1
|
Chen W, Li J, Li J, Zhang J, Zhang J. Roles of Non-Coding RNAs in Virus-Host Interaction About Pathogenesis of Hand-Foot-Mouth Disease. Curr Microbiol 2022; 79:247. [PMID: 35834056 PMCID: PMC9281230 DOI: 10.1007/s00284-022-02928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Noncoding RNAs (ncRNAs) represent the largest and main transcriptome products and play various roles in the biological activity of cells and pathological processes. Accumulating evidence shows that microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) are important ncRNAs that play vital regulatory roles during viral infection. Hand-foot-mouth disease (HFMD) virus causes hand-foot-mouth disease, and is also associated with various serious complications and high mortality. However, there is currently no effective treatment. In this review, we focus on advances in the understanding of the modulatory role of ncRNAs during HFMD virus infection. Specifically, we discuss the generation, classification, and regulatory mechanisms of miRNA, lncRNA, and circRNA in the interaction between virus and host, with a particular focus on their influence with viral replication and infection. Analysis of these underlying mechanisms can help provide a foundation for the development of ncRNA-based antiviral therapies.
Collapse
Affiliation(s)
- Wei Chen
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Jinwei Li
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jing Li
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jiayu Zhang
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China.
| |
Collapse
|
2
|
Yang F, Zhang N, Chen Y, Yin J, Xu M, Cheng X, Ma R, Meng J, Du Y. Role of Non-Coding RNA in Neurological Complications Associated With Enterovirus 71. Front Cell Infect Microbiol 2022; 12:873304. [PMID: 35548469 PMCID: PMC9081983 DOI: 10.3389/fcimb.2022.873304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogenic virus that causes hand, foot, and mouth disease (HFMD). Studies have reported that EV71-induced infections including aseptic meningitis, acute flaccid paralysis, and even neurogenic pulmonary edema, can progress to severe neurological complications in infants, young children, and the immunosuppressed population. However, the mechanisms through which EV71 causes neurological diseases have not been fully explored. Non-coding RNAs (ncRNAs), are RNAs that do not code for proteins, play a key role in biological processes and disease development associated with EV71. In this review, we summarized recent advances concerning the impacts of ncRNAs on neurological diseases caused by interaction between EV71 and host, revealing the potential role of ncRNAs in pathogenesis, diagnosis and treatment of EV71-induced neurological complications.
Collapse
Affiliation(s)
- Feixiang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jiancai Yin
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Muchen Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Cheng
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ruyi Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| |
Collapse
|
3
|
Lu Y, Long M, Gao Z, Liu C, Dong K, Zhang H. Long non-coding RNA ENST00000469812 promotes Enterovirus type 71 replication via targeting the miR-4443/NUPR1 axis in rhabdomyosarcoma cells. Arch Virol 2022; 167:2601-2611. [PMID: 36269411 PMCID: PMC9589540 DOI: 10.1007/s00705-022-05596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
Hand, foot, and mouth disease (HFMD) caused by Enterovirus type 71 (EV71) is a serious threat to children's health. However, the pathogenic mechanism of EV71 is still unclear. Long non-coding RNAs (lncRNAs), some of which bind to miRNA as competitive endogenous RNAs (ceRNA) and weaken the silencing effect on the mRNA of downstream target genes, play a key role in regulating the viral infection process. In this study, through experimental verification, we found miR-4443 to be downregulated in cells infected with EV71. Next, by predicting lncRNAs that potentially regulate miR-4443, we found that EV71 infection induced upregulation of lncRNA ENST00000469812 and then further downregulated miR-4443 expression by direct interaction. We also demonstrated that nuclear protein 1 (NUPR1) is one of the target genes of miR-4443 and is involved in the ENST00000469812/miR-4443/NUPR1 regulatory axis. Finally, the ENST00000469812/miR-4443/NUPR1 regulatory axis exhibited a positive effect on EV71 replication. Here, we lay a foundation for exploring the pathogenic mechanism of EV71 and identify potential targets for HFMD treatment.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China ,Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Min Long
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhaowei Gao
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chong Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ke Dong
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Huizhong Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Lu Y, Gao Z, Liu C, Long M, Yang L, Li R, Dong K, Zhang H. Integrative analysis of lncRNA-miRNA-mRNA-associated competing endogenous RNA regulatory network involved in EV71 infection. Am J Transl Res 2021; 13:7440-7457. [PMID: 34377228 PMCID: PMC8340214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
The competing endogenous RNA (ceRNA) axis has been shown to play a critical role in the pathogenesis of various viral infections. Generally, the ceRNA network involves long non-coding RNAs (lncRNAs) that act as sponges for miRNA to regulate mRNA expression. However, no information is available regarding the involvement of ceRNA networks in Enterovirus type 71 (EV71) infections. In the present study, data obtained from Gene Expression Omnibus (GEO) database was analyzed using various bioinformatics tools. EV71 infection in rhabdomyosarcoma (RD) cells was associated with differential expression of six lncRNAs, 28 miRNAs, and 349 mRNAs. Gene function enrichment analysis suggested induction of cytoplasmic vesicle process upon EV71 infection. The ceRNA networks were constructed, in which 20 hub genes were predicted by protein-protein interaction. To confirm the MALAT1/miR-194-5p/DUSP1 ceRNA regulatory axis in EV71 infection, real-time quantitative polymerase chain reaction (qRT-PCR) and luciferase reporter assay were performed. The results of the study also revealed the involvement of the MALAT1/miR-194-5p axis in apoptosis induced by EV71 infection, while no association with autophagy was observed. Thus, the present study provided novel insights into the pathogenic mechanism of EV71 infection.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Zhaowei Gao
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Chong Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Min Long
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Longfei Yang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Ruicheng Li
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Ke Dong
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| | - Huizhong Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical UniversityXi’an, Shaanxi, China
| |
Collapse
|
5
|
Chu M, Zhou B, Tu H, Li M, Huang L, He Y, Liu L, Han S, Yin J, Peng B, He X, Liu W. The Upregulation of a Novel Long Noncoding RNA AK097647 Promotes Enterovirus 71 Replication and Decreases IFN-λ1 Secretion. Intervirology 2021; 64:147-155. [PMID: 33951637 DOI: 10.1159/000515903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/16/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) infects millions of children every year in China and has become a challenge to public health. However, there is no effective treatment for EV71 infection. Long noncoding RNAs (lncRNAs) have been found to play various roles in virus replication and infection. OBJECTIVE We aimed to explore the role of a novel long noncoding RNA AK097647 (lncRNA-AK097647) during EV71 infection. METHODS To assess the role of lncRNA-AK097647 during EV71 infection, siRNAs were used to silence lncRNA-K097647 expression. RT-qPCR assay and Western blotting were applied to measure the mRNA and protein levels of EV71 VP1 and the phosphorylation of NF-κB. ELISA was used to detect the level of IFN-λ1 expression. RESULTS The novel lncRNA-AK097647 was upregulated in human rhabdomyosarcoma cells and the blood of hand, foot, and mouth disease patients infected with EV71, as demonstrated by RT-qPCR. Interestingly, RNAi-mediated knockdown of lncRNA-AK097647 dramatically increased the level of IFN-λ1 expression, resulting in the suppression of EV71 replication. In contrast, overexpression of lncRNA-AK097647 decreased the level of IFN-λ1 expression and resulted in increased EV71 replication. In addition, we found that lncRNA-AK097647 could inhibit the phosphorylation of NF-κB. CONCLUSION These results suggest a novel mechanism by which EV71 evades the IFN-mediated host antiviral response by increasing lncRNA-AK097647 expression.
Collapse
Affiliation(s)
- Min Chu
- Shenzhen Institute of Wuhan University, Shenzhen, China.,Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bingfei Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Huilin Tu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Min Li
- The Department of Clinical Laboratory, Central Hospital of Huanggang, Huanggang, China
| | - Li Huang
- The Medical Research for Structural Biology of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan He
- The Medical Research for Structural Biology of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
| | - Song Han
- Shenzhen Institute of Wuhan University, Shenzhen, China.,Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Shenzhen Institute of Wuhan University, Shenzhen, China.,Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Shenzhen Institute of Wuhan University, Shenzhen, China.,Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Zhu P, Chen S, Zhang W, Duan G, Jin Y. Essential Role of Non-Coding RNAs in Enterovirus Infection: From Basic Mechanisms to Clinical Prospects. Int J Mol Sci 2021; 22:2904. [PMID: 33809362 PMCID: PMC7999384 DOI: 10.3390/ijms22062904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Enteroviruses (EVs) are common RNA viruses that can cause various types of human diseases and conditions such as hand, foot, and mouth disease (HFMD), myocarditis, meningitis, sepsis, and respiratory disorders. Although EV infections in most patients are generally mild and self-limiting, a small number of young children can develop serious complications such as encephalitis, acute flaccid paralysis, myocarditis, and cardiorespiratory failure, resulting in fatalities. Established evidence has suggested that certain non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the occurrence and progression of many human diseases. Recently, the involvement of ncRNAs in the course of EV infection has been reported. Herein, the authors focus on recent advances in the understanding of ncRNAs in EV infection from basic viral pathogenesis to clinical prospects, providing a reference basis and new ideas for disease prevention and research directions.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| |
Collapse
|
7
|
Lin S, Yang L, Wang S, Weng B, Lin M. Bioinformatics Analysis of Key micro-RNAs and mRNAs under the Hand, Foot, and Mouth Disease Virus Infection. Pol J Microbiol 2021; 69:479-490. [PMID: 33574876 PMCID: PMC7812361 DOI: 10.33073/pjm-2020-052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
To clarify crucial key micro-RNAs and mRNAs associated with hand, foot, and mouth disease (HFMD) virus infection, we conducted this bioinformatics analysis from four GEO datasets. The following datasets were used for the analysis: GSE85829, GSE94551, GSE52780, and GSE45589. Differentially expressed genes (DEGs) were acquired, and the analysis of functional and pathway enrichment and the relative regulatory network were conducted. After screening common differentially expressed miRNAs (DE-miRNAs), five key miRNAs were acquired: miR-100-3p, miR-125a-3p, miR-1273g-3p, miR-5585-3p, and miR-671-5p. There were three common enriched GO terms between miRNA-derived prediction and mRNA-derived analysis: biosynthetic process, cytosol, and nucleoplasm. There was one common KEGG pathway, i.e., cell cycle shared between miRNA-based and mRNA-based enrichment. Using TarBase V8 in DIANA tools, we acquired 1,520 potential targets (mRNA) from the five key DE-miRNAs, among which the159 DE-mRNAs also included 11 DEGs. These common DEGs showed a PPI network mainly connected by SMC1A, SMARCC1, SF3B3, LIG1, and BRMS1L. Together, changes in five key miRNAs and 11 key mRNAs may play crucial roles in HFMD progression. A combination of these roles may benefit the early diagnosis and treatment of HFMD.
Collapse
Affiliation(s)
- Sheng Lin
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liu Yang
- Unimed Scientific Inc. Wuxi, Wuxi, China
| | - Shibiao Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Bin Weng
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Min Lin
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Affiliation(s)
- Lucy Ginn
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| | - Manuela La Montagna
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| | - Qinghua Wu
- College of Life Science Yangtze University Jingzhou Hubei China
- Department of Chemistry Faculty of Science University of Hradec Kralove Hradec Kralove East Bohemia Czech Republic
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| |
Collapse
|
9
|
Liao YW, Ho BC, Chen MH, Yu SL. Host relieves lnc-IRAK3-3-sequestered miR-891b to attenuate apoptosis in Enterovirus 71 infection. Cell Microbiol 2019; 21:e13043. [PMID: 31099182 DOI: 10.1111/cmi.13043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Enterovirus 71 (EV71) is an emerging life-threatening pathogen particularly in the Asia-Pacific region. Apoptosis is a major pathogenic feature in EV71 infection. However, which molecular mechanism participating in EV71-induced apoptosis is not completely understood. Long noncoding RNAs (lncRNAs), a newly discovered class of regulatory RNA molecules, govern a wide range of biological functions through multiple regulatory mechanisms. Whether lncRNAs involved in EV71-induced apoptosis was investigated in this study. We conducted an apoptosis-oriented approach by integrating lncRNA and mRNA profilings. lnc-IRAK3-3 is down-regulated in EV71 infection and plays an important role in EV71 infection-induced apoptosis. Compensation of lnc-IRAK3-3 in EV71 infection promoted cell apoptosis wherein GADD45β expression was increased and further triggered caspase3 and PARP cleavage. Using bioinformatics analysis and functional assays, lnc-IRAK3-3 could functionally sequester miR-891b and GADD45β 3'UTR whereas miR-891b showed the inhibitory activity on GADD45β expression. Taken together, lnc-IRAK3-3 has the ability capturing miR-891b to enforce GADD45β expression and eventually promotes apoptosis. On the contrary, host cells suppress lnc-IRAK3-3 to relieve lnc-IRAK3-3-sequestered miR-891b, restrain GADD45β, and attenuate apoptosis in EV71 infection that prevent host cells from severe damages. We discover a new molecular mechanism by which host cells counteract EV71-induced apoptosis through the lnc-IRAK3-3/miR-891b/GADD45β axis partially.
Collapse
Affiliation(s)
- Yu-Wen Liao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bing-Ching Ho
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Min-Hsuan Chen
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
10
|
Liu S, Liu X, Li J, Zhou H, Carr MJ, Zhang Z, Shi W. Long noncoding RNAs: Novel regulators of virus-host interactions. Rev Med Virol 2019; 29:e2046. [PMID: 31016795 PMCID: PMC7169114 DOI: 10.1002/rmv.2046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
Long noncoding RNAs (lncRNAs) represent a key class of cellular regulators, involved in the modulation and control of multiple biological processes. Distinct classes of lncRNAs are now known to be induced by host cytokines following viral infections. Current evidence demonstrates that lncRNAs play essential roles at the host‐pathogen interface regulating viral infections by either innate immune responses at various levels including activation of pathogen recognition receptors or by epigenetic, transcriptional, and posttranscriptional effects. We review the newly described mechanisms underlying the interactions between lncRNAs, cytokines, and metabolites differentially expressed following viral infections; we highlight the regulatory networks of host antiviral responses and emphasize the need for interdisciplinary research between lncRNA biology and immunology to deepen understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Shaoqiong Liu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong Province, Taishan Medical University, Taian, China
| | - Xia Liu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong Province, Taishan Medical University, Taian, China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong Province, Taishan Medical University, Taian, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong Province, Taishan Medical University, Taian, China
| | - Michael J Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong Province, Taishan Medical University, Taian, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong Province, Taishan Medical University, Taian, China
| |
Collapse
|
11
|
Li Y, Zhang C, Qin L, Li D, Zhou G, Dang D, Chen S, Sun T, Zhang R, Wu W, Xi Y, Jin Y, Duan G. Characterization of Critical Functions of Long Non-Coding RNAs and mRNAs in Rhabdomyosarcoma Cells and Mouse Skeletal Muscle Infected by Enterovirus 71 Using RNA-Seq. Viruses 2018; 10:556. [PMID: 30314355 PMCID: PMC6213062 DOI: 10.3390/v10100556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogen of severe hand-foot-mouth disease (HFMD). Long non-coding RNAs (lncRNAs) are recognized as pivotal factors during the pathogenesis of viral infection. However, the critical functions of lncRNAs in EV71⁻host interactions have not been characterized. Here, for the first time, we performed global transcriptome analysis of lncRNA and mRNA expression profiles in EV71-infected human rhabdomyosarcoma (RD) cells and skeletal muscle of mice using second-generation sequencing. In our study, a total of 3801 novel lncRNAs were identified. In addition, 23 lncRNAs and 372 mRNAs exhibited remarkable differences in expression levels between infected and uninfected RD cells, while 104 lncRNAs and 2647 mRNAs were differentially expressed in infected skeletal muscle from neonatal mice. Comprehensive bioinformatics analysis included target gene prediction, lncRNA‑mRNA co-expression network construction, as well as gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis mainly focused on differentially-expressed genes (DEGs). Our results suggest that lncRNAs may participate in EV71 infection-induced pathogenesis through regulating immune responses, protein binding, cellular component biogenesis and metabolism. The present study provides novel insights into the functions of lncRNAs and the possible pathogenic mechanism following EV71 infection.
Collapse
MESH Headings
- Animals
- Enterovirus A, Human/genetics
- Enterovirus A, Human/physiology
- Enterovirus Infections/genetics
- Enterovirus Infections/metabolism
- Enterovirus Infections/virology
- Gene Expression Profiling
- Humans
- Mice
- Mice, Inbred BALB C
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/virology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rhabdomyosarcoma/genetics
- Rhabdomyosarcoma/metabolism
- Rhabdomyosarcoma/virology
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Ying Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Chao Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Luwei Qin
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Guangyuan Zhou
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Dejian Dang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|