1
|
Wei K, Qian F, Li Y, Zeng T, Huang T. Integrating multi-omics data of childhood asthma using a deep association model. FUNDAMENTAL RESEARCH 2024; 4:738-751. [PMID: 39156565 PMCID: PMC11330118 DOI: 10.1016/j.fmre.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 08/20/2024] Open
Abstract
Childhood asthma is one of the most common respiratory diseases with rising mortality and morbidity. The multi-omics data is providing a new chance to explore collaborative biomarkers and corresponding diagnostic models of childhood asthma. To capture the nonlinear association of multi-omics data and improve interpretability of diagnostic model, we proposed a novel deep association model (DAM) and corresponding efficient analysis framework. First, the Deep Subspace Reconstruction was used to fuse the omics data and diagnostic information, thereby correcting the distribution of the original omics data and reducing the influence of unnecessary data noises. Second, the Joint Deep Semi-Negative Matrix Factorization was applied to identify different latent sample patterns and extract biomarkers from different omics data levels. Third, our newly proposed Deep Orthogonal Canonical Correlation Analysis can rank features in the collaborative module, which are able to construct the diagnostic model considering nonlinear correlation between different omics data levels. Using DAM, we deeply analyzed the transcriptome and methylation data of childhood asthma. The effectiveness of DAM is verified from the perspectives of algorithm performance and biological significance on the independent test dataset, by ablation experiment and comparison with many baseline methods from clinical and biological studies. The DAM-induced diagnostic model can achieve a prediction AUC of 0.912, which is higher than that of many other alternative methods. Meanwhile, relevant pathways and biomarkers of childhood asthma are also recognized to be collectively altered on the gene expression and methylation levels. As an interpretable machine learning approach, DAM simultaneously considers the non-linear associations among samples and those among biological features, which should help explore interpretative biomarker candidates and efficient diagnostic models from multi-omics data analysis for human complex diseases.
Collapse
Affiliation(s)
- Kai Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, China
| | - Fang Qian
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixue Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Guangzhou National Laboratory, Guangzhou 510000, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 510000, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tao Zeng
- Guangzhou National Laboratory, Guangzhou 510000, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 510000, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Zhang Y, Xiao T, Wen M, Shen L, Du L, Wei S, Wu B, Yu Y, Wang S, OuYang B. Deciphering Cholesterol's Role in PD-L2 Stability: A Distinct Regulatory Mechanism From PD-L1. J Mol Biol 2024; 436:168500. [PMID: 38401626 DOI: 10.1016/j.jmb.2024.168500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Programmed cell death 1 ligand 2 (PD-L2), a member of the B7 immune checkpoint protein family, emerges as a crucial player in immune modulation. Despite its functional overlap with programmed cell death 1 ligand 1 (PD-L1) in binding to the programmed cell death protein 1 (PD-1) on T cells, PD-L2 exhibits a divergent expression pattern and a higher affinity for PD-1. However, the regulatory mechanisms of PD-L2 remain under-explored. Here, our investigations illustrate the pivotal role of cholesterol in modulating PD-L2 stability. Using advanced nuclear magnetic resonance (NMR) and biochemical analyses, we demonstrate a direct and specific binding between cholesterol and PD-L2, mediated by an F-xxx-V-xx-LR motif in its transmembrane domain, distinct from that in PD-L1. This interaction stabilizes PD-L2 and prevents its downstream degradation. Disruption of this binding motif compromises PD-L2's cellular stability, underscoring its potential significance in cancer biology. These findings not only deepen our understanding of PD-L2 regulation in the context of tumors, but also open avenues for potential therapeutic interventions.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taoran Xiao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maorong Wen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lijuan Shen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingyu Du
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shukun Wei
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Yu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuqing Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Qixiangtai Road No.22, Tianjin 300070, China.
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Ji Z, Shen J, Lan Y, Yi Q, Liu H. Targeting signaling pathways in osteosarcoma: Mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e308. [PMID: 37441462 PMCID: PMC10333890 DOI: 10.1002/mco2.308] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
Osteosarcoma (OS) is a highly prevalent bone malignancy among adolescents, accounting for 40% of all primary malignant bone tumors. Neoadjuvant chemotherapy combined with limb-preserving surgery has effectively reduced patient disability and mortality, but pulmonary metastases and OS cells' resistance to chemotherapeutic agents are pressing challenges in the clinical management of OS. There has been an urgent need to identify new biomarkers for OS to develop specific targeted therapies. Recently, the continued advancements in genomic analysis have contributed to the identification of clinically significant molecular biomarkers for diagnosing OS, acting as therapeutic targets, and predicting prognosis. Additionally, the contemporary molecular classifications have revealed that the signaling pathways, including Wnt/β-catenin, PI3K/AKT/mTOR, JAK/STAT3, Hippo, Notch, PD-1/PD-L1, MAPK, and NF-κB, have an integral role in OS onset, progression, metastasis, and treatment response. These molecular classifications and biological markers have created new avenues for more accurate OS diagnosis and relevant treatment. We herein present a review of the recent findings for the modulatory role of signaling pathways as possible biological markers and treatment targets for OS. This review also discusses current OS therapeutic approaches, including signaling pathway-based therapies developed over the past decade. Additionally, the review covers the signaling targets involved in the curative effects of traditional Chinese medicines in the context of expression regulation of relevant genes and proteins through the signaling pathways to inhibit OS cell growth. These findings are expected to provide directions for integrating genomic, molecular, and clinical profiles to enhance OS diagnosis and treatment.
Collapse
Affiliation(s)
- Ziyu Ji
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Jianlin Shen
- Department of OrthopaedicsAffiliated Hospital of Putian UniversityPutianFujianChina
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Qian Yi
- Department of PhysiologySchool of Basic Medical ScienceSouthwest Medical UniversityLuzhouSichuanChina
| | - Huan Liu
- Department of OrthopaedicsThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
4
|
The role of Th17 cells: explanation of relationship between periodontitis and COPD? Inflamm Res 2022; 71:1011-1024. [PMID: 35781342 DOI: 10.1007/s00011-022-01602-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Abstract
Periodontitis and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases with common risk factors, such as long-term smoking, age, and social deprivation. Many observational studies have shown that periodontitis and COPD are correlated. Moreover, they share a common pathophysiological process involving local accumulation of inflammatory cells and cytokines and damage of soft tissues. The T helper 17 (Th17) cells and the related cytokines, interleukin (IL)-17, IL-22, IL-1β, IL-6, IL-23, and transforming growth factor (TGF)-β, play a crucial regulatory role during the pathophysiological process. This paper reviewed the essential roles of Th17 lineage in the occurrence of periodontitis and COPD. The gaps in the study of their common pathological mechanism were also evaluated to explore future research directions. Therefore, this review can provide study direction for the association between periodontitis and COPD and new ideas for the clinical diagnosis and treatment of the two diseases.
Collapse
|
5
|
Rui C, Defu L, Lingling W, Jiahui D, Richeng X, Yuanyuan Y, Zhenhui G, Wenjie H. Cigarette Smoke or Motor Vehicle Exhaust Exposure Induces PD-L1 Upregulation in Lung Epithelial Cells in COPD Model Rats. COPD 2022; 19:206-215. [PMID: 35416743 DOI: 10.1080/15412555.2022.2058924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
A high smoking-independent chronic obstructive pulmonary disease (COPD) prevalence is observed in lung cancer patients. However, the underlying connection between these two diseases still remains unclear. Cigarette smoking and ambient air pollution are common risk factors for COPD and lung cancer. In this study, we established rat COPD model through exposure to cigarette smoke (CS) or motor vehicle exhaust (MVE). The model rats developed COPD-like phenotypes, manifested as lung functions decline, lung inflammation, emphysema-like alveolar enlargement and airway remodeling. The programmed death-ligand 1 (PD-L1), a factor contributing to immune escape of tumor cells, was overexpressed in lungs from COPD model rats, though more severe COPD phenotypes did not bring with further PD-L1 overexpression in lung. The upregulations of proinflammatory cytokines and PD-L1 were also observed in cultured human bronchial epithelial cells BEAS-2B upon treatment with cigarette smoke extract (CSE) or diesel-related particulate matter 2.5 (PM2.5, SEM1650b). The inflammatory cytokines produced in BEAS-2B cells reflected the PD-L1 levels. Furthermore, ERK1/2, a kinase mediating PD-L1 upregulation in premalignant bronchial cells or NSCLC cells, and STAT1/3, which was reportedly associated with PD-L1 expression in lung tumors, were activated in COPD rats' lungs or in BEAS-2B cells treated with CSE or PM2.5. Therefore, we proposed that inflammation associated PD-L1 overexpression in airway epithelial cells could be the underlying factor facilitating lung cancer incidence in COPD.
Collapse
Affiliation(s)
- Chen Rui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Li Defu
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Wang Lingling
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Dong Jiahui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Xiong Richeng
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Ye Yuanyuan
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Guo Zhenhui
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
- Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, PR China
| | - Huang Wenjie
- Department of Respiratory Medicine, The First School of Clinical Medicine, Southern Medical University (General Hospital of Southern Theater Command of PLA), Guangzhou, PR China
| |
Collapse
|
6
|
Xi X, Hu R, Wang Q, Xu K, Yang H, Cui Z, Zhang Y, Teng M, Xia L, Chen J, Liu Y. Interleukin-22 promotes PD-L1 expression via STAT3 in colon cancer cells. Oncol Lett 2021; 22:716. [PMID: 34429756 DOI: 10.3892/ol.2021.12977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Blocking the expression of programmed cell death ligand 1 (PD-L1) is a promising approach for the treatment of colon cancer. The binding of PD-L1 to its receptor programmed cell death 1 (PD-1) on immune cells leads to the apoptosis of activated T cells and causes immune escape. However, there is a limited number of patients with colon cancer that can benefit from the inhibition of PD-L1, and the regulation of PD-L1 expression is poorly understood in colon cancer. The present study demonstrated that interleukin-22 (IL-22) and PD-L1 were upregulated in colon cancer tissues and there was a positive correlation between IL-22 expression and PD-L1 expression. In the present study, exogenous IL-22 was found to upregulate PD-L1 expression via the signal transducer and activator of transcription 3 signaling pathway in human colon cancer cells (DLD-1 and primary colon cancer cells). The results of the present study revealed a novel regulatory mechanism of PD-L1 expression in colon cancer, which provides a theoretical basis for decreasing the immune tolerance of colon cancer via IL-22 overexpression.
Collapse
Affiliation(s)
- Xiangpeng Xi
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Rui Hu
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Qi Wang
- Department of Pharmacy, The Fifth People's Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - Kang Xu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Hui Yang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Zhonghui Cui
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Yongbo Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Mujian Teng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Lijian Xia
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Jingbo Chen
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Yulin Liu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
7
|
Zheng B, Zhou C, Qu G, Ren C, Yan P, Guo W, Yue B. VEGFR2 Promotes Metastasis and PD-L2 Expression of Human Osteosarcoma Cells by Activating the STAT3 and RhoA-ROCK-LIMK2 Pathways. Front Oncol 2020; 10:543562. [PMID: 33014879 PMCID: PMC7509134 DOI: 10.3389/fonc.2020.543562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The survival rate of osteosarcoma, the most prevalent primary bone tumor, has not been effectively improved in the last 30 years. Hence, new treatments and drugs are urgently needed. Antiangiogenic therapy and immunotherapy have good antitumor effects in many kinds of tumors. It is hypothesized that there may be a synergistic effect between immune checkpoint inhibitors and antiangiogenic therapy. Nevertheless, its potential mechanism is still unclear. Vascular endothelial growth factor receptor-2 (VEGFR2) expression was detected by immunohistochemistry in 18 paired osteosarcoma tissues. Moreover, we investigated the effects of apatinib treatment and VEGFR2 knockdown on osteosarcoma as well as the relevant underlying mechanism. Immunohistochemistry assays showed that, compared with that in primary osteosarcoma, VEGFR2 expression was higher in lung metastases. VEGFR2 was positively correlated with PD-L2 expression in osteosarcoma lung metastasis. Transwell assays indicated that VEGFR2 inhibition reduced osteosarcoma cell metastatic abilities in vitro. We also demonstrated that VEGFR2 inhibition downregulated the STAT3 and RhoA-ROCK-LIMK2 pathways, thereby attenuating migration and invasion. Additionally, VEGFR2 inhibition targeted STAT3, through which it reduced PD-L2 expression in osteosarcoma cells. VEGFR2 inhibition markedly attenuated osteosarcoma lung metastatic ability in vivo. In this study, we presented the pro-metastatic functional mechanism of VEGFR2 in osteosarcoma. VEGFR2 inhibition exhibits antitumor effects through antiangiogenic effects and inhibition of immune escape, which possibly provides potential clinical treatment for metastatic osteosarcoma.
Collapse
Affiliation(s)
- Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanli Zhou
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guojian Qu
- Department of General Surgery(adult), Qingdao Women and Children's Hospital, Qingdao, China
| | - Chongmin Ren
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Yan
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Alcorn JF. IL-22 Plays a Critical Role in Maintaining Epithelial Integrity During Pulmonary Infection. Front Immunol 2020; 11:1160. [PMID: 32582219 PMCID: PMC7296169 DOI: 10.3389/fimmu.2020.01160] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary infection is a leading cause of hospitalization in world. Lung damage due to infection and host mediated pathology can have life threatening consequences. Factors that limit lung injury and/or promote epithelial barrier function and repair are highly desirable as immunomodulatory therapeutics. Over the last decade, interleukin-22 has been shown to have pulmonary epithelial protective functions at the mucosal immune interface with bacterial and viral pathogens. This article summarizes recent findings in this area and provides perspective regarding the role of IL-22 in mucosal host defense.
Collapse
Affiliation(s)
- John F. Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Duan XL, Guo JP, Li F, Xiu C, Wang H. Sunitinib inhibits PD-L1 expression in osteosarcoma by targeting STAT3 and remodels the immune system in tumor-bearing mice. Future Oncol 2020; 16:1815-1824. [PMID: 32511016 DOI: 10.2217/fon-2019-0725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: Exploring the mechanisms of the combination therapy using VEGFR-TKI and immune checkpoint inhibitors might be useful to control the development of osteosarcoma. Materials & methods: The expression of PD-L1 and STAT3 in osteosarcoma were determined with western blot. Proliferation, migration and invasion were determined with CCK-8 and Transwell assays. Lung metastases, tumor growth, survival and immune cell populations were performed in tumor-bearing mice. Results: Sunitinib reduced the expression of PD-L1 by inhibiting the activation of STAT3 and suppressed the migration and invasion in osteosarcoma cells. Combination therapy reduced lung metastases, tumor growth, improved survival and reverse tumor microenvironment in tumor-bearing mice. Conclusion: Sunitinib inhibits PD-L1 expression by targeting STAT3 and remodels the immune system in tumor-bearing mice.
Collapse
Affiliation(s)
- Xian Liang Duan
- The Second Department of Orthopedic, The Affiliated Hospital of Beihua University, Jilin 132011, PR China
| | - Jian Ping Guo
- The Second Department of Orthopedic, The Affiliated Hospital of Beihua University, Jilin 132011, PR China
| | - Fan Li
- The Second Department of Orthopedic, The Affiliated Hospital of Beihua University, Jilin 132011, PR China
| | - Chao Xiu
- Medical Imaging Center, The Affiliated Hospital of Beihua University, Jilin 132011, PR China
| | - Hua Wang
- The Department of Orthopedic, The Affiliated Hospital of Beihua University, Jilin 132011, PR China
| |
Collapse
|
10
|
Zheng B, Ren T, Huang Y, Guo W. Apatinib inhibits migration and invasion as well as PD-L1 expression in osteosarcoma by targeting STAT3. Biochem Biophys Res Commun 2018; 495:1695-1701. [DOI: 10.1016/j.bbrc.2017.12.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/04/2023]
|