1
|
Laurent H, Hughes MDG, Walko M, Brockwell DJ, Mahmoudi N, Youngs TGA, Headen TF, Dougan L. Visualization of Self-Assembly and Hydration of a β-Hairpin through Integrated Small and Wide-Angle Neutron Scattering. Biomacromolecules 2023; 24:4869-4879. [PMID: 37874935 PMCID: PMC10646990 DOI: 10.1021/acs.biomac.3c00583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Fundamental understanding of the structure and assembly of nanoscale building blocks is crucial for the development of novel biomaterials with defined architectures and function. However, accessing self-consistent structural information across multiple length scales is challenging. This limits opportunities to exploit atomic scale interactions to achieve emergent macroscale properties. In this work we present an integrative small- and wide-angle neutron scattering approach coupled with computational modeling to reveal the multiscale structure of hierarchically self-assembled β hairpins in aqueous solution across 4 orders of magnitude in length scale from 0.1 Å to 300 nm. Our results demonstrate the power of this self-consistent cross-length scale approach and allows us to model both the large-scale self-assembly and small-scale hairpin hydration of the model β hairpin CLN025. Using this combination of techniques, we map the hydrophobic/hydrophilic character of this model self-assembled biomolecular surface with atomic resolution. These results have important implications for the multiscale investigation of aqueous peptides and proteins, for the prediction of ligand binding and molecular associations for drug design, and for understanding the self-assembly of peptides and proteins for functional biomaterials.
Collapse
Affiliation(s)
- Harrison Laurent
- School
of Physics and Astronomy, University of
Leeds, Leeds, United Kingdom, LS2
9JT
| | - Matt D. G. Hughes
- School
of Physics and Astronomy, University of
Leeds, Leeds, United Kingdom, LS2
9JT
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom LS2
9JT
| | - Martin Walko
- School
of Chemistry, University of Leeds, Leeds, United
Kingdom, LS2 9JT
| | - David J. Brockwell
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom LS2
9JT
| | - Najet Mahmoudi
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Harwell Oxford, Didcot, United Kingdom, OX11 0QX
| | - Tristan G. A. Youngs
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Harwell Oxford, Didcot, United Kingdom, OX11 0QX
| | - Thomas F. Headen
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Harwell Oxford, Didcot, United Kingdom, OX11 0QX
| | - Lorna Dougan
- School
of Physics and Astronomy, University of
Leeds, Leeds, United Kingdom, LS2
9JT
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom LS2
9JT
| |
Collapse
|
2
|
Guo HB, Perminov A, Bekele S, Kedziora G, Farajollahi S, Varaljay V, Hinkle K, Molinero V, Meister K, Hung C, Dennis P, Kelley-Loughnane N, Berry R. AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Sci Rep 2022; 12:10696. [PMID: 35739160 PMCID: PMC9226352 DOI: 10.1038/s41598-022-14382-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
AlphaFold 2 (AF2) has placed Molecular Biology in a new era where we can visualize, analyze and interpret the structures and functions of all proteins solely from their primary sequences. We performed AF2 structure predictions for various protein systems, including globular proteins, a multi-domain protein, an intrinsically disordered protein (IDP), a randomized protein, two larger proteins (> 1000 AA), a heterodimer and a homodimer protein complex. Our results show that along with the three dimensional (3D) structures, AF2 also decodes protein sequences into residue flexibilities via both the predicted local distance difference test (pLDDT) scores of the models, and the predicted aligned error (PAE) maps. We show that PAE maps from AF2 are correlated with the distance variation (DV) matrices from molecular dynamics (MD) simulations, which reveals that the PAE maps can predict the dynamical nature of protein residues. Here, we introduce the AF2-scores, which are simply derived from pLDDT scores and are in the range of [0, 1]. We found that for most protein models, including large proteins and protein complexes, the AF2-scores are highly correlated with the root mean square fluctuations (RMSF) calculated from MD simulations. However, for an IDP and a randomized protein, the AF2-scores do not correlate with the RMSF from MD, especially for the IDP. Our results indicate that the protein structures predicted by AF2 also convey information of the residue flexibility, i.e., protein dynamics.
Collapse
Affiliation(s)
- Hao-Bo Guo
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
- UES Inc., Dayton, OH, USA
| | - Alexander Perminov
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
- Computer Science Department, Miami University, Oxford, OH, USA
| | - Selemon Bekele
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
- UES Inc., Dayton, OH, USA
| | - Gary Kedziora
- General Dynamics Information Technology, Inc., Wright-Patterson Air Force Base, 45433, OH, USA
| | - Sanaz Farajollahi
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
- UES Inc., Dayton, OH, USA
| | - Vanessa Varaljay
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
| | - Kevin Hinkle
- Department of Chemical and Materials Engineering, Dayton University, Dayton, OH, USA
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, UT, USA
| | - Konrad Meister
- Department of Natural Sciences, University of Alaska Southeast, Juneau, AK, USA
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Chia Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
| | - Patrick Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA.
| | - Rajiv Berry
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH, USA.
| |
Collapse
|
3
|
Pang YP. How neocarcerand Octacid4 self-assembles with guests into irreversible noncovalent complexes and what accelerates the assembly. Commun Chem 2022; 5:9. [PMID: 36697791 PMCID: PMC9814096 DOI: 10.1038/s42004-022-00624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/30/2021] [Indexed: 01/28/2023] Open
Abstract
Cram's supramolecular capsule Octacid4 can irreversibly and noncovalently self-assemble with small-molecule guests at room temperature, but how they self-assemble and what accelerates their assembly remain poorly understood. This article reports 81 distinct Octacid4•guest self-assembly pathways captured in unrestricted, unbiased molecular dynamics simulations. These pathways reveal that the self-assembly was initiated by the guest interaction with the cavity portal exterior of Octacid4 to increase the portal collisions that led to the portal expansion for guest ingress, and completed by the portal contraction caused by the guest docking inside the cavity to impede guest egress. The pathways also reveal that the self-assembly was accelerated by engaging populated host and guest conformations for the exterior interaction to increase the portal collision frequency. These revelations may help explain why the presence of an exterior binding site at the rim of the enzyme active site is a fundamental feature of fast enzymes such as acetylcholinesterase and why small molecules adopt local minimum conformations when binding to proteins. Further, these revelations suggest that irreversible noncovalent complexes with fast assembly rates could be developed-by engaging populated host and guest conformations for the exterior interactions-for materials technology, data storage and processing, molecular sensing and tagging, and drug therapy.
Collapse
Affiliation(s)
- Yuan-Ping Pang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Kamenik AS, Handle PH, Hofer F, Kahler U, Kraml J, Liedl KR. Polarizable and non-polarizable force fields: Protein folding, unfolding, and misfolding. J Chem Phys 2021; 153:185102. [PMID: 33187403 DOI: 10.1063/5.0022135] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Molecular dynamics simulations are an invaluable tool to characterize the dynamic motions of proteins in atomistic detail. However, the accuracy of models derived from simulations inevitably relies on the quality of the underlying force field. Here, we present an evaluation of current non-polarizable and polarizable force fields (AMBER ff14SB, CHARMM 36m, GROMOS 54A7, and Drude 2013) based on the long-standing biophysical challenge of protein folding. We quantify the thermodynamics and kinetics of the β-hairpin formation using Markov state models of the fast-folding mini-protein CLN025. Furthermore, we study the (partial) folding dynamics of two more complex systems, a villin headpiece variant and a WW domain. Surprisingly, the polarizable force field in our set, Drude 2013, consistently leads to destabilization of the native state, regardless of the secondary structure element present. All non-polarizable force fields, on the other hand, stably characterize the native state ensembles in most cases even when starting from a partially unfolded conformation. Focusing on CLN025, we find that the conformational space captured with AMBER ff14SB and CHARMM 36m is comparable, but the ensembles from CHARMM 36m simulations are clearly shifted toward disordered conformations. While the AMBER ff14SB ensemble overstabilizes the native fold, CHARMM 36m and GROMOS 54A7 ensembles both agree remarkably well with experimental state populations. In addition, GROMOS 54A7 also reproduces experimental folding times most accurately. Our results further indicate an over-stabilization of helical structures with AMBER ff14SB. Nevertheless, the presented investigations strongly imply that reliable (un)folding dynamics of small proteins can be captured in feasible computational time with current additive force fields.
Collapse
Affiliation(s)
- Anna S Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Philip H Handle
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Florian Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Ursula Kahler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes Kraml
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
McFerrin KG, Pang YP. How the water-soluble hemicarcerand incarcerates guests at room temperature decoded with modular simulations. Commun Chem 2021; 4:26. [PMID: 36697600 PMCID: PMC9814894 DOI: 10.1038/s42004-021-00469-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/04/2021] [Indexed: 01/28/2023] Open
Abstract
Molecular dynamics simulations of hemicarcerands and related variants allow the study of constrictive binding and offer insight into the rules of molecular complexation, but are limited because three-dimensional models of hemicarcerands are tedious to build and their atomic charges are complicated to derive. There have been no molecular dynamics simulations of the reported water-soluble hemicarcerand (Octacid4) that explain how Octacid4 encapsulates guests at 298 K and keeps them encapsulated at 298 K in NMR experiments. Herein we report a modular approach to hemicarcerand simulations that simplifies the model building and charge derivation in a manner reminiscent of the approach to protein simulations with truncated amino acids as building blocks. We also report that in aqueous molecular dynamics simulations at 298 K apo Octacid4 adopts two clusters of conformations one of which has an equatorial portal open but the guest-bound Octacid4 adopts one cluster of conformations with all portals closed. These results explain how Octacid4 incarcerates guests at room temperature and suggest that the guest-induced host conformational change that impedes decomplexation is a previously unrecognized conformational characteristic that promotes strong molecular complexation.
Collapse
Affiliation(s)
| | - Yuan-Ping Pang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module. Nat Commun 2020; 11:5520. [PMID: 33139725 PMCID: PMC7606486 DOI: 10.1038/s41467-020-19113-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/25/2020] [Indexed: 11/08/2022] Open
Abstract
Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45−/− mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module. The mechanism by which adenosine monophosphate modulates dynein ATPase-mediated ciliary and flagellar beating remains obscure. Here the authors identify an axonemal module including cilia and flagella associated protein 45 that supports adenine nucleotide homeostasis and underlies a human ciliopathy
Collapse
|
7
|
Li R, Li H, Yang S, Feng X. The Influences of Palindromes in mRNA on Protein Folding Rates. Protein Pept Lett 2020; 27:303-312. [PMID: 31612810 DOI: 10.2174/0929866526666191014144015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND It is currently believed that protein folding rates are influenced by protein structure, environment and temperature, amino acid sequence and so on. We have been working for long to determine whether and in what ways mRNA affects the protein folding rate. A large number of palindromes aroused our attention in our previous research. Whether these palindromes do have important influences on protein folding rates and what's the mechanism? Very few related studies are focused on these problems. OBJECTIVE In this article, our motivation is to find out if palindromes have important influences on protein folding rates and what's the mechanism. METHODS In this article, the parameters of the palindromes were defined and calculated, the linear regression analysis between the values of each parameter and the experimental protein folding rates were done. Furthermore, to compare the results of different kinds of proteins, proteins were classified into the two-state proteins and the multi-state proteins. For the two kinds of proteins, the above linear regression analysis were performed respectively. RESULTS Protein folding rates were negatively correlated to the palindrome frequencies for all proteins. An extremely significant negative linear correlation appeared in the relationship between palindrome densities and protein folding rates. And the repeatedly used bases by different palindromes simultaneously have an important effect on the relationship between palindrome density and protein folding rate. CONCLUSION The palindromes have important influences on protein folding rates, and the repeatedly used bases in different palindromes simultaneously play a key role in influencing the protein folding rates.
Collapse
Affiliation(s)
- Ruifang Li
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China
| | - Hong Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Sarula Yang
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China
| | - Xue Feng
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
8
|
Ye K, Meng WX, Sun H, Wu B, Chen M, Pang YP, Gao J, Wang H, Wang J, Kaufmann SH, Dai H. Characterization of an alternative BAK-binding site for BH3 peptides. Nat Commun 2020; 11:3301. [PMID: 32620849 PMCID: PMC7335050 DOI: 10.1038/s41467-020-17074-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/05/2020] [Indexed: 01/30/2023] Open
Abstract
Many cellular stresses are transduced into apoptotic signals through modification or up-regulation of the BH3-only subfamily of BCL2 proteins. Through direct or indirect mechanisms, these proteins activate BAK and BAX to permeabilize the mitochondrial outer membrane. While the BH3-only proteins BIM, PUMA, and tBID have been confirmed to directly activate BAK through its canonical BH3 binding groove, whether the BH3-only proteins BMF, HRK or BIK can directly activate BAK is less clear. Here we show that BMF and HRK bind and directly activate BAK. Through NMR studies, site-directed mutagenesis, and advanced molecular dynamics simulations, we also find that BAK activation by BMF and possibly HRK involves a previously unrecognized binding groove formed by BAK α4, α6, and α7 helices. Alterations in this groove decrease the ability of BMF and HRK to bind BAK, permeabilize membranes and induce apoptosis, suggesting a potential role for this BH3-binding site in BAK activation. Mitochondrial apoptosis is controlled by BCL2 family proteins, and the BH3-only proteins often act as sensors that transmit apoptotic signals. Here the authors show how the BH3-only proteins BMF and HRK can directly activate the BCL2 protein BAK and interact with BAK through an alternative binding groove.
Collapse
Affiliation(s)
- Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wei X Meng
- Division of Oncology Research, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hongbin Sun
- School of Food and Biological Engineering, Zhenzhou University of Light Industry, Zhenzhou, 450002, China
| | - Bo Wu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Meng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jia Gao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Junfeng Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
9
|
Jiang X, Wu Z, Fan Z, Yin J, Zheng L. A new way to recognize downhill folding based on generalized path length. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620400052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The protein folding is an important scientific problem and many methods were designed to elucidate the protein folding and obtain insight into the molecular mechanism. A novel means is presented to identify the downhill pathways of protein folding in this paper. This method is based on barrier energy profile projected onto the generalized path length (GPL) with Breadth-first searching (BFS) algorithm. We show the effectiveness of this approach by constructing the barrier energy profile of trpzip2 and comparing with other methods.
Collapse
Affiliation(s)
- Xuewei Jiang
- Wuhan Textile and Apparel Digital Engineering Technology Research Center, Wuhan Textile University, Wuhan, Hubei 430073, P. R. China
| | - Zhengwu Wu
- School of Computer Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zhenyuan Fan
- Wuhan Textile and Apparel Digital Engineering Technology Research Center, Wuhan Textile University, Wuhan, Hubei 430073, P. R. China
| | - Junhua Yin
- Wuhan Textile and Apparel Digital Engineering Technology Research Center, Wuhan Textile University, Wuhan, Hubei 430073, P. R. China
| | - Lu Zheng
- Wuhan Textile and Apparel Digital Engineering Technology Research Center, Wuhan Textile University, Wuhan, Hubei 430073, P. R. China
| |
Collapse
|
10
|
Pang YP, Casal Moura M, Thompson GE, Nelson DR, Hummel AM, Jenne DE, Emerling D, Volkmuth W, Robinson WH, Specks U. Remote Activation of a Latent Epitope in an Autoantigen Decoded With Simulated B-Factors. Front Immunol 2019; 10:2467. [PMID: 31708920 PMCID: PMC6823208 DOI: 10.3389/fimmu.2019.02467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Mutants of a catalytically inactive variant of Proteinase 3 (PR3)—iPR3-Val103 possessing a Ser195Ala mutation relative to wild-type PR3-Val103—offer insights into how autoantigen PR3 interacts with antineutrophil cytoplasmic antibodies (ANCAs) in granulomatosis with polyangiitis (GPA) and whether such interactions can be interrupted. Here we report that iHm5-Val103, a triple mutant of iPR3-Val103, bound a monoclonal antibody (moANCA518) from a GPA patient on an epitope remote from the mutation sites, whereas the corresponding epitope of iPR3-Val103 was latent to moANCA518. Simulated B-factor analysis revealed that the binding of moANCA518 to iHm5-Val103 was due to increased main-chain flexibility of the latent epitope caused by remote mutations, suggesting rigidification of epitopes with therapeutics to alter pathogenic PR3·ANCA interactions as new GPA treatments.
Collapse
Affiliation(s)
- Yuan-Ping Pang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN, United States
| | - Marta Casal Moura
- Thoracic Disease Research Unit, Mayo Clinic, Rochester, MN, United States
| | - Gwen E Thompson
- Thoracic Disease Research Unit, Mayo Clinic, Rochester, MN, United States
| | - Darlene R Nelson
- Thoracic Disease Research Unit, Mayo Clinic, Rochester, MN, United States
| | - Amber M Hummel
- Thoracic Disease Research Unit, Mayo Clinic, Rochester, MN, United States
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Helmholtz Zentrum München & Max-Planck Institute for Neuroimmunology, Martinsried, Germany
| | | | | | - William H Robinson
- Department of Medicine, Stanford University, Palo Alto, CA, United States
| | - Ulrich Specks
- Thoracic Disease Research Unit, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Nagarajan S, Xiao S, Raleigh DP, Dyer RB. Heterogeneity in the Folding of Villin Headpiece Subdomain HP36. J Phys Chem B 2018; 122:11640-11648. [PMID: 30118232 DOI: 10.1021/acs.jpcb.8b07683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small single domain proteins that fold on the microsecond time scale have been the subject of intense interest as models for probing the complexity of folding energy landscapes. The villin headpiece subdomain (HP36) has been extensively studied because of its simple three helix structure, ultrafast folding lifetime of a few microseconds, and stable native fold. We have previously shown that folding as measured by a single 13C═18O isotopic label on residue A57 in helix 2 occurs at a different rate than that measured by global probes of folding, indicating noncooperative complexity in the folding of HP36. In order to determine whether this complexity reflects intermediates or parallel pathways over a small activation barrier, 13C═18O labels were individually incorporated at six different positions in HP36, including into all 3 helices. The equilibrium thermal unfolding transitions and the folding/unfolding dynamics were monitored using the unique IR signature of the 13C═18O label by temperature dependent FTIR and temperature jump IR spectroscopy, respectively. Equilibrium experiments reveal that the 13C═18O labels at different positions in HP36 show drastic differences in the midpoint of their transitions ( Tm), ranging from 45 to 67 °C. Heterogeneity is also observed in the relaxation kinetics; there are differences in the microsecond phase when different labeled positions are probed. At a final temperature of 45 °C, the relaxation rate for 13C═18O A57 is 2.4e + 05 s-1 whereas for 13C═18O L69 HP36 the relaxation rate is 5.1e + 05 s-1, two times faster. The observation of site-dependent midpoints for the equilibrium unfolding transitions and differences in the relaxation rates of the labeled positions enables us to probe the progressive accumulation of the folded structure, providing insight into the microscopic details of the folding mechanism.
Collapse
Affiliation(s)
- Sureshbabu Nagarajan
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , China
| | - Daniel P Raleigh
- Department of Chemistry , State University of New York at Stony Brook , Stony Brook , New York 11794 , United States.,Institute of Structural and Molecular Biology , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - R Brian Dyer
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|