1
|
Gallagher KA, Tschowri N, Brennan RG, Schumacher MA, Buttner MJ. How c-di-GMP controls progression through the Streptomyces life cycle. Curr Opin Microbiol 2024; 80:102516. [PMID: 39059031 PMCID: PMC11497840 DOI: 10.1016/j.mib.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Members of the antibiotic-producing bacterial genus Streptomyces undergo a complex developmental life cycle that culminates in the production of spores. Central to control of this cell differentiation process is signaling through the second messenger 3', 5'-cyclic diguanylic acid (c-di-GMP). So far, three proteins that are directly controlled by c-di-GMP in Streptomyces have been functionally and structurally characterized: the key developmental regulators BldD and σWhiG, and the glycogen-degrading enzyme GlgX. c-di-GMP signals through BldD and σWhiG, respectively, to control the two most dramatic transitions of the Streptomyces life cycle, the formation of the reproductive aerial hyphae and their differentiation into spore chains. Later in development, c-di-GMP activates GlgX-mediated degradation of glycogen, releasing stored carbon for spore maturation.
Collapse
Affiliation(s)
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
2
|
Hsieh ML, Kiel N, Jenkins L, Ng WL, Knipling L, Waters C, Hinton D. The Vibrio cholerae master regulator for the activation of biofilm biogenesis genes, VpsR, senses both cyclic di-GMP and phosphate. Nucleic Acids Res 2022; 50:4484-4499. [PMID: 35438787 PMCID: PMC9071405 DOI: 10.1093/nar/gkac253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Vibrio cholerae biofilm formation/maintenance is controlled by myriad factors; chief among these are the regulator VpsR and cyclic di-guanosine monophosphate (c-di-GMP). VpsR has strong sequence similarity to enhancer binding proteins (EBPs) that activate RNA polymerase containing sigma factor σ54. However, we have previously shown that transcription from promoters within the biofilm biogenesis/maintenance pathways uses VpsR, c-di-GMP and RNA polymerase containing the primary sigma factor (σ70). Previous work suggested that phosphorylation of VpsR at a highly conserved aspartate, which is phosphorylated in other EBPs, might also contribute to activation. Using the biofilm biogenesis promoter PvpsL, we show that in the presence of c-di-GMP, either wild type or the phospho-mimic VpsR D59E activates PvpsL transcription, while the phospho-defective D59A variant does not. Furthermore, when c-di-GMP levels are low, acetyl phosphate (Ac∼P) is required for significant VpsR activity in vivo and in vitro. Although these findings argue that VpsR phosphorylation is needed for activation, we show that VpsR is not phosphorylated or acetylated by Ac∼P and either sodium phosphate or potassium phosphate, which are not phosphate donors, fully substitutes for Ac∼P. We conclude that VpsR is an unusual regulator that senses phosphate directly, rather than through phosphorylation, to aid in the decision to form/maintain biofilm.
Collapse
Affiliation(s)
- Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Niklas Kiel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Lisa M Miller Jenkins
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher M Waters
- Correspondence may also be addressed to Christopher M. Waters. Tel: +1 517 884 5360; Fax: +1 517 355 6463;
| | - Deborah M Hinton
- To whom correspondence should be addressed. Tel: +1 301 496 9885; Fax: +1 301 402 0053;
| |
Collapse
|
3
|
Banerjee P, Sahoo PK, Sheenu, Adhikary A, Ruhal R, Jain D. Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Mol Aspects Med 2021; 81:101001. [PMID: 34311995 DOI: 10.1016/j.mam.2021.101001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/09/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and is the primary cause of nosocomial infections. Biofilm formation by this organism results in chronic and hard to eradicate infections. The intracellular signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a secondary messenger in bacterial cells crucial for motile to sessile transition. The signalling pathway components encompass two classes of enzymes with antagonistic activities, the diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that regulate the cellular levels of c-di-GMP at distinct stages of biofilm initiation, maturation and dispersion. This review summarizes the structural analysis and functional studies of the DGCs and PDEs involved in biofilm regulation in P. aeruginosa. In addition, we also describe the effector proteins that sense the perturbations in c-di-GMP levels to elicit a functional output. Finally, we discuss possible mechanisms that allow the dynamic levels of c-di-GMP to regulate cognate cellular response. Uncovering the details of the regulation of the c-di-GMP signalling pathway is vital for understanding the behaviour of the pathogen and characterization of novel targets for anti-biofilm interventions.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Pankaj Kumar Sahoo
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Anirban Adhikary
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Rohit Ruhal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
4
|
Aline Dias da P, Nathalia Marins de A, Gabriel Guarany de A, Robson Francisco de S, Cristiane Rodrigues G. The World of Cyclic Dinucleotides in Bacterial Behavior. Molecules 2020; 25:molecules25102462. [PMID: 32466317 PMCID: PMC7288161 DOI: 10.3390/molecules25102462] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The regulation of multiple bacterial phenotypes was found to depend on different cyclic dinucleotides (CDNs) that constitute intracellular signaling second messenger systems. Most notably, c-di-GMP, along with proteins related to its synthesis, sensing, and degradation, was identified as playing a central role in the switching from biofilm to planktonic modes of growth. Recently, this research topic has been under expansion, with the discoveries of new CDNs, novel classes of CDN receptors, and the numerous functions regulated by these molecules. In this review, we comprehensively describe the three main bacterial enzymes involved in the synthesis of c-di-GMP, c-di-AMP, and cGAMP focusing on description of their three-dimensional structures and their structural similarities with other protein families, as well as the essential residues for catalysis. The diversity of CDN receptors is described in detail along with the residues important for the interaction with the ligand. Interestingly, genomic data strongly suggest that there is a tendency for bacterial cells to use both c-di-AMP and c-di-GMP signaling networks simultaneously, raising the question of whether there is crosstalk between different signaling systems. In summary, the large amount of sequence and structural data available allows a broad view of the complexity and the importance of these CDNs in the regulation of different bacterial behaviors. Nevertheless, how cells coordinate the different CDN signaling networks to ensure adaptation to changing environmental conditions is still open for much further exploration.
Collapse
|
5
|
Gallagher KA, Schumacher MA, Bush MJ, Bibb MJ, Chandra G, Holmes NA, Zeng W, Henderson M, Zhang H, Findlay KC, Brennan RG, Buttner MJ. c-di-GMP Arms an Anti-σ to Control Progression of Multicellular Differentiation in Streptomyces. Mol Cell 2020; 77:586-599.e6. [PMID: 31810759 PMCID: PMC7005675 DOI: 10.1016/j.molcel.2019.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
Streptomyces are our primary source of antibiotics, produced concomitantly with the transition from vegetative growth to sporulation in a complex developmental life cycle. We previously showed that the signaling molecule c-di-GMP binds BldD, a master repressor, to control initiation of development. Here we demonstrate that c-di-GMP also intervenes later in development to control differentiation of the reproductive hyphae into spores by arming a novel anti-σ (RsiG) to bind and sequester a sporulation-specific σ factor (σWhiG). We present the structure of the RsiG-(c-di-GMP)2-σWhiG complex, revealing an unusual, partially intercalated c-di-GMP dimer bound at the RsiG-σWhiG interface. RsiG binds c-di-GMP in the absence of σWhiG, employing a novel E(X)3S(X)2R(X)3Q(X)3D motif repeated on each helix of a coiled coil. Further studies demonstrate that c-di-GMP is essential for RsiG to inhibit σWhiG. These findings reveal a newly described control mechanism for σ-anti-σ complex formation and establish c-di-GMP as the central integrator of Streptomyces development.
Collapse
Affiliation(s)
- Kelley A. Gallagher
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA,Corresponding author
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maureen J. Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Wenjie Zeng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Max Henderson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hengshan Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard G. Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK,Corresponding author
| |
Collapse
|
6
|
Wang F, He Q, Yin J, Xu S, Hu W, Gu L. BrlR from Pseudomonas aeruginosa is a receptor for both cyclic di-GMP and pyocyanin. Nat Commun 2018; 9:2563. [PMID: 29967320 PMCID: PMC6028453 DOI: 10.1038/s41467-018-05004-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/07/2018] [Indexed: 01/10/2023] Open
Abstract
The virulence factor pyocyanin and the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP) play key roles in regulating biofilm formation and multi-drug efflux pump expression in Pseudomonas aeruginosa. However, the crosstalk between these two signaling pathways remains unclear. Here we show that BrlR (PA4878), previously identified as a c-di-GMP responsive transcriptional regulator, acts also as a receptor for pyocyanin. Crystal structures of free BrlR and c-di-GMP-bound BrlR reveal that the DNA-binding domain of BrlR contains two separate c-di-GMP binding sites, both of which are involved in promoting brlR expression. In addition, we identify a pyocyanin-binding site on the C-terminal multidrug-binding domain based on the structure of the BrlR-C domain in complex with a pyocyanin analog. Biochemical analysis indicates that pyocyanin enhances BrlR-DNA binding and brlR expression in a concentration-dependent manner. The virulence factor pyocyanin and the second messenger c-di-GMP regulate biofilm formation and antibiotic tolerance in Pseudomonas aeruginosa. Here, the authors perform structural and biochemical analyses to show that a transcriptional regulator, BrlR, acts as a receptor for both pyocyanin and c-di-GMP.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
| | - Qing He
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
| | - Jia Yin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.
| |
Collapse
|
7
|
Raju H, Sundararajan R, Sharma R. The structure of BrlR reveals a potential pyocyanin binding site. FEBS Lett 2018; 592:256-262. [PMID: 29251765 DOI: 10.1002/1873-3468.12950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/08/2022]
Abstract
The transcriptional regulator BrlR from Pseudomonas aeruginosa is a member of the MerR family of multidrug transport activators. Studies have shown that BrlR plays an important role in the drug tolerance of P. aeruginosa in biofilms. The tolerance to drugs can be enhanced by 3',5'-cyclic diguanylic acid (c-di-GMP). In the present study, we analyze the apo structure of BrlR and the direct binding between GyrI-like domain of BrlR and P. aeruginosa toxin pyocyanin. Furthermore, we show that pyocyanin can enhance the binding between BrlR and DNA in vitro. These findings suggest that BrlR can serve as the binding partner for both c-di-GMP and pyocyanin.
Collapse
Affiliation(s)
- Harikiran Raju
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Rukmini Sundararajan
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Rohan Sharma
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|