1
|
Zhao J, Han M, Nie Q, Wen X, Geng H, Zou Y, Li S, Xie W. Network pharmacology combined with experimental analysis to explore the mechanism of the XinShuaiNing formula on heart failure. 3 Biotech 2025; 15:110. [PMID: 40191450 PMCID: PMC11965065 DOI: 10.1007/s13205-025-04288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/22/2025] [Indexed: 04/09/2025] Open
Abstract
This study was conducted to elucidate the mechanism of action of the Traditional Chinese Medicine XinShuaiNing (XSN) formula in CHF based on network pharmacology. A total of 489 compounds in the XSN formula were screened. These compounds predicted 778 targets. A search of CHF yielded 789 corresponding targets, and 151 intersections between the potential targets of the XSN formula and CHF, involving AKT1, AGT, eNOS, and VEGF. Abdominal aortic coarctation (AAC) was used to establish a CHF rat model, and isoproterenol-induced H9c2 cells to establish a myocardial injury cell model. The results showed that the XSN formula downregulated ET-1, BNP, and Hcy and upregulated the ALB levels and also relieved cardiac histopathological damage. The XSN formula reduced the content of pro-inflammatory factors and inhibited the apoptosis of cardiomyocytes. In addition, the expression of fibronectin, α-SMA, collagen 1, and collagen 3 was downregulated by XSN formula treatment, and the fibrotic areas of myocardial tissue were reduced. The XSN formula promoted phosphorylation of AKT1-induced VEGF and eNOS signaling and inhibited AGT signaling. Besides, the XSN formula can affect the apoptosis of H9c2 cells by affecting AKT1, AGT, eNOS, and VEGF. The XSN formula regulates inflammatory factors by inducing phosphorylation of AKT1, upregulating eNOS and VEGF, and downregulating AGT to protect cardiomyocytes from apoptosis and myocardial fibrosis to alleviate CHF. In conclusion, this study identified the target of XSN prescription through network pharmacology screening and experimental validation and confirmed its anti-inflammatory, antiapoptotic, and antifibrotic effects.
Collapse
Affiliation(s)
- Jue Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingjun Han
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Nie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyu Geng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyun Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Li M, Zhang J, Li Z, Xu Z, Qian S, Tay LJ, Zhang Z, Yang F, Huang Y. The role and mechanism of SUMO modification in liver disease. Biomed Pharmacother 2024; 177:116898. [PMID: 38878635 DOI: 10.1016/j.biopha.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Liver disease affects millions of people in the world, and China has the highest prevalence of liver disease in the world. Small ubiquitin-related modifier (SUMO) modification is a highly conserved post-translational modification of proteins. They are widely expressed in a variety of tissues, including the heart, liver, kidney and lung. SUMOylation of protein plays a key role in the occurrence and development of liver disease. Therefore, this study reviewed the effects of SUMO protein on non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases to provide novel strategies for targeted treatment of liver disease.
Collapse
Affiliation(s)
- Mengxue Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Jingrong Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zihao Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zhou Xu
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Shishun Qian
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Lynn Jia Tay
- School of International Education, Anhui Medical University, Hefei 230032, China
| | - Ziwen Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Furong Yang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China; School of International Education, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Azadian R, Mohammadalipour A, Memarzadeh MR, Hashemnia M, Aarabi MH. Examining hepatoprotective effects of astaxanthin against methotrexate-induced hepatotoxicity in rats through modulation of Nrf2/HO-1 pathway genes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:371-380. [PMID: 37450013 DOI: 10.1007/s00210-023-02581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Methotrexate (MTX), as a folic acid antagonist, is an effective drug in treating a wide range of malignancies and autoimmune diseases. However, the clinical use of MTX has been limited due to its side effects, the most common of which is hepatotoxicity. In this study, rats were randomly divided into six groups: three treatment groups received methotrexate and different doses of astaxanthin (AX) for 14 days. At the end of the study, blood samples were collected to determine serum levels of ALT, AST, ALP, and LDH. Also, liver tissues were isolated to evaluate antioxidant enzymes and markers of oxidative stress, histopathological damage, and expression of NF-E2-related transcription factor (Nrf2) and Heme oxygenase-1 (HO-1) genes. The results showed that administration of MTX significantly increased the levels of ALT, AST, ALP, and LDH in the blood, markers of oxidative stress, and histopathological damage in liver tissue and significantly reduced the levels of antioxidant enzymes and the expression of Nrf2 and HO-1 genes. On the other hand, treatment with AX decreased blood levels of ALT, AST, ALP, and LDH and oxidative stress markers and remarkably raises the activity of antioxidant enzymes and expression of Nrf2 and HO-1 genes in liver tissue. In addition, histopathological lesions were improved with AX administration. The findings of this study indicated that AX may be useful for the prevention of MTX-induced hepatotoxicity by improving oxidative and inflammatory changes.
Collapse
Affiliation(s)
- Razieh Azadian
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammad Hosein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Kang L, Wang X, Wang J, Guo J, Zhang W, Lei R. SENP1 knockdown-mediated CTCF SUMOylation enhanced its stability and alleviated lipopolysaccharide-evoked inflammatory injury in human lung fibroblasts via regulation of FOXA2 transcription. Biochim Biophys Acta Gen Subj 2024; 1868:130500. [PMID: 37914145 DOI: 10.1016/j.bbagen.2023.130500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Excessive inflammation is the main cause of treatment failure in neonatal pneumonia (NP). CCCTC-binding factor (CTCF) represents an important node in various inflammatory diseases. In the present study, we tried to clarify the function and underlying molecular mechanism of CTCF on an in vitro cellular model of NP, which was generated by simulating the human lung fibroblast cell line WI-38 with lipopolysaccharide (LPS). METHODS The SUMOylation level and protein interaction were verified by Co-immunoprecipitation assay. Cell viability was measured by Cell Counting Kit-8 assay. Inflammatory factors were examined by Enzyme-linked immunosorbent assay. Cell apoptosis was evaluated by TUNEL assay. The binding activity of CTCF to target promoter was tested by chromatin immunoprecipitation and luciferase reporter assay. RESULTS LPS treatment restrained cell viability, promoted the production of inflammatory factors, and enhanced cell apoptosis. CTCF overexpression played anti-inflammatory and anti-apoptotic roles. Furthermore, CTCF was modified by SUMOylation with small ubiquitin-like modifier protein 1 (SUMO1). Interfering with sumo-specific protease 1 (SENP1) facilitated CTCF SUMOylation and protein stability, thus suppressing LPS-evoked inflammatory and apoptotic injuries. Moreover, CTCF could bind to the forkhead box protein A2 (FOXA2) promoter region to promote FOXA2 expression. The anti-inflammatory and anti-apoptotic roles of CTCF are associated with FOXA2 activation. In addition, SENP1 knockdown increased FOXA2 expression by enhancing the abundance and binding ability of CTCF. CONCLUSIONS SUMOylation of CTCF by SENP1 knockdown enhanced its protein stability and binding ability and it further alleviated LPS-evoked inflammatory injury in human lung fibroblasts by positively regulating FOXA2 transcription.
Collapse
Affiliation(s)
- Le Kang
- Neonatal Intensive Care Unit, Zhumadian Central Hospital, 463100 Zhumadian, Henan Province, China.
| | - Xinhua Wang
- Neonatal Intensive Care Unit, Zhumadian Central Hospital, 463100 Zhumadian, Henan Province, China
| | - Jianfang Wang
- Department of Clinical Laboratory, Zhumadian Central Hospital, 463100 Zhumadian, Henan Province, China
| | - Jing Guo
- Neonatal Intensive Care Unit, Henan Children's Hospital, 450000 Zhengzhou, Henan Province, China
| | - Wang Zhang
- Neonatal Intensive Care Unit, Zhumadian Central Hospital, 463100 Zhumadian, Henan Province, China
| | - Ruirui Lei
- Department of Neonatology, Zhumadian Central Hospital, 463100 Zhumadian, Henan Province, China
| |
Collapse
|
5
|
Ge MX, Niu WX, Bao YY, Lu ZN, He HW. Sclareol attenuates liver fibrosis through SENP1-mediated VEGFR2 SUMOylation and inhibition of downstream STAT3 signaling. Phytother Res 2023; 37:3898-3912. [PMID: 37132081 DOI: 10.1002/ptr.7845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023]
Abstract
Liver fibrosis is a key global health care burden. Sclareol, isolated from Salvia sclarea, possesses various biological activities. Its effect on liver fibrosis remains unknown. This study was proposed to evaluate the antifibrotic activity of sclareol (SCL) and explore its underlying mechanisms. Stimulated hepatic stellate cells served as an in vitro liver fibrosis model. The expression of fibrotic markers was assessed by western blot and real-time PCR. Two classical animal models, bile duct-ligated rats and carbon tetrachloride-treated mice, were utilized for the in vivo experiments. The liver function and fibrosis degree were determined by serum biochemical and histopathological analyses. VEGFR2 SUMOylation was analyzed using coimmunoprecipitation assay. Our results indicated that SCL treatment restricted the profibrotic propensity of activated HSCs. In fibrotic rodents, SCL administration alleviated hepatic injury and reduced collagen accumulation. Mechanistic studies indicated that SCL downregulated the protein level of SENP1 and enhanced VEGFR2 SUMOylation in LX-2 cells, which affected its intracellular trafficking. Blockade of the interaction between VEGFR2 and STAT3 was observed, resulting in the suppression of downstream STAT3 phosphorylation. Our findings demonstrated that SCL has therapeutic efficacy against liver fibrosis through mediating VEGFR2 SUMOylation, suggesting that SCL may be a potential candidate compound for its treatment.
Collapse
Affiliation(s)
- Mao-Xu Ge
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Wei-Xiao Niu
- Medical Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun-Yang Bao
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhen-Ning Lu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong-Wei He
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Yan L, Zhang T, Wang K, Chen Z, Yang Y, Shan B, Sun Q, Zhang M, Zhang Y, Zhong Y, Liu N, Gu J, Xu D. SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation. Nat Commun 2022; 13:7153. [PMID: 36414671 PMCID: PMC9681887 DOI: 10.1038/s41467-022-34993-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Lingjie Yan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tao Zhang
- grid.38142.3c000000041936754XDepartment of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Kai Wang
- grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People’s Hospital Affiliated Zhejiang University School of Medicine, Hangzhou, 310006 China ,grid.13402.340000 0004 1759 700XInstitute of Organ Transplantation, Zhejiang University, Hangzhou, 310003 China
| | - Zezhao Chen
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuanxin Yang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bing Shan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Qi Sun
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Mengmeng Zhang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Yichi Zhang
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yedan Zhong
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Nan Liu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,Shanghai Key Laboratory of Aging Studies, Shanghai, 201210 China
| | - Jinyang Gu
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China ,grid.33199.310000 0004 0368 7223Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Daichao Xu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210 China ,Shanghai Key Laboratory of Aging Studies, Shanghai, 201210 China
| |
Collapse
|
7
|
Adipose-Derived Stem Cell-Derived Extracellular Vesicles Inhibit the Fibrosis of Fibrotic Buccal Mucosal Fibroblasts via the MicroRNA-375/FOXF1 Axis. Stem Cells Int 2021; 2021:9964159. [PMID: 34257670 PMCID: PMC8245228 DOI: 10.1155/2021/9964159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Oral submucous fibrosis (OSF) is a precancerous lesion. Adipose-derived stem cell- (ADSC-) derived extracellular vesicles (EVs) (ADSC-EVs) regulate multiple oral diseases. Hence, this study explored the mechanism of ADSC-EVs in OSF. ADSCs were transduced with microRNA- (miR-) 375 mimic. ADSC-EVs and miR-375-overexpressed ADSC-EVs (EVs-miR-375) were extracted and identified. miR-375 expression in EVs and fibrotic buccal mucosal fibroblasts (fBMFs) was detected. EV uptake by fBMFs was observed. The targeted relationship between miR-375 and forkhead box protein F1 (FOXF1) was predicted and verified. After EVs-miR-375 treatment or FOXF1 overexpression, fBMF cell proliferation, migration, invasion, and apoptosis were evaluated, and levels of apoptosis-related proteins (cleaved-caspase-3, Bax, and Bcl-2) and fibrosis markers (α-SMA, collagen I, and collagen III) were detected. Functional rescue experiments were further performed to verify the role of the miR-375/FOXF1 axis in OSF. miR-375 was notably upregulated in EVs-miR-375 and EVs-miR-375-treated fBMFs (all P < 0.001). ADSC-EVs carried miR-375 into fBMFs. fBMFs can internalize ADSC-EVs. EVs-miR-375 treatment markedly inhibited fBMF cell proliferation, migration, invasion, and fibrosis and promoted apoptosis (all P < 0.01). Moreover, miR-375 targeted FOXF1 in fBMFs. FOXF1 overexpression promoted fBMF cell biological behaviors and fibrosis, which were reversed after EVs-miR-375 treatment (P < 0.01 or P < 0.001). We highlighted that ADSC-EVs inhibited fBMF fibrosis and then suppressed OSF progression via the miR-375/FOXF1 axis.
Collapse
|
8
|
The protective effect of astaxanthin against cisplatin-induced nephrotoxicity in rats. Biomed Pharmacother 2018; 100:575-582. [DOI: 10.1016/j.biopha.2018.02.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 11/24/2022] Open
|
9
|
Bu FT, Chen Y, Yu HX, Chen X, Yang Y, Pan XY, Wang Q, Wu YT, Huang C, Meng XM, Li J. SENP2 alleviates CCl 4-induced liver fibrosis by promoting activated hepatic stellate cell apoptosis and reversion. Toxicol Lett 2018. [PMID: 29535048 DOI: 10.1016/j.toxlet.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SUMOylation and deSUMOylation, a dynamic process, is proved to be involved in various fibrotic diseases. Here, we found SENP2, one of deSUMOylation protease family member, was decreased in CCl4-induced mice fibrotic liver tissues, primary HSCs and restored after spontaneously recovery. In addition, HSC-T6 cells with TGF-β1 treatment resulted in a significant reduction of SENP2. Ectopic expression of SENP2 hindered cells activation and proliferation induced by TGF-β1 while knockdown of SENP2 showed an opposite effect. Importantly, SENP2 promoted apoptosis of HSC-T6 cells activated by TGF-β1. Furthermore, restoration of SENP2 was observed in inactivated HSCs after adipogenic differentiation mixture (MDI) treatment. Inadequate SENP2 inhibited the reversion of HSC-T6 cells, featured as aberrant expressions of α-SMA and col1a1, two markers of liver fibrosis. It has been reported SENP2 was a suppressant regulator of Wnt/β-catenin signal pathway. Similarly, we found SENP2 has a negative effect on β-catenin as well as its downstream genes C-myc and CyclinD1 in liver fibrosis. Collectively, our data indicated SENP2 may be involved in HSCs apoptosis and reversion in liver fibrosis.
Collapse
Affiliation(s)
- Fang-Tian Bu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yu Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hai-Xia Yu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xin Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yang Yang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xue-Yin Pan
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Qin Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yu-Ting Wu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| |
Collapse
|