1
|
Yang J, Wu J, Xie X, Xia P, Lu J, Liu J, Bai L, Li X, Yu Z, Li H. Perilipin-2 mediates ferroptosis in oligodendrocyte progenitor cells and myelin injury after ischemic stroke. Neural Regen Res 2025; 20:2015-2028. [PMID: 39254564 PMCID: PMC11691472 DOI: 10.4103/nrr.nrr-d-23-01540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00024/figure1/v/2024-09-09T124005Z/r/image-tiff Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination. Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage. Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation, and plays an important role in the pathological process of ischemic stroke. However, there are few studies on oligodendrocyte progenitor cell ferroptosis. We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia. Bioinformatics analysis suggested that perilipin-2 (PLIN2) was involved in oligodendrocyte progenitor cell ferroptosis. PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation. For further investigation, we established a mouse model of cerebral ischemia/reperfusion. We found significant myelin damage after cerebral ischemia, as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area. The ferroptosis inhibitor, ferrostatin-1, rescued oligodendrocyte progenitor cell death and subsequent myelin injury. We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells. Plin2 knockdown rescued demyelination and improved neurological deficits. Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xueshun Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Pengfei Xia
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiale Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Lei Bai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Li CY, Zhang SJ, Xu JL, Yang Y, Zeng ZX, Ma DL. Inhibition of the microglial voltage-gated proton channel 1 channel ameliorates diabetes-associated cognitive dysfunction by regulating axon demyelination. World J Psychiatry 2025; 15:101178. [PMID: 40110018 PMCID: PMC11886324 DOI: 10.5498/wjp.v15.i3.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Diabetes is associated with increased cognitive decline and dementia due to the loss of myelinated nerve fiber function, which is linked to oligodendrocyte dysfunction. The voltage-gated proton channel 1 (Hv1) is important for the cellular proton extrusion machinery. However, its role in regulating diabetes-induced cognitive dysfunction is unclear. AIM To investigate the role of Hv1 in cognitive impairment induced by diabetes and its potential mechanisms, focusing on neuroinflammation, oligodendrocyte apoptosis, and axonal demyelination. METHODS A diabetes model was established by administering a high-fat diet and streptozotocin injections in mice. Hv1 knockout (KO) and wild-type mice were used to evaluate cognitive function via behavioral tests and neuroinflammation using immunofluorescence. Oligodendrocyte apoptosis was assessed with the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay, and axonal demyelination was analyzed using electron microscopy. RESULTS Hv1 expression was significantly increased in the corpus callosum of diabetic mice. Hv1 KO alleviated cognitive impairment, reduced oligodendrocyte apoptosis, and decreased the expression of inflammatory factors, including interleukin-1 and tumor necrosis factor-α, in diabetic mice. Electron microscopy revealed a reduction in myelin thickness and an increased g-ratio in diabetic mice, which were reversed by Hv1 KO. CONCLUSION Hv1 plays a role in diabetes-induced cognitive dysfunction by modulating neuroinflammation and myelin integrity. Hv1 KO demonstrates therapeutic potential in mitigating diabetes-related cognitive decline and associated complications.
Collapse
Affiliation(s)
- Chun-Yu Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| | - Shu-Jun Zhang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| | - Jia-Lu Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| | - Zhi-Xuan Zeng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| | - De-Lin Ma
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic Diseases, Wuhan 430030, Hubei Province, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, Hubei Province, China
| |
Collapse
|
3
|
Nan Y, Ni S, Liu M, Hu K. The emerging role of microglia in the development and therapy of multiple sclerosis. Int Immunopharmacol 2024; 143:113476. [PMID: 39476566 DOI: 10.1016/j.intimp.2024.113476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Microglia are innate immune cells that maintain homeostasis of the central nervous system (CNS) and affect various neurodegenerative diseases, especially multiple sclerosis (MS). MS is an autoimmune disease of the CNS characterized by persistent inflammation, diffuse axonal damage, and microglia activation. Recent studies have shown that microglia are extremely related to the pathological state of MS and play an important role in the development of MS. This article reviews the multiple roles of microglia in the progression of MS, including the regulatory role of microglia in inflammation, remyelination, oxidative stress, the influence of phagocytosis and antigen-presenting capacity of microglia, and the recent progress by using microglia as a target for MS therapy. Microglia modulation may be a potential way for better MS therapy.
Collapse
Affiliation(s)
- Yunrong Nan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuting Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei Liu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Miao L, Yuan Z, Zhang S, Zhang G. Honokiol alleviates monosodium urate-induced gouty pain by inhibiting voltage-gated proton channels in mice. Inflammopharmacology 2024; 32:2413-2425. [PMID: 38829504 DOI: 10.1007/s10787-024-01498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE To investigate whether honokiol (HNK) acted as an analgesic in connection with inhibiting the voltage-gated proton channel (Hv1). METHODS The model of gouty arthritis was induced by injecting monosodium urate (MSU) crystals into the hind ankle joint of mice. HNK was given by intragastric administration. Ankle swelling degree and mechanical allodynia were evaluated using ankle joint circumference measurement and von Frey filaments, respectively. Hv1 current, tail current, and action potential in dorsal root ganglion (DRG) neurons were recorded with patch-clamp techniques. RESULTS HNK (10, 20, 40 mg/kg) alleviated inflammatory response and mechanical allodynia in a dose-dependent manner. In normal DRG neurons, 50 µM Zn2+ or 2-GBI significantly inhibited the Hv1 current and the current density of Hv1 increased with increasing pH gradient. The amplitude of Hv1 current significantly increased on the 3rd after MSU treatment, and HNK dose-dependently reversed the upregulation of Hv1 current. Compared with MSU group, 40 mg/kg HNK shifted the activation curve to the direction of more positive voltage and increased reversal potential to the normal level. In addition, 40 mg/kg HNK reversed the down-regulation of tail current deactivation time constant (τtail) but did not alter the neuronal excitability of DRG neurons in gouty mice. CONCLUSION HNK may be a potential analgesic by inhibiting Hv1 current.
Collapse
Affiliation(s)
- Lurong Miao
- Department of Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ziqi Yuan
- Department of Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Shijia Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guangqin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
5
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Wu X, Singla S, Liu JJ, Hong L. The role of macrophage ion channels in the progression of atherosclerosis. Front Immunol 2023; 14:1225178. [PMID: 37588590 PMCID: PMC10425548 DOI: 10.3389/fimmu.2023.1225178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis is a complex inflammatory disease that affects the arteries and can lead to severe complications such as heart attack and stroke. Macrophages, a type of immune cell, play a crucial role in atherosclerosis initiation and progression. Emerging studies revealed that ion channels regulate macrophage activation, polarization, phagocytosis, and cytokine secretion. Moreover, macrophage ion channel dysfunction is implicated in macrophage-derived foam cell formation and atherogenesis. In this context, exploring the regulatory role of ion channels in macrophage function and their impacts on the progression of atherosclerosis emerges as a promising avenue for research. Studies in the field will provide insights into novel therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sidhant Singla
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jianhua J. Liu
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Shen Y, Luo Y, Liao P, Zuo Y, Jiang R. Role of the Voltage-Gated Proton Channel Hv1 in Nervous Systems. Neurosci Bull 2023; 39:1157-1172. [PMID: 37029856 PMCID: PMC10313628 DOI: 10.1007/s12264-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/20/2023] [Indexed: 04/09/2023] Open
Abstract
Hv1 is the only voltage-gated proton-selective channel in mammalian cells. It contains a conserved voltage-sensor domain, shared by a large class of voltage-gated ion channels, but lacks a pore domain. Its primary role is to extrude protons from the cytoplasm upon pH reduction and membrane depolarization. The best-known function of Hv1 is the regulation of cytosolic pH and the nicotinamide adenine dinucleotide phosphate oxidase-dependent production of reactive oxygen species. Accumulating evidence indicates that Hv1 is expressed in nervous systems, in addition to immune cells and others. Here, we summarize the molecular properties, distribution, and physiological functions of Hv1 in the peripheral and central nervous systems. We describe the recently discovered functions of Hv1 in various neurological diseases, including brain or spinal cord injury, ischemic stroke, demyelinating diseases, and pain. We also summarize the current advances in the discovery and application of Hv1-targeted small molecules in neurological diseases. Finally, we discuss the current limitations of our understanding of Hv1 and suggest future research directions.
Collapse
Affiliation(s)
- Yu Shen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yuncheng Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
8
|
Szanto TG, Feher A, Korpos E, Gyöngyösi A, Kállai J, Mészáros B, Ovari K, Lányi Á, Panyi G, Varga Z. 5-Chloro-2-Guanidinobenzimidazole (ClGBI) Is a Non-Selective Inhibitor of the Human H V1 Channel. Pharmaceuticals (Basel) 2023; 16:ph16050656. [PMID: 37242439 DOI: 10.3390/ph16050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
5-chloro-2-guanidinobenzimidazole (ClGBI), a small-molecule guanidine derivative, is a known effective inhibitor of the voltage-gated proton (H+) channel (HV1, Kd ≈ 26 μM) and is widely used both in ion channel research and functional biological assays. However, a comprehensive study of its ion channel selectivity determined by electrophysiological methods has not been published yet. The lack of selectivity may lead to incorrect conclusions regarding the role of hHv1 in physiological or pathophysiological responses in vitro and in vivo. We have found that ClGBI inhibits the proliferation of lymphocytes, which absolutely requires the functioning of the KV1.3 channel. We, therefore, tested ClGBI directly on hKV1.3 using a whole-cell patch clamp and found an inhibitory effect similar in magnitude to that seen on hHV1 (Kd ≈ 72 μM). We then further investigated ClGBI selectivity on the hKV1.1, hKV1.4-IR, hKV1.5, hKV10.1, hKV11.1, hKCa3.1, hNaV1.4, and hNaV1.5 channels. Our results show that, besides HV1 and KV1.3, all other off-target channels were inhibited by ClGBI, with Kd values ranging from 12 to 894 μM. Based on our comprehensive data, ClGBI has to be considered a non-selective hHV1 inhibitor; thus, experiments aiming at elucidating the significance of these channels in physiological responses have to be carefully evaluated.
Collapse
Affiliation(s)
- Tibor G Szanto
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Adam Feher
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eva Korpos
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Adrienn Gyöngyösi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Judit Kállai
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Beáta Mészáros
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztian Ovari
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Lányi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics & Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
9
|
Sarkar S. Microglial ion channels: Key players in non-cell autonomous neurodegeneration. Neurobiol Dis 2022; 174:105861. [PMID: 36115552 PMCID: PMC9617777 DOI: 10.1016/j.nbd.2022.105861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation is a critical pathophysiological hallmark of neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and traumatic brain injury (TBI). Microglia, the first responders of the brain, are the drivers of this neuroinflammation. Microglial activation, leading to induction of pro-inflammatory factors, like Interleukin 1-β (IL-1β), Tumor necrosis factor-α (TNFα), nitrites, and others, have been shown to induce neurodegeneration. Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce the risk of developing PD, but the mechanism underlying the microglial activation is still under active research. Recently, microglial ion channels have come to the forefront as potential drug targets in multiple neurodegenerative disorders, including AD and PD. Microglia expresses a variety of ion channels, including potassium channels, calcium channels, chloride channels, sodium channels, and proton channels. The diversity of channels present on microglia is responsible for the dynamic nature of these immune cells of the brain. These ion channels regulate microglial proliferation, chemotaxis, phagocytosis, antigen recognition and presentation, apoptosis, and cell signaling leading to inflammation, among other critical functions. Understanding the role of these ion channels and the signaling mechanism these channels regulate under pathological conditions is an active area of research. This review will be focusing on the roles of different microglial ion channels, and their potential role in regulating microglial functions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Dept. of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Zhang Z, Li X, Zhou H, Zhou J. NG2-glia crosstalk with microglia in health and disease. CNS Neurosci Ther 2022; 28:1663-1674. [PMID: 36000202 PMCID: PMC9532922 DOI: 10.1111/cns.13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases are increasingly becoming a global problem. However, the pathological mechanisms underlying neurodegenerative diseases are not fully understood. NG2‐glia abnormalities and microglia activation are involved in the development and/or progression of neurodegenerative disorders, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and cerebrovascular diseases. In this review, we summarize the present understanding of the interaction between NG2‐glia and microglia in physiological and pathological states and discuss unsolved questions concerning their fate and potential fate. First, we introduce the NG2‐glia and microglia in health and disease. Second, we formulate the interaction between NG2‐glia and microglia. NG2‐glia proliferation, migration, differentiation, and apoptosis are influenced by factors released from the microglia. On the other hand, NG2‐glia also regulate microglia actions. We conclude that NG2‐glia and microglia are important immunomodulatory cells in the brain. Understanding the interaction between NG2‐glia and microglia will help provide a novel method to modulate myelination and treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaolong Li
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Törnell A, Kiffin R, Haghighi S, Mossberg N, Andersen O, Hellstrand K, Martner A. Impact of CYBA genotypes on severity and progression of multiple sclerosis. Eur J Neurol 2022; 29:1457-1464. [PMID: 35073438 PMCID: PMC9303184 DOI: 10.1111/ene.15259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The NOX2 enzyme of myeloid cells generates reactive oxygen species (ROS) that have been implicated in the pathology of multiple sclerosis (MS). We aimed to determine the impact of genetic variation within CYBA, which encodes the functional CYBA/p22phox subunit of NOX2, on MS severity and progression. METHODS One hundred three MS patients with up to 49 (median = 17) years follow-up time from first MS diagnosis were genotyped at the single nucleotide polymorphisms rs1049254 and rs4673 within CYBA. Results were matched with disease severity and time to diagnosis of secondary progressive MS (SPMS). NOX2-mediated formation of ROS was measured by chemiluminescence in blood myeloid cells from healthy donors (n = 55) with defined genotypes at rs1049254 and rs4673. RESULTS The rs1049254/G and rs4673/A CYBA alleles were associated with reduced formation of ROS and were thus defined as low-ROS alleles. Patients carrying low-ROS alleles showed reduced multiple sclerosis severity score (p = 0.02, N = 103, linear regression) and delayed onset of SPMS (p = 0.02, hazard ratio [HR] = 0.46, n = 100, log-rank test). In a cohort examined after 2005, patients carrying low-ROS CYBA alleles showed >20 years longer time to secondary progression (p = 0.003, HR = 0.29, n = 59, log-rank test). CONCLUSIONS These results implicate NOX2 in MS, in particular for the development of secondary progressive disease, and point toward NOX2-reductive therapy aiming to delay secondary progression.
Collapse
Affiliation(s)
- Andreas Törnell
- Sahlgrenska Center for Cancer ResearchDepartment of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Roberta Kiffin
- Sahlgrenska Center for Cancer ResearchDepartment of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sara Haghighi
- Department of Clinical NeuroscienceInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Medical SpecialistsInstitute of NeurologyMotala HospitalMotalaSweden
| | - Natalia Mossberg
- Department of Clinical NeuroscienceInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Global Health Partner Neuro CenterCarlanderska HospitalGothenburgSweden
| | - Oluf Andersen
- Department of Clinical NeuroscienceInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Kristoffer Hellstrand
- Sahlgrenska Center for Cancer ResearchDepartment of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anna Martner
- Sahlgrenska Center for Cancer ResearchDepartment of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Wang W, Sun P, Han F, Wang C, Wang Y, Wang X, Cong L, Qu C. Transcriptome Sequencing Identifies Potential Biomarker for White Matter Lesions Diagnosis in the Hypertension Population. Neurochem Res 2021; 46:2079-2088. [PMID: 34037902 DOI: 10.1007/s11064-021-03346-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Hypertension is confirmed to be one of the major risk factors of leukoaraiosis (LA). However, the pathogenesis of LA is not completely understood and there is no reliable indicator for the early diagnosis of LA in the hypertensive population. This study was designed to explore the potential biomarker for LA diagnosis in patients with hypertension. And it serves as the basis for the further study of LA mechanism. In this study, This study included 110 subjects, including 50 in the LA group and 60 in the control group. First, we performed transcriptome sequencing and quantitative PCR (qPCR) in four samples from the LA group, and three from the control group (seven people) to identify relevant long non-coding RNAs (long ncRNAs or lncRNA). The 103 samples were used for qPCR validation of relevant lncRNAs and the results were consistent with the sequencing. In-depth bioinformatics analysis were performed on differentially expressed (DE) lncRNAs and mRNAs. Go-functional enrichment analysis was performed on DE mRNAs. Some DE mRNA were enriched to biological processes associated with LA, And some lncRNAs related to DE mRNAs were traceable through cis/trans analysis, suggesting that they might be regulated in some way. Additionally, potential biomarkers for LA diagnosis in the hypertension population were identified via RT-qPCR and receive operating characteristic curve (ROC) analysis of lncRNA. One lncRNA, AC020928.1, has been demonstrated to be potential biomarkers for LA diagnosis in the hypertension population. The results of the present study indicated that the lncRNA may have an important role in the pathogenesis of LA and may be a novel target for further research. As the relationship between lncRNAs and LA is just beginning to be unraveled, their specific mechanisms require further investigation.
Collapse
Affiliation(s)
- Wendi Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Pei Sun
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Fengyue Han
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Chunjuan Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Xiang Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| |
Collapse
|
13
|
He J, Ritzel RM, Wu J. Functions and Mechanisms of the Voltage-Gated Proton Channel Hv1 in Brain and Spinal Cord Injury. Front Cell Neurosci 2021; 15:662971. [PMID: 33897377 PMCID: PMC8063047 DOI: 10.3389/fncel.2021.662971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
The voltage-gated proton channel Hv1 is a newly discovered ion channel that is highly conserved among species. It is known that Hv1 is not only expressed in peripheral immune cells but also one of the major ion channels expressed in tissue-resident microglia of the central nervous systems (CNS). One key role for Hv1 is its interaction with NADPH oxidase 2 (NOX2) to regulate reactive oxygen species (ROS) and cytosolic pH. Emerging data suggest that excessive ROS production increases and requires proton currents through Hv1 in the injured CNS, and manipulations that ablate Hv1 expression or induce loss of function may provide neuroprotection in CNS injury models including stroke, traumatic brain injury, and spinal cord injury. Recent data demonstrating microglial Hv1-mediated signaling in the pathophysiology of the CNS injury further supports the idea that Hv1 channel may function as a key mechanism in posttraumatic neuroinflammation and neurodegeneration. In this review, we summarize the main findings of Hv1, including its expression pattern, cellular mechanism, role in aging, and animal models of CNS injury and disease pathology. We also discuss the potential of Hv1 as a therapeutic target for CNS injury.
Collapse
Affiliation(s)
- Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
14
|
Cojocaru A, Burada E, Bălșeanu AT, Deftu AF, Cătălin B, Popa-Wagner A, Osiac E. Roles of Microglial Ion Channel in Neurodegenerative Diseases. J Clin Med 2021; 10:jcm10061239. [PMID: 33802786 PMCID: PMC8002406 DOI: 10.3390/jcm10061239] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
As the average age and life expectancy increases, the incidence of both acute and chronic central nervous system (CNS) pathologies will increase. Understanding mechanisms underlying neuroinflammation as the common feature of any neurodegenerative pathology, we can exploit the pharmacology of cell specific ion channels to improve the outcome of many CNS diseases. As the main cellular player of neuroinflammation, microglia play a central role in this process. Although microglia are considered non-excitable cells, they express a variety of ion channels under both physiological and pathological conditions that seem to be involved in a plethora of cellular processes. Here, we discuss the impact of modulating microglia voltage-gated, potential transient receptor, chloride and proton channels on microglial proliferation, migration, and phagocytosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandru Cojocaru
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
| | - Adrian-Tudor Bălșeanu
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandru-Florian Deftu
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland;
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland
| | - Bogdan Cătălin
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (B.C.); (A.P.-W.)
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, 45147 Essen, Germany
- Correspondence: (B.C.); (A.P.-W.)
| | - Eugen Osiac
- Department of Biophysics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
15
|
Luo L, Song S, Ezenwukwa CC, Jalali S, Sun B, Sun D. Ion channels and transporters in microglial function in physiology and brain diseases. Neurochem Int 2020; 142:104925. [PMID: 33248207 DOI: 10.1016/j.neuint.2020.104925] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Microglial cells interact with all components of the central nervous system (CNS) and are increasingly recognized to play essential roles during brain development, homeostasis and disease pathologies. Functions of microglia include maintaining tissue integrity, clearing cellular debris and dead neurons through the process of phagocytosis, and providing tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. Changes of microglial ionic homeostasis (Na+, Ca2+, K+, H+, Cl-) are important for microglial activation, including proliferation, migration, cytokine release and reactive oxygen species production, etc. These are mediated by ion channels and ion transporters in microglial cells. Here, we review the current knowledge about the role of major microglial ion channels and transporters, including several types of Ca2+ channels (store-operated Ca2+ entry (SOCE) channels, transient receptor potential (TRP) channels and voltage-gated Ca2+ channels (VGCCs)) and Na+ channels (voltage-gated Na+ channels (Nav) and acid-sensing ion channels (ASICs)), K+ channels (inward rectifier K+ channels (Kir), voltage-gated K+ channels (KV) and calcium-activated K+ channels (KCa)), proton channels (voltage-gated proton channel (Hv1)), and Cl- channels (volume (or swelling)-regulated Cl- channels (VRCCs) and chloride intracellular channels (CLICs)). In addition, ion transporter proteins such as Na+/Ca2+ exchanger (NCX), Na+-K+-Cl- cotransporter (NKCC1), and Na+/H+ exchanger (NHE1) are also involved in microglial function in physiology and brain diseases. We discussed microglial activation and neuroinflammation in relation to the ion channel/transporter stimulation under brain disease conditions and therapeutic aspects of targeting microglial ion channels/transporters for neurodegenerative disease, ischemic stroke, traumatic brain injury and neuropathic pain.
Collapse
Affiliation(s)
- Lanxin Luo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Shayan Jalali
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Baoshan Sun
- Pólo DoisPortos, Instituto National de InvestigaçãoAgrária e Veterinária, I.P., Quinta da Almoinha, DoisPortos, 2565-191, Portugal.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
16
|
Li X, Yu Z, Zong W, Chen P, Li J, Wang M, Ding F, Xie M, Wang W, Luo X. Deficiency of the microglial Hv1 proton channel attenuates neuronal pyroptosis and inhibits inflammatory reaction after spinal cord injury. J Neuroinflammation 2020; 17:263. [PMID: 32891159 PMCID: PMC7487532 DOI: 10.1186/s12974-020-01942-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/25/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) causes neurological dysfunction with devastating consequences. SCI pathogenesis is accompanied by inflammasome activation and neuronal damage. But the spatial pattern and the time course of neuronal pyroptosis and apoptosis after SCI should be further elucidated. The microglial voltage-gated proton channel (Hv1) is implicated in reactive oxygen species (ROS)-induced neuronal damage following ischemic stroke. However, there is a lack of quantification on the neuronal pyroptosis and apoptosis associated with microglial Hv1 after SCI. METHODS We analyzed spatial and temporal characteristics of neuronal pyroptosis and apoptosis following SCI and investigated the effects of Hv1 deficiency on neuronal pyroptosis and the nod-like receptor 3 (NLRP3) inflammasome pathway by using a mouse model of SCI. We tested the effects of Hv1-deficient microglia on ROS production in vivo and examined the relationship between ROS and neuronal pyroptosis in vitro. RESULTS We observed that apoptosis was detected closer to the injury core than pyroptosis. The incidence of neuronal apoptosis peaked on day 1 after SCI and occurred before pyroptosis. Hv1 deficiency reduced neuronal apoptosis and NLRP3-inflammasome-mediated pyroptosis, improved axonal regeneration, and reduced motor deficits. SCI led to elevated ROS levels, whereas Hv1 deficiency downregulated microglial ROS generation. In vitro, ROS upregulated neuronal pyroptosis and activated the NLRP3 inflammasome pathway, both of which were reversed by addition of a ROS scavenger. Our results suggested that microglial Hv1 regulated neuronal apoptosis and NLRP3-induced neuronal pyroptosis after SCI by mediating ROS production. CONCLUSION Following SCI, neuronal pyroptosis lasted longer and occurred farther away from the injury core compared with that of neuronal apoptosis. Microglial Hv1 deficiency downregulated microglial ROS generation and reduced apoptosis and NLRP3-induced neuronal pyroptosis. Our findings may provide novel insights into Hv1-associated mechanisms underlying neuronal damage after SCI.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengfei Ding
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Li W, Ward R, Dong G, Ergul A, O'Connor P. Neurovascular protection in voltage-gated proton channel Hv1 knock-out rats after ischemic stroke: interaction with Na + /H + exchanger-1 antagonism. Physiol Rep 2020; 7:e14142. [PMID: 31250553 PMCID: PMC6597793 DOI: 10.14814/phy2.14142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Experimental studies have demonstrated protective effects of NHE‐1 inhibition on cardiac function; however, clinical trials utilizing NHE‐1 antagonists found an increase in overall mortality attributed to thromboembolic strokes. NADPH oxidase‐derived reactive oxygen species (ROS) from microglial cells have been shown to contribute to injury following stroke. We have recently demonstrated that NHE‐1 inhibition enhances ROS in macrophages in a Hv1‐dependent manner. As Hv1 protein is highly expressed in microglia, we hypothesized that “NHE‐1 inhibition may augment neurovascular injury by activating Hv1,” providing a potential mechanism for the deleterious effects of NHE‐1. The goal of this study was to determine whether neurovascular injury and functional outcomes after experimental stroke differed in wild‐type and Hv1 mutant Dahl salt‐sensitive rats treated with an NHE‐1 inhibitor. Stroke was induced using both transient and permanent of middle cerebral artery occlusion (MCAO). Animals received vehicle or NHE‐1 inhibitor KR32568 (2 mg/kg, iv) either 30 min after the start of MCAO or were pretreated (2 mg/kg, iv, day) for 3 days and then subjected to MCAO. Our data indicate that Hv1 deletion confers both neuronal and vascular protection after ischemia. In contrast to our hypothesis, inhibition of NHE‐1 provided further protection from ischemic stroke, and the beneficial effects of both pre‐ and post‐treatment with KR32568 were similar in wild‐type and Hv1−/− rats. These data indicate that Hv1 activation is unlikely to be responsible for the increased incidence of cerebrovascular events observed in the heart disease patients after NHE‐1 inhibition treatment.
Collapse
Affiliation(s)
- Weiguo Li
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Rebecca Ward
- Departments of Neuroscience & Regenerative Medicine, Augusta University, Augusta, Georgia
| | - Guangkuo Dong
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Adviye Ergul
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Paul O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia
| |
Collapse
|
18
|
Jiang CT, Wu WF, Deng YH, Ge JW. Modulators of microglia activation and polarization in ischemic stroke (Review). Mol Med Rep 2020; 21:2006-2018. [PMID: 32323760 PMCID: PMC7115206 DOI: 10.3892/mmr.2020.11003] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is one of the leading causes of mortality and disability worldwide. However, there is a current lack of effective therapies available. As the resident macrophages of the brain, microglia can monitor the microenvironment and initiate immune responses. In response to various brain injuries, such as ischemic stroke, microglia are activated and polarized into the proinflammatory M1 phenotype or the anti‑inflammatory M2 phenotype. The immunomodulatory molecules, such as cytokines and chemokines, generated by these microglia are closely associated with secondary brain damage or repair, respectively, following ischemic stroke. It has been shown that M1 microglia promote secondary brain damage, whilst M2 microglia facilitate recovery following stroke. In addition, autophagy is also reportedly involved in the pathology of ischemic stroke through regulating the activation and function of microglia. Therefore, this review aimed to provide a comprehensive overview of microglia activation, their functions and changes, and the modulators of these processes, including transcription factors, membrane receptors, ion channel proteins and genes, in ischemic stroke. The effects of autophagy on microglia polarization in ischemic stroke were also reviewed. Finally, future research areas of ischemic stroke and the implications of the current knowledge for the development of novel therapeutics for ischemic stroke were identified.
Collapse
Affiliation(s)
- Cheng-Ting Jiang
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wan-Feng Wu
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yi-Hui Deng
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Jin-Wen Ge
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
19
|
Zhang Z, Zheng X, Zhang X, Zhang Y, Huang B, Luo T. Aging alters Hv1-mediated microglial polarization and enhances neuroinflammation after peripheral surgery. CNS Neurosci Ther 2020; 26:374-384. [PMID: 31774629 PMCID: PMC7053237 DOI: 10.1111/cns.13271] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 02/05/2023] Open
Abstract
Perioperative neurocognitive disorders have been widely recognized as common adverse events after surgical intervention. Aging is one of the most important independent risk factors for worsened cognitive outcome, and this deterioration is linked to exacerbated microglia-mediated neuroinflammation in the aged brain. Under pathological stimulation, microglia are capable of polarizing toward proinflammatory M1 and anti-inflammatory M2 phenotypes. In the present study, we examined how aging affects microglial responses and neuroinflammation following peripheral surgery. Adult (2-3 months) and aged (18 months old) male C57/BL6 mice were subjected to tibial fracture or sham surgery. Aged mice exhibited higher level of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the hippocampus. The expression of synaptic protein synaptophysin (SYP) was also markedly reduced in the aged brain after the surgery. Both adult and aged mice showed significant increases in M1 microglial polarization (CD16/32). In contrast, tibial fracture surgery induced a decreased M2 microglial polarization (CD206, Ym1/2, Arg1) in aged brain but enhanced M2 microglial polarization in adult brain. Aged mice have upregulated voltage-gated proton channel (Hv1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit expression compared with adult mice. The percentage of CD16/32-positive M1 microglia colabeling with Hv1 was higher in aged mice after tibial fracture surgery. Thus, Hv1/NADPH oxidase upregulation in the aged brain may shift the dynamic equilibrium of microglial activation toward M1 polarization and exaggerate postoperative neuroinflammatory responses after peripheral surgical intervention.
Collapse
Affiliation(s)
- Zhi‐jing Zhang
- Department of AnesthesiologyPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeShantouChina
| | - Xin‐xun Zheng
- Department of AnesthesiologyPeking University Shenzhen HospitalShenzhenChina
| | - Xin‐yun Zhang
- Department of AnesthesiologyPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeShantouChina
| | - Yi Zhang
- Department of AnesthesiologyPeking University Shenzhen HospitalShenzhenChina
- Anhui Medical UniversityHefeiChina
| | - Bao‐yi Huang
- Department of AnesthesiologyPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeShantouChina
| | - Tao Luo
- Department of AnesthesiologyPeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|
20
|
Li X, Liu R, Yu Z, He D, Zong W, Wang M, Xie M, Wang W, Luo X. Microglial Hv1 exacerbates secondary damage after spinal cord injury in mice. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30272-2. [PMID: 32087974 DOI: 10.1016/j.bbrc.2020.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The pathological process of spinal cord injury (SCI) is complex, particularly during secondary damage that triggers a multiphasic glial reaction consisting of both detrimental and beneficial effects. Deletion of a novel voltage-gated proton channel (Hv1) functionally expressed in microglia has been shown to confer neuroprotection during ischemic stroke. Here, we hypothesized that microglial Hv1 may also participate in the process of SCI through modulating glial responses. To test this hypothesis, we employed an SCI model in Hv1-knockout (Hv1-/-) and wild type (WT) mice and assessed resulting microglial polarization, accumulation of pro-inflammatory cytokines, astrocytic activation, oligodendrocytic apoptosis, lesion sizes, and demyelinated areas. Compared with post-SCI results in WT mice, post-SCI Hv1-/- mice exhibited an M2-dominant microglial polarization, decreased accumulation of microglia, and reduced production of pro-inflammatory factors such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β). Additionally, Hv1-/- mice had significantly attenuated reactive astrogliosis and reduced expression of chondroitin sulphate proteoglycans (CSPGs) after SCI. Furthermore, Hv1 deficiency reduced SCI-induced oligodendrocytic apoptosis, demyelinated areas, and cavity formation. Collectively, our results provide the first evidence suggesting that microglial Hv1 may be a multi-mechanism therapeutic target for the treatment of SCI.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Yu Y, Luo X, Li C, Ding F, Wang M, Xie M, Yu Z, Ransom BR, Wang W. Microglial Hv1 proton channels promote white matter injuries after chronic hypoperfusion in mice. J Neurochem 2019; 152:350-367. [PMID: 31769505 DOI: 10.1111/jnc.14925] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
Microglia are critical in damage/repair processes during ischemic white matter injury (WMI). Voltage-gated proton channel (Hv1) is expressed in microglia and contributes to nicotinamide adenine dinucleotide phosphate oxidase complex-dependent production of reactive oxygen species (ROS). Recent findings have shown that Hv1 is involved in regulating luminal pH of M1-polarized microglial phagosomes and inhibits endocytosis in microglia. We previously reported that Hv1 facilitated production of ROS and pro-inflammatory cytokines in microglia and enhanced damage to oligodendrocyte progenitor cells from oxygen and glucose deprivation. To investigate the role of Hv1 in hypoperfusion-induced WMI, we employed mice that were genetically devoid of Hv1 (Hv1-/- ), as well as a model of subcortical vascular dementia via bilateral common carotid artery stenosis. Integrity of myelin was assessed using immunofluorescent staining and transmission electron microscopy, while cognitive impairment was assessed using an eight-arm radial maze test. Hv1 deficiency was found to attenuate bilateral common carotid artery stenosis-induced disruption of white matter integrity and impairment of working memory. Immunofluorescent staining and western blotting were used to assay changes in oligodendrocytes, OPCs, and microglial polarization. Compared with that in wild-type (WT) mice, Hv1-/- mice exhibited reduced ROS generation, decreased pro-inflammatory cytokines production, and an M2-dominant rather than M1-dominant microglial polarization. Furthermore, Hv1-/- mice exhibited enhanced OPC proliferation and differentiation into oligodendrocytes. Results of mouse-derived microglia-OPC co-cultures suggested that PI3K/Akt signaling was involved in Hv1-deficiency-induced M2-type microglial polarization and concomitant OPC differentiation. These results suggest that microglial Hv1 is a promising therapeutic target for reducing ischemic WMI and cognitive impairment.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengfei Ding
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bruce R Ransom
- Department of Neurology, University of Washington School of Medicine HMC, Seattle, WA, USA
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Tamoxifen promotes white matter recovery and cognitive functions in male mice after chronic hypoperfusion. Neurochem Int 2019; 131:104566. [PMID: 31593788 DOI: 10.1016/j.neuint.2019.104566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
Cerebral white matter lesions (WMLs) induced by chronic cerebral hypoperfusion are one of the major components of stroke pathology and closely associated with cognitive impairment. However, the repair and related pathophysiology of white matter after brain injury remains relatively elusive and underexplored. Successful neuroregeneration is a method for the potential treatment of central nervous system (CNS) disorders. A non-steroidal estrogen receptor modulator, Tamoxifen, is an effective inhibitor of cell-swelling-activated anion channels and can mimic neuroprotective effects of estrogen in experimental ischemic stroke. However, its remains unclear whether Tamoxifen has beneficial effects in the pathological process after WMLs. In the present study, we investigated the efficacy of Tamoxifen on multiple elements of oligovascular niche of the male C57BL/6 mice brain after bilateral carotid artery stenosis (BCAS) - induced WMLs. Tamoxifen was injected intraperitoneally once daily from 1 day after BCAS until 1 day before sacrificed. Following chronic hypoperfusion, BCAS mice presented white matter demyelination, loss of axon-glia integrity, activated inflammatory response, and cognitive impairments. Tamoxifen treatment significantly facilitated functional restoration of working memory impairment in mice after white matter injury, thus indicating a translational potential for this estrogen receptor modulator given its clinical safety and applicability for WMLs, which lack of currently available treatments. Furthermore, Tamoxifen treatment reduced microglia activation and inflammatory response, favored microglial polarization toward to the M2 phenotype, enhanced oligodendrocyte precursor cells proliferation and differentiation, and promoted remyelination after chronic hypoperfusion. Together, our data indicate that Tamoxifen could alleviate white matter injury and play multiple targets protective effects following chronic hypoperfusion, which is a promising candidate for the therapeutic target for ischemic WMLs and other demyelination diseases associated cognitive impairment.
Collapse
|
23
|
Tang S, Zhou J, Jing H, Liao M, Lin S, Huang Z, Huang T, Zhong J, HanbingWang. Functional roles of lncRNAs and its potential mechanisms in neuropathic pain. Clin Epigenetics 2019; 11:78. [PMID: 31092294 PMCID: PMC6521530 DOI: 10.1186/s13148-019-0671-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain (NP) is ranked as one of the major forms of chronic pain and emerges as a direct consequence of a lesion or disease affecting the somatosensory nervous system. Despite great advances into the mechanisms of NP, clinical practice is still not satisfactory. Fortunately, progress in elucidating unique features and multiple molecular mechanisms of long non-coding RNAs (lncRNAs) in NP has emerged in the past 10 years, suggesting that novel therapeutic strategies for pain treatment may be proposed. In this review, we will concentrate on recent studies associated with lncRNAs in NP. First, we will describe the alterations of lncRNA expression after spinal cord injury (SCI) and peripheral nerve injury (PNI), and then we illustrate the role of some specific lncRNAs in detail, which may offer new insights into our understanding of the etiology and pathophysiology of NP. Finally, we put special emphasis on the altered expression of lncRNAs in the diverse biological process of NP. Recent advances we summarized above in the development of NP may facilitate translation of these findings from bench to bedside in the future.
Collapse
Affiliation(s)
- Simin Tang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.,Sun Yet-sen University, Guangzhou, 510000, Guangdong Province, China
| | - Jun Zhou
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.
| | - Huan Jing
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.,ZunYi Medical University, ZunYi, 563100, China
| | - Meijuan Liao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Sen Lin
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Zhenxing Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Teng Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Jiying Zhong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - HanbingWang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| |
Collapse
|
24
|
Shan Y, Gao Y, Zhang L, Ma L, Shi Y, Liu X. H4 Receptor Inhibits Lipopolysaccharide-induced NF-κB Activation by Interacting with Tumor Necrosis Factor Receptor-Associated Factor 6. Neuroscience 2018; 398:113-125. [PMID: 30528857 DOI: 10.1016/j.neuroscience.2018.11.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are activated at the beginning of the inflammatory response and induce detrimental neuroinflammation by producing excessive pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) signaling facilitates the onset of microglia activation. However, the molecular mechanisms underlying the negative regulation of NF-κB remain to be fully elucidated. In the present study, our results indicated that H4R expression increased in a rat model of lipopolysaccharide (LPS)-induced CNS inflammation. Knockdown of H4R in microglia HAPI cells enhanced the production of cytokines following LPS stimulation. Co-immunoprecipitation experiments further revealed an interaction between H4R and tumor necrosis factor receptor-associated factor 6 (TRAF6) in microglia, which was verified both in vivo and in vitro. Our experimental results support our hypothesis that H4R interacts with TRAF6 to inhibit the release of inflammatory cytokines in LPS-induced microglia cells by decreasing TRAF6-mediated ubiquitination of K63. These findings provide theoretical and experimental evidence regarding the role of H4R in the microglia inflammatory response, which may aid in the development of novel treatments for inflammation.
Collapse
Affiliation(s)
- Yanfeng Shan
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China
| | - Yining Gao
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China
| | - Li Zhang
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China
| | - Lili Ma
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China
| | - Yuwen Shi
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China
| | - Xia Liu
- Department of Pathophysiology, Medical College of Nantong University, 19 Qixiu Street, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
25
|
Wu M, Xu L, Wang Y, Zhou N, Zhen F, Zhang Y, Qu X, Fan H, Liu S, Chen Y, Yao R. S100A8/A9 induces microglia activation and promotes the apoptosis of oligodendrocyte precursor cells by activating the NF-κB signaling pathway. Brain Res Bull 2018; 143:234-245. [PMID: 30266587 DOI: 10.1016/j.brainresbull.2018.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/23/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022]
Abstract
S100A8/A9, a heterodimer complex composed of calcium-binding proteins S100A8 and S100A9, is significantly increased in the serum of multiple sclerosis (MS) patients. Relevant reports have revealed that MS pathology is commonly associated with the activation of microglial cells and the damage of oligodendrocyte precursor cells (OPCs). Moreover, microglia activation following stimulation increases the expression of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), which further exacerbate the damage to OPCs. In this study, we were the first to confirm that S100A8/A9 treatment induced the activation, proliferation and migration of the murine microglia cell line BV-2; moreover, this treatment caused the cells to switch from an anti-inflammatory activated (M2) phenotype to a pro-inflammatory activated (M1) phenotype. Meanwhile, the level of the phosphorylated nuclear factor-κB (p-NF-κB) P65 protein was remarkably elevated, and the production of pro-inflammatory factors (IL-1β, TNF-α, MMP-9) and chemokines (CCL2, CCL3, CXCL10) was also increased in the S100A8/A9-treated BV-2 microglial cells. Inhibition of NF-κB P65 phosphorylation reversed the effects of S100A8/A9 on the production of pro-inflammatory factors and chemokines. We also explored the effects of S100A8/A9 and S100A8/A9-activated BV-2 microglial cells on the viability of OPCs. The results showed that both the S100A8/A9 complex and the conditioned medium (CM) of the S100A8/A9-activated BV-2 microglial cells resulted in OPC apoptosis, which was more pronounced in the case of the CM treatment. However, OPC apoptosis in the CM group was obviously decreased through the inhibition of NF-κB p65 phosphorylation. This study indicates that S100A8/A9 induces the activation of BV-2 microglial cells and promotes the production of pro-inflammatory factors by activating the NF-κB signaling pathway, which further exacerbates OPC damage.
Collapse
Affiliation(s)
- Meili Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Lu Xu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Yu Wang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Ning Zhou
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Fei Zhen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Ying Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Hongbin Fan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Sihan Liu
- Department of Rehabilitation, The First People's Hospital of Changzhou, Jiangsu, 213000, PR China
| | - Yan Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China.
| |
Collapse
|