated cytosolic Ca2+ level was proven to play crucial role for the enhanced promoting effects of LETX-VI on dopamine. Taken together, LETX-VI is able to open the Ca2+ channels in both PM and ER membrane simultaneously to facilitate extracellular Ca2+ influx and ER Ca2+ release, and thus increases the cytosolic Ca2+ concentration to enhance the promoting effects on the synthesis and release of dopamine.
Collapse
Affiliation(s)
- Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Minglu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
2
|
Parys JB, Van Coppenolle F. Sec61 complex/translocon: The role of an atypical ER Ca 2+-leak channel in health and disease. Front Physiol 2022; 13:991149. [PMID: 36277220 PMCID: PMC9582130 DOI: 10.3389/fphys.2022.991149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2023] Open
Abstract
The heterotrimeric Sec61 protein complex forms the functional core of the so-called translocon that forms an aqueous channel in the endoplasmic reticulum (ER). The primary role of the Sec61 complex is to allow protein import in the ER during translation. Surprisingly, a completely different function in intracellular Ca2+ homeostasis has emerged for the Sec61 complex, and the latter is now accepted as one of the major Ca2+-leak pathways of the ER. In this review, we first discuss the structure of the Sec61 complex and focus on the pharmacology and regulation of the Sec61 complex as a Ca2+-leak channel. Subsequently, we will pay particular attention to pathologies that are linked to Sec61 mutations, such as plasma cell deficiency and congenital neutropenia. Finally, we will explore the relevance of the Sec61 complex as a Ca2+-leak channel in various pathophysiological (ER stress, apoptosis, ischemia-reperfusion) and pathological (type 2 diabetes, cancer) settings.
Collapse
Affiliation(s)
- Jan B. Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Groupement Hospitalier EST, Department of Cardiology, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
3
|
Al-Mawla R, Ducrozet M, Tessier N, Païta L, Pillot B, Gouriou Y, Villedieu C, Harhous Z, Paccalet A, Crola Da Silva C, Ovize M, Bidaux G, Ducreux S, Van Coppenolle F. Acute Induction of Translocon-Mediated Ca 2+ Leak Protects Cardiomyocytes Against Ischemia/Reperfusion Injury. Cells 2020; 9:cells9051319. [PMID: 32466308 PMCID: PMC7290748 DOI: 10.3390/cells9051319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
During myocardial infarction, dysregulation of Ca2+ homeostasis between the reticulum, mitochondria, and cytosol occurs in cardiomyocytes and leads to cell death. Ca2+ leak channels are thought to be key regulators of the reticular Ca2+ homeostasis and cell survival. The present study aimed to determine whether a particular reticular Ca2+ leak channel, the translocon, also known as translocation channel, could be a relevant target against ischemia/reperfusion-mediated heart injury. To achieve this objective, we first used an intramyocardial adenoviral strategy to express biosensors in order to assess Ca2+ variations in freshly isolated adult mouse cardiomyocytes to show that translocon is a functional reticular Ca2+ leak channel. Interestingly, translocon activation by puromycin mobilized a ryanodine receptor (RyR)-independent reticular Ca2+ pool and did not affect the excitation–concentration coupling. Second, puromycin pretreatment decreased mitochondrial Ca2+ content and slowed down the mitochondrial permeability transition pore (mPTP) opening and the rate of cytosolic Ca2+ increase during hypoxia. Finally, this translocon pre-activation also protected cardiomyocytes after in vitro hypoxia reoxygenation and reduced infarct size in mice submitted to in vivo ischemia-reperfusion. Altogether, our report emphasizes the role of translocon in cardioprotection and highlights a new paradigm in cardioprotection by functionally uncoupling the RyR-dependent Ca2+ stores and translocon-dependent Ca2+ stores.
Collapse
Affiliation(s)
- Ribal Al-Mawla
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Mallory Ducrozet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Nolwenn Tessier
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Lucille Païta
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Bruno Pillot
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Yves Gouriou
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Camille Villedieu
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Zeina Harhous
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Alexandre Paccalet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Claire Crola Da Silva
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Michel Ovize
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
- Cardiovascular functional explorations, Louis Pradel hospital, Hospices Civils de Lyon, 69677 Lyon, France
| | - Gabriel Bidaux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| | - Sylvie Ducreux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
- Correspondence:
| | - Fabien Van Coppenolle
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France; (R.A.-M.); (M.D.); (N.T.); (L.P.); (B.P.); (Y.G.); (C.V.); (Z.H.); (A.P.); (C.C.D.S.); (M.O.); (G.B.); (F.V.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, 69500 Bron, France
| |
Collapse
|
4
|
The GPR120 Agonist TUG-891 Inhibits the Motility and Phagocytosis of Mouse Alveolar Macrophages. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1706168. [PMID: 32149083 PMCID: PMC7056993 DOI: 10.1155/2020/1706168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 01/08/2023]
Abstract
Movement and phagocytosis characterize the fundamental actions of macrophages. Although it is known that the free fatty acid receptor GPR120 is expressed in macrophages and regulates cytokine expression to exert anti-inflammatory activities, the effects of GPR120 activation on the motility and phagocytosis of macrophages are not clear. In this study, mouse alveolar macrophages (AM) were stimulated with the GPR120 agonist TUG-891, and the changes in cell motility, intracellular Ca2+ concentration ([Ca2+]i), and the ability of phagocytosis were measured. Mouse AM in controls exhibited active movement in vitro, and TUG-891 significantly restrained AM movement. Meanwhile, TUG-891 stimulated a quick increase in [Ca2+]i in AM, which was blocked separately by the Gq protein inhibitor YM-254890, the phospholipase C (PLC) inhibitor U73122, or depletion of endoplasmic reticulum (ER) Ca2+ store by thapsigargin. The inhibition of AM movement by TUG-891 was eliminated by YM-254890, U73122, thapsigargin, and chelation of cytosolic Ca2+ by BAPTA. Moreover, TUG-891 inhibited AM phagocytosis of fluorescent microspheres, which was also blocked by YM-254890, U73122, thapsigargin, and BAPTA. In conclusion, GPR120 activation in mouse AM increases [Ca2+]i but inhibits the motility and phagocytosis via Gq protein/PLC-mediated Ca2+ release from ER Ca2+ store.
Collapse
|
6
|
Li L, Cui J, Liu Z, Zhou X, Li Z, Yu Y, Jia Y, Zuo D, Wu Y. Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicol Lett 2018; 285:156-167. [PMID: 29306025 DOI: 10.1016/j.toxlet.2018.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/25/2022]
Abstract
Silver nanoparticles (AgNPs) have many medical and commercial applications, but their effects on human health are poorly understood. The aim of this study was to assess the effect of AgNPs on the human neuroblastoma cell line SH-SY5Y and to explore their potential mechanisms of action. We found that AgNPs decreased SH-SY5Y cell viability in a dose- and time-dependent manner. Exposure to AgNPs activated endoplasmic reticulum (ER) stress, as reflected by upregulated expression of glucose-regulated protein 78 (GRP78), phosphorylated PKR-like endoplasmic reticulum kinase (p-PERK), phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α), C/EBP homology protein (CHOP), spliced X-box binding protein-1 (XBP1), and phosphorylated inositol-requiring enzyme (p-IRE), all of which are involved in the cellular unfolded protein response. Prolonged exposure of cells to AgNPs damaged calcium (Ca2+) homeostasis, increased the length of contact sites between the ER and mitochondria, altered IP3R function by the increased levels of phosphatase and tensin homolog deleted on chromosome ten (PTEN) in the ER and enhanced mitochondrial Ca2+ uptake. Finally, Ca2+ overload and disrupted homeostasis in the mitochondria triggered apoptotic cell death. Our results suggest that caution should be exercised in the use of AgNPs in humans.
Collapse
Affiliation(s)
- Lin Li
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiahui Cui
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zi Liu
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xuejiao Zhou
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zengqiang Li
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yang Yu
- Liaoning Medical Device Test Institute, Shenyang 110179, PR China
| | - Yuanyuan Jia
- Safety Evaluation Center of Shenyang Research Institute of Chemical Industry Ltd., Shenyang 110021, PR China
| | - Daiying Zuo
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Yingliang Wu
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|