1
|
Haskell A, Pan S, Reese R, Powers A, Lopez MG, Lomeli S, Story C, Benton J, Blazier JC, Kaunas R, Gregory CA. Antisense mediated blockade of Dickkopf 1 attenuates tumor survival, metastases and bone damage in experimental osteosarcoma. Sci Rep 2025; 15:1878. [PMID: 39805917 PMCID: PMC11730318 DOI: 10.1038/s41598-024-84037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy. The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) has been implicated in bone destruction, tumor survival and metastases during OS. We examined the role of Dkk-1 in OS disease progression and explored strategies for targeting its activity. Dkk-1 enhances OS survival by amplifying a non-canonical Wnt pathway that upregulates aldehyde dehydrogenase 1A1. Targeting of Dkk-1 transcription with a vivo morpholino (DkkMo) reduced OS survival and enhanced osteogenic activity of OS in vitro. DkkMo as a single agent slowed tumor expansion, increased tumor necrosis, inhibited metastases and preserved bone in a PDX model of OS. DkkMo also reduced the frequency of dividing tumor cells and reinitiated a regenerative osteogenic phenotype in tumors and stroma while reducing infiltration of inflammatory cells. These findings indicate that DkkMo has the potential to safely target osteosarcoma growth, survival, metastases and bone destruction.
Collapse
Affiliation(s)
- Andrew Haskell
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Simin Pan
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Robert Reese
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX, USA
| | - Anthony Powers
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX, USA
| | - Megan G Lopez
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Sebastian Lomeli
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Christopher Story
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - Joshua Benton
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| | - J Chris Blazier
- Texas A&M Institute for Genome Sciences and Society, College Station, TX, USA
| | - Roland Kaunas
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX, USA
| | - Carl A Gregory
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, TX, 77807, USA.
| |
Collapse
|
2
|
Zhao Y, Xun D, Chen J, Qi X. A novel machine learning-based immune prognostic signature for improving clinical outcomes and guiding therapy in colorectal cancer: an integrated bioinformatics and experimental study. BMC Cancer 2025; 25:65. [PMID: 39794799 PMCID: PMC11724613 DOI: 10.1186/s12885-025-13437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Immune cells are pivotal components in the tumor microenvironment (TME), which can interact with tumor cells and significantly influence cancer progression and therapeutic outcomes. Therefore, classifying cancer patients based on the status of immune cells within the TME is increasingly recognized as an effective approach to identify prognostic biomarkers, paving the way for more effective and personalized cancer treatments. Considering the high incidence and mortality of colorectal cancer (CRC), in this study, an integrated machine learning survival framework incorporating 93 different algorithmic combinations was utilized to determine the optimal strategy for developing an immune-related prognostic signature (IRPS) based on the average C-index across the four CRC cohorts. Notably, IRPS was demonstrated to be an independent risk factor for predicting the survival outcomes of CRC patients, showing superior performance compared to traditional clinical features and 63 published signatures in both training and validation cohorts. Furthermore, CRC patients classified in the low-risk group according to the IRPS showed higher sensitivity to immunotherapy than those in the high-risk group, suggesting that low-risk patients are more likely to benefit from immunotherapy. Through in silico screening of potential compounds, dasatinib, vinblastine, and YM-155 were identified as potential therapeutic agents for high-risk CRC patients. In vitro studies demonstrated that knockdown of APCDD1, a key component of the IRPS, inhibited the proliferation, migration and invasion of HT-29 cells and promoted their apoptosis. Thus, the IRPS serve as a powerful tool for predicting patient prognosis, immunotherapy response and candidate drugs, thereby enhancing clinical decision-making and treatment evaluation of CRC.
Collapse
Affiliation(s)
- Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Dexu Xun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
3
|
Sarwar MS, Ramirez CN, Dina Kuo HC, Chou P, Wu R, Sargsyan D, Yang Y, Shannar A, Mary Peter R, Yin R, Wang Y, Su X, Kong AN. The environmental carcinogen benzo[a]pyrene regulates epigenetic reprogramming and metabolic rewiring in a two-stage mouse skin carcinogenesis model. Carcinogenesis 2023; 44:436-449. [PMID: 37100755 PMCID: PMC10414144 DOI: 10.1093/carcin/bgad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/28/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in the world. Environmental exposure to carcinogens is one of the major causes of NMSC initiation and progression. In the current study, we utilized a two-stage skin carcinogenesis mouse model generated by sequential exposure to cancer-initiating agent benzo[a]pyrene (BaP) and promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA), to study epigenetic, transcriptomic and metabolic changes at different stages during the development of NMSC. BaP/TPA caused significant alterations in DNA methylation and gene expression profiles in skin carcinogenesis, as evidenced by DNA-seq and RNA-seq analysis. Correlation analysis between differentially expressed genes and differentially methylated regions found that the mRNA expression of oncogenes leucine rich repeat LGI family member 2 (Lgi2), kallikrein-related peptidase 13 (Klk13) and SRY-Box transcription factor (Sox5) are correlated with the promoter CpG methylation status, indicating BaP/TPA regulates these oncogenes through regulating their promoter methylation at different stages of NMSC. Pathway analysis identified that the modulation of macrophage-stimulating protein-recepteur d'origine nantais and high-mobility group box 1 signaling pathways, superpathway of melatonin degradation, melatonin degradation 1, sirtuin signaling and actin cytoskeleton signaling pathways are associated with the development of NMSC. The metabolomic study showed BaP/TPA regulated cancer-associated metabolisms like pyrimidine and amino acid metabolisms/metabolites and epigenetic-associated metabolites, such as S-adenosylmethionine, methionine and 5-methylcytosine, indicating a critical role in carcinogen-mediated metabolic reprogramming and its consequences on cancer development. Altogether, this study provides novel insights integrating methylomic, transcriptomic and metabolic-signaling pathways that could benefit future skin cancer treatment and interception studies.
Collapse
Affiliation(s)
- Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christina N Ramirez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Pochung Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rebecca Mary Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Twenhafel L, Moreno D, Punt T, Kinney M, Ryznar R. Epigenetic Changes Associated with Osteosarcoma: A Comprehensive Review. Cells 2023; 12:1595. [PMID: 37371065 DOI: 10.3390/cells12121595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Osteosarcoma is the most common malignant primary bone tumor in children and adolescents. While clinical outcomes have improved, the 5-year survival rate is only around 60% if discovered early and can require debilitating treatments, such as amputations. A better understanding of the disease could lead to better clinical outcomes for patients with osteosarcoma. One promising avenue of osteosarcoma research is in the field of epigenetics. This research investigates changes in genetic expression that occur above the genome rather than in the genetic code itself. The epigenetics of osteosarcoma is an active area of research that is still not fully understood. In a narrative review, we examine recent advances in the epigenetics of osteosarcoma by reporting biomarkers of DNA methylation, histone modifications, and non-coding RNA associated with disease progression. We also show how cancer tumor epigenetic profiles are being used to predict and improve patient outcomes. The papers in this review cover a large range of epigenetic target genes and pathways that modulate many aspects of osteosarcoma, including but not limited to metastases and chemotherapy resistance. Ultimately, this review will shed light on the recent advances in the epigenetics of osteosarcoma and illustrate the clinical benefits of this field of research.
Collapse
Affiliation(s)
- Luke Twenhafel
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - DiAnna Moreno
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Trista Punt
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Madeline Kinney
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Rebecca Ryznar
- Department of Biomedical Sciences, Rocky Vista University, Englewood, CO 80112, USA
| |
Collapse
|
5
|
Wan R, Yang G, Liu Q, Fu X, Liu Z, Miao H, Liu H, Huang W. PKIB involved in the metastasis and survival of osteosarcoma. Front Oncol 2022; 12:965838. [PMID: 36072791 PMCID: PMC9441607 DOI: 10.3389/fonc.2022.965838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Osteosarcoma is frequently metastasized at the time of diagnosis in patients. However, the underlying mechanism of osteosarcoma metastasis remains poorly understood. In this study, we evaluated DNA methylation profiles combined with gene expression profiles of 21 patients with metastatic osteosarcoma and 64 patients with non-metastatic osteosarcoma from TARGET database and identified PKIB and AIM2 as hub genes related to the metastasis of osteosarcoma. To verify the effects of PKIB on migration and invasion of osteosarcoma, we performed wound-healing assay and transwell assay. The results showed that PKIB significantly inhibited the migration and invasion of osteosarcoma cells, and the Western blot experiments showed that the protein level of E-cad was upregulated and of VIM was downregulated in 143-B cell recombinant expression PKIB. These results indicate that PKIB inhibit the metastasis of osteosarcoma. CCK-8 assay results showed that PKIB promote the proliferation of osteosarcoma. In addition, the Western blot results showed that the phosphorylation level of Akt was upregulated in 143-B cells overexpressing PKIB, indicating that PKIB promotes the proliferation of osteosarcoma probably through signaling pathway that Akt involved in. These results give us clues that PKIB was a potential target for osteosarcoma therapy. Furthermore, combined clinical profiles analysis showed that the expression of AIM2- and PKIB- related risk scores was significantly related to the overall survival of patients with osteosarcoma. Thus, we constructed a nomogram based on AIM2 and PKIB expression–related risk scores for osteosarcoma prognostic assessment to predict the 1-, 2-, 3-, and 5-year overall survival rate of patients with metastatic osteosarcoma, assisting clinicians in the diagnosis and treatment of metastatic osteosarcoma.
Collapse
Affiliation(s)
- Rongxue Wan
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Gu Yang
- Guangdong Innovation Platform for Translation of 3D Printing Application, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Qianzhen Liu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaokang Fu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zengping Liu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- The Key Laboratory of Diagnosis and Repair in Liver Injury, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Huilai Miao, ; Huan Liu, ; Wenhua Huang,
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Huilai Miao, ; Huan Liu, ; Wenhua Huang,
| | - Wenhua Huang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Innovation Platform for Translation of 3D Printing Application, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- *Correspondence: Huilai Miao, ; Huan Liu, ; Wenhua Huang,
| |
Collapse
|
6
|
Tan X, Zeng C, Li H, Tan Y, Zhu H. Circ0038632 modulates MiR-186/DNMT3A axis to promote proliferation and metastasis in osteosarcoma. Front Oncol 2022; 12:939994. [PMID: 36059626 PMCID: PMC9434371 DOI: 10.3389/fonc.2022.939994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Osteosarcoma is a highly malignant solid tumor with poor prognosis, early metastasis, and rapid progression and has a high mortality rate, in which better therapeutic strategies are needed. Circ0038632, also known as circPLK1, is a tumor promotor in multiple cancers. However, its biological functions and molecular regulatory mechanisms in osteosarcoma remain unclear. To ascertain the function of circ0038632 in osteosarcoma, we checked its expression in cells and in tissues and tested its abilities of proliferation and migration. Expression experiment manifested that circ0038632 showed an enhanced expression in osteosarcoma. Functional studies revealed that circ0038632 inhibition reduced cell proliferation and metastasis abilities of osteosarcoma. Mechanism studies revealed that circ0038632 sponged miR-186 to upregulate the expression of DNA methyltransferase 3A (DNMT3A) to promote osteosarcoma progression. The circ0038632/miR-186/DNMT3A axis was involved in osteosarcoma progression. The results elucidated the potential application of circ0038632 as a novel diagnostic biomarker for progressive process of osteosarcoma.
Collapse
Affiliation(s)
- Xinyu Tan
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Xinyu Tan, , ; Hongbo Zhu,
| | - Canjun Zeng
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Haomiao Li
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yeru Tan
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hongbo Zhu
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xinyu Tan, , ; Hongbo Zhu,
| |
Collapse
|
7
|
DNMT3A Regulates miR-149 DNA Methylation to Activate NOTCH1/Hedgehog Pathway to Promote the Development of Junctional Osteosarcoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3261213. [PMID: 35909477 PMCID: PMC9334075 DOI: 10.1155/2022/3261213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Purpose. To investigate the DNMT3A/miR-149/NOTCH1/Hedgehog axis regulating the development of osteosarcoma. Methods. First, microRNA and mRNA expression microarrays were downloaded from the GEO database for osteosarcoma and differentially expressed microRNAs were analyzed. Subsequently, we collected cancerous tissues and corresponding paracancerous tissues from 42 osteosarcoma patients and examined the expression levels of miR-149, DNMT3A, and NOTCH1 in the samples. Subsequently, miR-149 was overexpressed in osteosarcoma cells to detect cell proliferation and metastatic ability changes. We then queried the methylation level of the miR-149 promoter on the bioinformatics website and verified it by experiment. We further demonstrated the expression level of miR-149 with NOTCH1 using a dual luciferase assay and confirmed the role of NOTCH1 on osteosarcoma cell growth and metastasis by functional rescue assay. Finally, we detected the activation level of the Hedgehog/catenin signaling pathway by WB and immunofluorescence. Results. miR-149 was significantly low expressed in osteosarcoma tissues and cells, while DNMT3A and NOTCH1 were highly expressed in osteosarcoma tissues and cells, and negatively correlated with miR-149 expression levels. Overexpression of miR-149 significantly inhibited the growth and metastasis of osteosarcoma cells in vitro and in vivo, and we found that DNMT3A could promote the methylation modification of the miR-149 promoter, thereby inhibiting the expression of miR-149. Subsequently, the experimental results showed that miR-149 could target negative regulation of NOTCH1, and further overexpression of NOTCH1 in cells with high miR-149 expression could promote the growth and metastasis of osteosarcoma cells in vitro. Conclusion. The methyltransferase DNMT3A suppresses miR-149 expression by promoting methylation modification of the miR-149 promoter, resulting in elevated expression levels of NOTCH1 in cells, therefore exacerbating activation of the Hedgehog signaling pathway and therefore exacerbating the development and progression of osteosarcoma.
Collapse
|
8
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Bone Microenvironment and Osteosarcoma Metastasis. Int J Mol Sci 2020; 21:ijms21196985. [PMID: 32977425 PMCID: PMC7582690 DOI: 10.3390/ijms21196985] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
The bone microenvironment is an ideal fertile soil for both primary and secondary tumors to seed. The occurrence and development of osteosarcoma, as a primary bone tumor, is closely related to the bone microenvironment. Especially, the metastasis of osteosarcoma is the remaining challenge of therapy and poor prognosis. Increasing evidence focuses on the relationship between the bone microenvironment and osteosarcoma metastasis. Many elements exist in the bone microenvironment, such as acids, hypoxia, and chemokines, which have been verified to affect the progression and malignance of osteosarcoma through various signaling pathways. We thoroughly summarized all these regulators in the bone microenvironment and the transmission cascades, accordingly, attempting to furnish hints for inhibiting osteosarcoma metastasis via the amelioration of the bone microenvironment. In addition, analysis of the cross-talk between the bone microenvironment and osteosarcoma will help us to deeply understand the development of osteosarcoma. The cellular and molecular protagonists presented in the bone microenvironment promoting osteosarcoma metastasis will accelerate the exploration of novel therapeutic strategies towards osteosarcoma.
Collapse
|
10
|
Nomura M, Rainusso N, Lee YC, Dawson B, Coarfa C, Han R, Larson JL, Shuck R, Kurenbekova L, Yustein JT. Tegavivint and the β-Catenin/ALDH Axis in Chemotherapy-Resistant and Metastatic Osteosarcoma. J Natl Cancer Inst 2020; 111:1216-1227. [PMID: 30793158 DOI: 10.1093/jnci/djz026] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/10/2019] [Accepted: 02/19/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Wnt/β-catenin pathway is closely associated with osteosarcoma (OS) development and metastatic progression. We investigated the antitumor activity of Tegavivint, a novel β-catenin/transducin β-like protein 1 (TBL1) inhibitor, against OS employing in vitro, ex vivo, and in vivo cell line and patient-derived xenograft (PDX) models that recapitulate high risk disease. METHODS The antitumor efficacy of Tegavivint was evaluated in vitro using established OS and PDX-derived cell lines. Use of an ex vivo three-dimensional pulmonary metastasis assay assessed targeting of β-catenin activity during micro- and macrometastatic development. The in vivo activity of Tegavivint was evaluated using chemoresistant and metastatic OS PDX models. Gene and protein expression were quantified by quantitative Reverse transcription polymerase chain reaction or immunoblot analysis. Bone integrity was determined via microCT. All statistical tests were two-sided. RESULTS Tegavivint exhibited antiproliferative activity against OS cells in vitro and actively reduced micro- and macrometastatic development ex vivo. Multiple OS PDX tumors (n = 3), including paired patient primary and lung metastatic tumors with inherent chemoresistance, were suppressed by Tegavivint in vivo. We identified that metastatic lung OS cell lines (n = 2) exhibited increased stem cell signatures, including enhanced concomitant aldehyde dehydrogenase (ALDH1) and β-catenin expression and downstream activity, which were suppressed by Tegavivint (ALDH1: control group, mean relative mRNA expression = 1.00, 95% confidence interval [CI] = 0.68 to 1.22 vs Tegavivint group, mean = 0.011, 95% CI = 0.0012 to 0.056, P < .001; β-catenin: control group, mean relative mRNA expression = 1.00, 95% CI = 0.71 to 1.36 vs Tegavivint group, mean = 0.45, 95% CI = 0.36 to 0.52, P < .001). ALDH1high PDX-derived lung OS cells, which demonstrated enhanced metastatic potential compared with ALDHlow cells in vivo, were sensitive to Tegavivint. Toxicity studies revealed decreased bone density in male Tegavivint-treated mice (n = 4 mice per group). CONCLUSIONS Tegavivint is a promising therapeutic agent for advanced stages of OS via its targeting of the β-catenin/ALDH1 axis.
Collapse
|
11
|
Genomics and Therapeutic Vulnerabilities of Primary Bone Tumors. Cells 2020; 9:cells9040968. [PMID: 32295254 PMCID: PMC7227002 DOI: 10.3390/cells9040968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are rare diseases but the most common primary tumors of bone. The genes directly involved in the sarcomagenesis, tumor progression and treatment responsiveness are not completely defined for these tumors, and the powerful discovery of genetic analysis is highly warranted in the view of improving the therapy and cure of patients. The review summarizes recent advances concerning the molecular and genetic background of these three neoplasms and, of their most common variants, highlights the putative therapeutic targets and the clinical trials that are presently active, and notes the fundamental issues that remain unanswered. In the era of personalized medicine, the rarity of sarcomas may not be the major obstacle, provided that each patient is studied extensively according to a road map that combines emerging genomic and functional approaches toward the selection of novel therapeutic strategies.
Collapse
|
12
|
Qi X, Yu XJ, Wang XM, Song TN, Zhang J, Guo XZ, Li GJ, Shao M. Knockdown of KCNQ1OT1 Suppresses Cell Invasion and Sensitizes Osteosarcoma Cells to CDDP by Upregulating DNMT1-Mediated Kcnq1 Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:804-818. [PMID: 31454677 PMCID: PMC6716066 DOI: 10.1016/j.omtn.2019.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
Osteosarcoma is a malignant bone tumor, with a high incidence worldwide. The involvement of long non-coding RNAs (lncRNAs) in cancers and their molecular association with the progression of osteosarcoma have been previously discussed. We conducted the present study to examine the effect of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) on osteosarcoma cell invasion and chemosensitivity to cisplatin (CDDP). After determination of the expression of Kcnq1 in osteosarcoma tissues and cells, the plasmids with overexpression or knockdown KCNQ1OT1 were introduced into the cells to aid the identification of cell proliferation, migration, invasion, chemosensitivity to CDDP, and apoptosis. Then, the interaction between KCNQ1OT1 and the Kcnq1/DNA methyltransferase 1 (DNMT1) axis was evaluated by measuring the level of Kcnq1 promoter region methylation and DNMT1 enrichment of the Kcnq1 promoter region. Low Kcnq1 expression and high KCNQ1OT1 expression were shown in osteosarcoma tissues and cells. Kcnq1 was negatively mediated by KCNQ1OT1 via DNMT1. The overexpression of Kcnq1 or knockdown of KCNQ1OT1 inhibited the proliferation, migration, and invasion, and it promoted the chemosensitivity to CDDP and apoptosis of MG-63 cells and its CDDP-resistant cell lines. Moreover, the same trend was observed in the cells following methylation inhibitor treatment. Collectively, knockdown of KCNQ1OT1 can inhibit the osteosarcoma progression through the Kcnq1/DNMT1 axis.
Collapse
Affiliation(s)
- Xu Qi
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Xiao-Jun Yu
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Xu-Ming Wang
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Tie-Nan Song
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jie Zhang
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Xin-Zhen Guo
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Guo-Jun Li
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Ming Shao
- The 1st Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China.
| |
Collapse
|
13
|
Hattinger CM, Patrizio MP, Tavanti E, Luppi S, Magagnoli F, Picci P, Serra M. Genetic testing for high-grade osteosarcoma: a guide for future tailored treatments? Expert Rev Mol Diagn 2018; 18:947-961. [PMID: 30324828 DOI: 10.1080/14737159.2018.1535903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Genetic characterization of osteosarcoma has evolved during the last decade, thanks to the integrated application of conventional and new candidate-driven and genome-wide technologies. Areas covered: This review provides an overview of the state of art in genetic testing applied to osteosarcoma, with particular regard to novel candidate genetic biomarkers that can be analyzed in tumor tissue and blood samples, which might be used to predict toxicity and prognosis, detect disease relapse, and improve patients' selection criteria for tailoring treatment. Expert commentary: Genetic testing based on modern technologies is expected to indicate new osteosarcoma-related prognostic markers and driver genes, which may highlight novel therapeutic targets and patients stratification biomarkers. The definition of tailored or targeted treatment approaches may improve outcome of patients with localized tumors and, even more, of those with metastatic disease, for whom progress in cure probability is highly warranted.
Collapse
Affiliation(s)
| | - Maria Pia Patrizio
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Elisa Tavanti
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Silvia Luppi
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Federica Magagnoli
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Piero Picci
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Massimo Serra
- a Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| |
Collapse
|
14
|
Epigenetic silencing of SFRP5 promotes the metastasis and invasion of chondrosarcoma by expression inhibition and Wnt signaling pathway activation. Chem Biol Interact 2018; 296:1-8. [PMID: 30125549 DOI: 10.1016/j.cbi.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUD/AIMS Abnormal activation of the Wnt/β-catenin signaling, which may be antagonized by the members of secreted frizzled-related proteins family (SFRPs), is implicated in tumor occurrence and development. However, the function of SFRP5 relating to Wnt/β-catenin pathway in chondrosarcoma is not clear yet. This study was undertaken to investigate the potential role of SFRP5 promoter methylation in chondrosarcoma metastasis and invasion through activating canonical Wnt signaling pathway. METHODS AND RESULTS The results demonstrated that SFRP5 promoter was hypermethylated and SFRP5 expression was significantly reduced in chondrosarcoma cell lines at the mRNA and protein levels. The canonical Wnt/β-catenin signaling was observably activated with β-catenin stabilization by dephosphorylation and translocation into the nuclear. 5-Aza-2'-deoxycytidine (5-Aza-dC), the DNA methyltransferase inhibitor, significantly inhibited the proliferation of chondrosarcoma cells by cell cycle arrest through repressing the methylation of SFRP5 and promoting its expression. Both 5-Aza-dC treatment and SFRP5 overexpression could significantly inhibited the metastasis and invasion of chondrosarcoma cells by inactivating Wnt/β-catenin signaling pathway and promoting chondrosarcoma cells mesenchymal-epithelial transition (MET). 5-Aza-dC also inhibited the xenograft growth and lung metastasis of chondrosarcoma cells in vivo via suppressing SFRP5 promotor methylation, inactivating Wnt/β-catenin pathway and inducing epithelial markers expression. CONCLUSION All of our results revealed the epigenetic silencing of SFRP5 by promoter methylation plays pivotal roles in chondrosarcoma development and metastasis through SFRP5/Wnt/β-catenin signaling axis. Modulation of their levels may serve as potential targets and diagnostic tools for novel therapeutic strategies of chondrosarcoma.
Collapse
|
15
|
Liu J, Zhu H, Wang H, Li J, Han F, Liu Y, Zhang W, He T, Li N, Zheng Z, Hu D. Methylation of secreted frizzled-related protein 1 (SFRP1) promoter downregulates Wnt/β-catenin activity in keloids. J Mol Histol 2018; 49:185-193. [DOI: 10.1007/s10735-018-9758-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/05/2018] [Indexed: 01/13/2023]
|