1
|
Dang R, Wang J, Tang M, Han W, Jiang P. Vitamin D Receptor Activation Attenuates Olanzapine-Induced Dyslipidemia in Mice Through Alleviating Hepatic Endoplasmic Reticulum Stress. Adv Biol (Weinh) 2023; 7:e2300228. [PMID: 37565702 DOI: 10.1002/adbi.202300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Indexed: 08/12/2023]
Abstract
The involvement of vitamin D (VD) signaling in atypical antipsychotics (AAPs)-induced metabolic disturbances has been previously established. This study aims to elucidate the role of VD in maintaining endoplasmic reticulum (ER) homeostasis and its impact on AAPs-induced metabolic adverse effects. Female C57BL/6 mice receive either calcitriol or vehicle one week prior to co-treatment with olanzapine (OLZ) for an additional four weeks. Metabolic parameters, hepatic ER homeostasis, and the SREBPs pathway are assessed through biochemical assays and protein expression profiling. HepG2 cells are transfected with vitamin D receptor (VDR) siRNA for VDR knockdown. OLZ-treated HepG2 cells are exposed to calcitriol to examine its effects on SREBPs and the unfolded protein response (UPR) pathways. VDR activation by calcitriol reduces OLZ-induced hepatic ER stress, leading to decreased SREBPs activity and lipid accumulation. Conversely, the knockdown of VDR in HepG2 cells diminishes the protective effects of calcitriol against OLZ-induced ER stress and SREBPs activation. This resulted in sustained UPR activation, elevated cleaved SREBPs levels, and increased lipid accumulation. These findings highlight an essential role of VDR signaling in the beneficial effects of VD on OLZ-induced metabolic side effects. Targeting VDR to resolve ER stress is likely an applicable therapeutic strategy for AAPs-induced metabolic disturbances.
Collapse
Affiliation(s)
- Ruili Dang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Jing Wang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wenxiu Han
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
2
|
Gómez-Sierra T, Jiménez-Uribe AP, Ortega-Lozano AJ, Ramírez-Magaña KJ, Pedraza-Chaverri J. Antioxidants affect endoplasmic reticulum stress-related diseases. VITAMINS AND HORMONES 2022; 121:169-196. [PMID: 36707134 DOI: 10.1016/bs.vh.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The endoplasmic reticulum (ER) is a complex multifunctional organelle that maintains cell homeostasis. Intrinsic and extrinsic factors alter ER functions, including the rate of protein folding that triggers the accumulation of misfolded proteins and alters homeostasis, thus generating stress in the ER, which activates the unfolded protein response (UPR) pathway to promote cell survival and restore their homeostasis; however, if the damage is not corrected, it could also trigger cell death. In addition, ER stress and oxidative stress are closely related because excessive production of reactive oxygen species (ROS), a well-known inducer of ER stress, promotes the accumulation of misfolded proteins; at the same time, the ER stress enhances ROS production, generating a pathological cycle. Furthermore, it has been described that the dysregulation of the UPR contributes to the progression of various diseases, so the use of compounds capable of regulating ER stress, such as antioxidants, has been used in several experimental models of diseases to alleviate the damage induced by the maladaptive signaling of the UPR, the mechanism of action of antioxidants generally is dose-dependent, and it is specific in each tissue and pathology, could decrease or enhance specific proteins of the UPR to have beneficial or detrimental effects.
Collapse
Affiliation(s)
- Tania Gómez-Sierra
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Alexis Paulina Jiménez-Uribe
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Ariadna Jazmín Ortega-Lozano
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
| |
Collapse
|
3
|
Doncheva N, Mihaylova A, Zlatanova H, Ivanovska M, Delev D, Murdjeva M, Kostadinov I. Vitamin D 3 exerts immunomodulatory and memory improving properties in rats with lipopolysaccharide-induced inflammation. Folia Med (Plovdiv) 2022; 64:770-781. [PMID: 36876547 DOI: 10.3897/folmed.64.e67739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/02/2021] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Vitamin D is a fat-soluble secosteroid, its primary function being regulation of calcium-phosphate homeostasis and maintenance of bone integrity and mineralization. Recently, pleotropic effects of this vitamin have been recognized, including an immunomodulatory role and involvement in normal brain development and functioning.
Collapse
Affiliation(s)
| | | | | | | | - Delian Delev
- Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | | |
Collapse
|
4
|
Linagliptin and Vitamin D3 Synergistically Rescue Testicular Steroidogenesis and Spermatogenesis in Cisplatin-Exposed Rats: The Crosstalk of Endoplasmic Reticulum Stress with NF-κB/iNOS Activation. Molecules 2022; 27:molecules27217299. [DOI: 10.3390/molecules27217299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the therapeutic effect of linagliptin and/or vitamin D3 on testicular steroidogenesis and spermatogenesis in cisplatin-exposed rats including their impact on endoplasmic reticulum (ER) stress and NF-κB/iNOS crosstalk. Cisplatin (7 mg/kg, IP) was injected into adult male albino rats which then were orally treated with drug vehicle, linagliptin (3 mg/kg/day), vitamin D3 (10 μg/kg/day) or both drugs for four weeks. Age-matched rats were used as the control group. Serum samples and testes were collected for further analyses. Cisplatin induced testicular weight loss, deteriorated testicular architecture, loss of germ cells and declined serum and intra-testicular testosterone levels, compared to the control group. There was down-regulation of steroidogenic markers including StAR, CYP11A1, HSD3b and HSD17b in cisplatin-exposed rats, compared with controls. Cisplatin-exposed rats showed up-regulation of ER stress markers in testicular tissue along with increased expression of NF-κB and iNOS in spermatogenic and Leydig cells. These perturbations were almost reversed by vitamin D3 or linagliptin. The combined therapy exerted a more remarkable effect on testicular dysfunction than either monotherapy. These findings suggest a novel therapeutic application for linagliptin combined with vitamin D3 to restore testicular architecture, aberrant steroidogenesis and spermatogenesis after cisplatin exposure. These effects may be attributed to suppression of ER stress and NF-kB/iNOS.
Collapse
|
5
|
Tomiga Y, Higaki Y, Anzai K, Takahashi H. Behavioral defects and downregulation of hippocampal BDNF and nNOS expression in db/db mice did not improved by chronic TGF-β2 treatment. Front Physiol 2022; 13:969480. [PMID: 36091357 PMCID: PMC9452698 DOI: 10.3389/fphys.2022.969480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological evidence suggests that there is a link between diabetes and mood disorders, such as depression and anxiety. Although peripheral or central inflammation may explain this link, the molecular mechanisms are not fully understood and few effective treatments for diabetes or mood disorders are available. In the present study, we aimed to determine whether transforming growth factor (TGF)-β2, an anti-inflammatory substance, might represent a potential therapeutic agent for diabetes-related mood behaviors. TGF-β2 expression in the hippocampus is affected by anxiolytic drugs and stress exposure, it is able to cross the blood-brain barrier, and it is as an exercise-induced physiological adipokine that regulates glucose homeostasis. Therefore, we hypothesized that a chronic TGF-β2 infusion would ameliorate diabetes-related glucose intolerance and mood dysregulation. To determine the effects of the chronic administration of TGF-β2 on diabetes, we implanted osmotic pumps containing TGF-β2 into type 2 diabetic mice (db/db mice), and age-matched non-diabetic control wild type mice and db/db mice were infused with vehicle (PBS), for 12 consecutive days. To assess anxiety-like behaviors and glucose homeostasis, the mice underwent elevated plus maze testing and intraperitoneal glucose tolerance testing. Hippocampal and perigonadal visceral white adipose tissue perigonadal white adipose tissue samples were obtained 12 days later. Contrary to our hypothesis, TGF-β2 infusion had no effect on diabetes-related glucose intolerance or diabetes-related behavioral defects, such as inactivity. In db/db mice, the expression of inflammatory markers was high in pgWAT, but not in the hippocampus, and the former was ameliorated by TGF-β2 infusion. The expression of brain-derived neurotrophic factor and neuronal nitric oxide synthase, important regulators of anxiety-like behaviors, was low in db/db mice, but TGF-β2 infusion did not affect their expression. We conclude that although TGF-β2 reduces the expression of pro-inflammatory markers in the adipose tissue of diabetic mice, it does not ameliorate their obesity or mood dysregulation.
Collapse
Affiliation(s)
- Yuki Tomiga
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- *Correspondence: Yuki Tomiga,
| | - Yasuki Higaki
- Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Liver Center, Saga University Hospital, Saga, Japan
| |
Collapse
|
6
|
LI A, SHEN P, LIU S, WANG J, ZENG J, DU C. Vitamin D alleviates skeletal muscle loss and insulin resistance by inducing vitamin D receptor expression and regulating the AMPK/SIRT1 signaling pathway in mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
7
|
Adams LE, Moss HG, Lowe DW, Brown T, Wiest DB, Hollis BW, Singh I, Jenkins DD. NAC and Vitamin D Restore CNS Glutathione in Endotoxin-Sensitized Neonatal Hypoxic-Ischemic Rats. Antioxidants (Basel) 2021; 10:489. [PMID: 33804757 PMCID: PMC8003885 DOI: 10.3390/antiox10030489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/31/2023] Open
Abstract
Therapeutic hypothermia does not improve outcomes in neonatal hypoxia ischemia (HI) complicated by perinatal infection, due to well-described, pre-existing oxidative stress and neuroinflammation that shorten the therapeutic window. For effective neuroprotection post-injury, we must first define and then target CNS metabolomic changes immediately after endotoxin-sensitized HI (LPS-HI). We hypothesized that LPS-HI would acutely deplete reduced glutathione (GSH), indicating overwhelming oxidative stress in spite of hypothermia treatment in neonatal rats. Post-natal day 7 rats were randomized to sham ligation, or severe LPS-HI (0.5 mg/kg 4 h before right carotid artery ligation, 90 min 8% O2), followed by hypothermia alone or with N-acetylcysteine (25 mg/kg) and vitamin D (1,25(OH)2D3, 0.05 μg/kg) (NVD). We quantified in vivo CNS metabolites by serial 7T MR Spectroscopy before, immediately after LPS-HI, and after treatment, along with terminal plasma drug concentrations. GSH was significantly decreased in all LPS-HI rats compared with baseline and sham controls. Two hours of hypothermia alone did not improve GSH and allowed glutamate + glutamine (GLX) to increase. Within 1 h of administration, NVD increased GSH close to baseline and suppressed GLX. The combination of NVD with hypothermia rapidly improved cellular redox status after LPS-HI, potentially inhibiting important secondary injury cascades and allowing more time for hypothermic neuroprotection.
Collapse
Affiliation(s)
- Lauren E. Adams
- Department of Pediatrics, 10 McLellan Banks Dr, Medical University of South Carolina, Charleston, SC 29425, USA; (L.E.A.); (B.W.H.); (I.S.)
| | - Hunter G. Moss
- Center for Biomedical Imaging, Department of Radiology, Medical University of South Carolina, 68 President St. Room 205, Charleston, SC 29425, USA; (H.G.M.); (T.B.)
| | - Danielle W. Lowe
- Department of Psychiatry, Medical University of South Carolina, 67 Presidents St., MSC 861, Charleston, SC 29425, USA;
| | - Truman Brown
- Center for Biomedical Imaging, Department of Radiology, Medical University of South Carolina, 68 President St. Room 205, Charleston, SC 29425, USA; (H.G.M.); (T.B.)
| | - Donald B. Wiest
- Department of Pharmacy and Clinical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Bruce W. Hollis
- Department of Pediatrics, 10 McLellan Banks Dr, Medical University of South Carolina, Charleston, SC 29425, USA; (L.E.A.); (B.W.H.); (I.S.)
| | - Inderjit Singh
- Department of Pediatrics, 10 McLellan Banks Dr, Medical University of South Carolina, Charleston, SC 29425, USA; (L.E.A.); (B.W.H.); (I.S.)
| | - Dorothea D. Jenkins
- Department of Pediatrics, 10 McLellan Banks Dr, Medical University of South Carolina, Charleston, SC 29425, USA; (L.E.A.); (B.W.H.); (I.S.)
| |
Collapse
|
8
|
Kim DM, Shim IK, Shin MJ, Choi JH, Lee YN, Jeon IH, Kim H, Park D, Kholinne E, Koh KH. A Combination Treatment of Raloxifene and Vitamin D Enhances Bone-to-Tendon Healing of the Rotator Cuff in a Rat Model. Am J Sports Med 2020; 48:2161-2169. [PMID: 32574070 DOI: 10.1177/0363546520927015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tearing and degeneration of the rotator cuff at the tendon-to-bone junction are common in adults aged ≥50 years. Few studies have reported on the relationship between estrogen and the rotator cuff enthesis. In addition to preventing bone loss, selective estrogen receptor modulators have been shown to improve tendon and muscle quality. PURPOSE To evaluate the effects of raloxifene (RLX) and vitamin D on rotator cuff tendon-to-bone healing in a rat model. STUDY DESIGN Controlled laboratory study. METHODS A total of 29 female rats (58 shoulders) were assigned to 4 groups: (1) control group, (2) ovariectomy (OVX)-only group, (3) no RLX group (OVX and rotator cuff repair [RCR]), and (4) RLX group (OVX, RCR, and RLX). Rats that did not undergo rotator cuff tear (RCT) surgery were divided into the control and OVX-only groups according to OVX surgery. Rats that underwent RCT surgery and RCR were divided into the no RLX and RLX groups according to RLX and vitamin D administration. An estrogen-deficient state was induced by OVX at 12 weeks of age. Bone mineral density (BMD) and trabecular bone characteristics were measured by micro-computed tomography, and healing of the tendon-to-bone junction was evaluated by biomechanical testing, histomorphometry, and micro-magnetic resonance imaging (MRI). RESULTS The mean final body weight (BW; 461.6 ± 47.3 g) of the OVX-only group was significantly higher and BMD (0.25 ± 0.07 g/cm3) was significantly lower (P < .001) than the mean final BW (338.5 ± 35.1 g) and BMD (0.48 ± 0.05 g/cm3) of the control group. In contrast, the RLX group showed that the BW (369.6 ± 35.8 g) and BMD (0.41 ± 0.08 g/cm3) were not significantly different from the control group. The RLX group had a significantly higher histomorphometric total score (8.50 ± 1.05) than the no RLX group (4.83 ± 2.48). On biomechanical testing, the RLX group (29.7 ± 9.1 N) showed a significantly higher load to failure than the no RLX group (19.4 ± 8.8 N). On micro-MRI, the RLX group had a more homogeneous low signal and tendon continuity than the no RLX group. CONCLUSION The combination treatment of RLX and vitamin D prevented a decrease in local BMD (greater tuberosity of the proximal humerus) and enhanced tendon-to-bone healing of the rotator cuff in a rat model. CLINICAL RELEVANCE This study induced an estrogen-deficient state similar to the human postmenopausal state and used drugs that are actually being prescribed in a clinical situation.
Collapse
Affiliation(s)
- Dong Min Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Orthopedic Surgery, Kangnam Korea Hospital, Seoul, Republic of Korea
| | - In Kyoung Shim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Myung Jin Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Choi
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Na Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Ho Jeon
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyojune Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dongjun Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Erica Kholinne
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Orthopedic Surgery, St Carolus Hospital, Jakarta, Indonesia
| | - Kyoung-Hwan Koh
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Vitamin D in Synaptic Plasticity, Cognitive Function, and Neuropsychiatric Illness. Trends Neurosci 2019; 42:293-306. [PMID: 30795846 DOI: 10.1016/j.tins.2019.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Over a billion people worldwide are affected by vitamin D deficiency. Although vitamin D deficiency is associated with impaired cognition, the mechanisms mediating this link are poorly understood. The extracellular matrix (ECM) has now emerged as an important participant of synaptic plasticity and a new hypothesis is that vitamin D may interact with aggregates of the ECM, perineuronal nets (PNNs), to regulate brain plasticity. Dysregulation of PNNs caused by vitamin D deficiency may contribute to the presentation of cognitive deficits. Understanding the molecular mechanisms underpinning the role of vitamin D in brain plasticity and cognition could help identify ways to treat cognitive symptoms in schizophrenia and other neuropsychiatric conditions.
Collapse
|
10
|
He Y, Liu Y, Wang QZ, Guo F, Huang F, Ji L, An T, Qin G. Vitamin D 3 Activates Phosphatidylinositol-3-Kinase/Protein Kinase B via Insulin-Like Growth Factor-1 to Improve Testicular Function in Diabetic Rats. J Diabetes Res 2019; 2019:7894950. [PMID: 31281852 PMCID: PMC6589201 DOI: 10.1155/2019/7894950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE In diabetes mellitus, vitamin D3 deficiency affects sex hormone levels and male fertility; however, the mechanism leading to the disorder is unclear. This research was designed to investigate the mechanism of vitamin D3 deficiency and hypogonadism in diabetic rats. Our aim was to assess serum vitamin D3 levels and the relationship among vitamin D3, insulin-like growth factor-1 (IGF-1), and testicular function. MATERIALS AND METHODS Rats with streptozotocin-induced diabetes were randomly divided into four groups and treated with different doses of vitamin D3: no vitamin D3, low (0.025 μg/kg/day), high (0.1 μg/kg/day), and high (0.1 μg/kg/day) with JB-1 (the insulin-like growth factor-1 receptor inhibitor group, 100 μg/kg/day). The groups were compared with wild-type rats, which function as the control group. Various parameters such as vitamin D3 and IGF-1 were compared between the experimental and wild-type groups, and their correlations were determined. RESULTS Twelve weeks of vitamin D3 supplementation improved the testosterone levels, as shown by the increase in the level of serum IGF-1 in diabetic rats. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), which was a downstream of the signaling pathway of IGF-1, was significantly increased after vitamin D3 treatment. CONCLUSIONS The study shows that vitamin D3 may promote the expression of testosterone and improve testicular function in diabetic rats by activating PI3K/AKT via IGF-1.
Collapse
Affiliation(s)
- Yanyan He
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Liu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qing-Zhu Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fengjuan Huang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Linlin Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tingting An
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Pandey VK, Mathur A, Kakkar P. Emerging role of Unfolded Protein Response (UPR) mediated proteotoxic apoptosis in diabetes. Life Sci 2018; 216:246-258. [PMID: 30471281 DOI: 10.1016/j.lfs.2018.11.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) is a crucial single membrane organelle that acts as a quality control system for cellular proteins as it is intricately involved in their synthesis, folding and trafficking to the respective targets. Type 2 diabetes is characterized by enhanced blood glucose level that promotes insulin resistance and hampers cellular glucose metabolism. Hyperglycemia provokes mitochondrial ROS production and glycation of proteins which exert a tremendous load on ER for conventional refolding of misfolded/unfolded and nascent proteins that perturb ER homeostasis resulting in apoptotic cell death. Impairment in ER functions is suspected to be through specific ER membrane-bound proteins known as Unfolded Protein Response (UPR) sensor proteins. Conformational changes in these proteins induce oligomerization and cross-autophosphorylation which facilitate processes required for the restoration of ER homeostatic imbalance. Multiple studies have reported the involvement of UPR mediated autophagy and apoptotic pathways in the progression of metabolic disorders including diabetes, cardiac ischemia/reperfusion injury and hypoxia-mediated cell death. In this review, the involvement of UPR pathways in the progression of diabetes associated complications have been addressed, which underscores molecular crosstalks during neuropathy, nephropathy, hepatic injury and retinopathy. A better understanding of these molecular interventions may reveal advanced therapeutic approaches for preventing diabetic comorbidities. The article also highlights the importance of phytochemicals that are emerging as novel ER stress inhibitors and are being explored for targeted interaction in preventing cell death responses during diabetes.
Collapse
Affiliation(s)
- Vivek Kumar Pandey
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Alpana Mathur
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Poonam Kakkar
- Herbal Research Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, M.G Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
12
|
Abhishek A, Benita S, Kumari M, Ganesan D, Paul E, Sasikumar P, Mahesh A, Yuvaraj S, Ramprasath T, Selvam GS. Molecular analysis of oxalate-induced endoplasmic reticulum stress mediated apoptosis in the pathogenesis of kidney stone disease. J Physiol Biochem 2017; 73:561-573. [PMID: 28875258 DOI: 10.1007/s13105-017-0587-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
Abstract
Oxalate, a non-essential end product of metabolism, causes hyperoxaluria and eventually calcium oxalate (CaOx) stone disease. Kidney cells exposed to oxalate stress results in generation of reactive oxygen species (ROS) and progression of stone formation. Perturbations in endoplasmic reticulum (ER) result in accumulation of misfolded proteins and Ca2+ ions homeostasis imbalance and serve as a common pathway for various diseases, including kidney disorders. ER stress induces up-regulation of pro-survival protein glucose-regulated protein 78 (GRP78) and pro-apoptotic signaling protein C/EBP homologous protein (CHOP). Since the association of oxalate toxicity and ER stress on renal cell damage is uncertain, the present study is an attempt to elucidate the interaction of GRP78 with oxalate by computational analysis and study the role of ER stress in oxalate-mediated apoptosis in vitro and in vivo. Molecular docking results showed that GRP78-oxalate/CaOx interaction takes place. Oxalate stress significantly up-regulated expression of ER stress markers GRP78 and CHOP both in vitro and in vivo. Exposure of oxalate increased ROS generation and altered antioxidant enzyme activities. N-Acetyl cysteine treatment significantly ameliorated oxalate-mediated oxidative stress and moderately attenuated ER stress marker expression. The result indicates oxalate toxicity initiated oxidative stress-induced ER stress and also activating ER stress mediated apoptosis directly. In addition, the up-regulation of transforming growth factor β-1 revealed oxalate may induce kidney fibrosis through ER stress-mediated mechanisms. The present study provide insights into the pathogenic role of oxidative and ER stress by oxalate exposure in the formation of calcium oxalate stone.
Collapse
Affiliation(s)
- Albert Abhishek
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Shaly Benita
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Monika Kumari
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Divya Ganesan
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Eldho Paul
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Ponnusamy Sasikumar
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Ayyavu Mahesh
- DBT-IPLS Programme, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Subramani Yuvaraj
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Govindan Sadasivam Selvam
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
- Department of Biochemistry, Centre for Advanced Studies in Functional Genomics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|