1
|
Mukherjee A, Nongthomba U. To RNA-binding and beyond: Emerging facets of the role of Rbfox proteins in development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1813. [PMID: 37661850 DOI: 10.1002/wrna.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
The RNA-binding Fox-1 homologue (Rbfox) proteins represent an ancient family of splicing factors, conserved through evolution. All members share an RNA recognition motif (RRM), and a particular affinity for the GCAUG signature in target RNA molecules. The role of Rbfox, as a splice factor, deciding the tissue-specific inclusion/exclusion of an exon, depending on its binding position on the flanking introns, is well known. Rbfox often acts in concert with other splicing factors, and forms splicing regulatory networks. Apart from this canonical role, recent studies show that Rbfox can also function as a transcription co-factor, and affects mRNA stability and translation. The repertoire of Rbfox targets is vast, including genes involved in the development of tissue lineages, such as neurogenesis, myogenesis, and erythropoeiesis, and molecular processes, including cytoskeletal dynamics, and calcium handling. A second layer of complexity is added by the fact that Rbfox expression itself is regulated by multiple mechanisms, and, in vertebrates, exhibits tissue-specific expression. The optimum dosage of Rbfox is critical, and its misexpression is etiological to various disease conditions. In this review, we discuss the contextual roles played by Rbfox as a tissue-specific regulator for the expression of many important genes with diverse functions, through the lens of the emerging data which highlights its involvement in many human diseases. Furthermore, we explore the mechanistic details provided by studies in model organisms, with emphasis on the work with Drosophila. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Xie S, Li Z, Zhong Y, Fang Q, Ma A, Wang Y, Zeng L, Lin T, Xie D. RBFOX2 confers tumor growth by PI3K/AKT and MAPK signaling in gastric cancer. Eur J Cancer Prev 2023; 32:468-477. [PMID: 37264873 DOI: 10.1097/cej.0000000000000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
RNA-binding Fox (RBFOX)2, a member of a family of RNA-binding proteins, is well known as a regulator of alternative pre-mRNA splicing. However, its possible role in gastric cancer is unknown. In this study, we investigated the biologic role and clinical significance of RBFOX2 in gastric cancer growth and elucidated its underlying molecular mechanisms. We found that RBFOX2 was highly expressed in gastric cancer cell lines and tumor tissue compared with the adjacent nontumor tissue. We also found that RBFOX2 overexpression was correlated with poor overall survival in patients with gastric cancers. Multivariate survival analyses revealed that higher RBFOX2 expression was an independent prognostic factor for the overall survival of patients with gastric cancers. Suppression of RBFOX2 by shRNA inhibited gastric cancer cell proliferation, colony formation and induced apoptosis. Mechanism studies revealed that these effects were achieved through the simultaneous modulation of multiple signaling pathways. Knockdown of RBFOX2 expression by shRNA markedly inhibited the phosphorylation of phosphatidylinositol 3-hydroxy kinase, threonine kinase and extracellular signal-regulated kinase and Jun N-terminal kinases proteins. In contrast, the ectopic expression of RBFOX2 had the opposite effects. Moreover, RBFOX2 knockdown also induced the cleavage of caspase-3 and caspase-9 proteins. Collectively, these results demonstrate that RBFOX2 plays a critical role in regulating gastric cancer cell proliferation and survival and may be a potential prognostic biomarker and therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Shuangyan Xie
- Department of Radiation Oncology, Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Zeyun Li
- Caner Center, The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou
| | - Yu Zhong
- Department of Radiation Oncology, Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Qiuyun Fang
- Department of Radiation Oncology, Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Amin Ma
- Department of Radiation Oncology, Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Yan Wang
- Department of Radiation Oncology, Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Lina Zeng
- Outpatient Department, the Second Affiliated Hospital of Nanhua University, Hengyang, Hunan, China
| | - Tengjiao Lin
- Department of Radiation Oncology, Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Du Xie
- Department of Radiation Oncology, Cancer Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine
| |
Collapse
|
3
|
Choi S, Cho N, Kim KK. Non-canonical splice junction processing increases the diversity of RBFOX2 splicing isoforms. Int J Biochem Cell Biol 2022; 144:106172. [PMID: 35124219 DOI: 10.1016/j.biocel.2022.106172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
The underlying mechanisms of splicing regulation through non-canonical splice junction processing remain largely unknown. Here, we identified two RBFOX2 splicing isoforms by alternative 3' splice site selection of exon 9; the non-canonical splice junction processed RBFOX2 transcript (RBFOX2-N.C.) was expressed by the selection of the 3' splice GG acceptor sequence. The cytoplasmic localization of RBFOX2-C., a canonical splice junction-processed RBFOX2 transcript, was different from that of RBFOX2-N.C., which showed nuclear localization. In addition, we confirmed that RBFOX2-C. showed a significantly stronger localization into stress granules than RBFOX2-N.C. upon sodium arsenite treatment. Next, we investigated the importance of non-canonical 3' splice GG sequence selection of specific cis-regulatory elements using minigene constructs of the RBFOX2 gene. We found that the non-canonical 3' splice GG sequence and suboptimal branch point site adjacent region were critical for RBFOX2-N.C. expression through a non-canonical 3' splice selection. Our results suggest a regulatory mechanism for the non-canonical 3' splice selection in the RBFOX2 gene, providing a basis for studies related to the regulation of alternative pre-mRNA splicing through non-canonical splice junction processing.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Stenz L, Carré JL, Luthi F, Vuistiner P, Burrus C, Paoloni-Giacobino A, Léger B. Genome-Wide Epigenomic Analyses in Patients With Nociceptive and Neuropathic Chronic Pain Subtypes Reveals Alterations in Methylation of Genes Involved in the Neuro-Musculoskeletal System. THE JOURNAL OF PAIN 2022; 23:326-336. [PMID: 34547430 DOI: 10.1016/j.jpain.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023]
Abstract
Nociceptive pain involves the activation of nociceptors without damage to the nervous system, whereas neuropathic pain is related to an alteration in the central or peripheral nervous system. Chronic pain itself and the transition from acute to chronic pain may be epigenetically controlled. In this cross-sectional study, a genome-wide DNA methylation analysis was performed using the blood DNA reduced representation bisulfite sequencing (RRBS) technique. Three prospective cohorts including 20 healthy controls (CTL), 18 patients with chronic nociceptive pain (NOCI), and 19 patients with chronic neuropathic pain (NEURO) were compared at both the single CpG and differentially methylated region (DMR) levels. Genes with DMRs were seen in the NOCI and NEURO groups belonged to the neuro-musculoskeletal system and differed between NOCI and NEURO patients. Our results demonstrate that the epigenetic disturbances accompanying nociceptive pain are very different from those accompanying neuropathic pain. In the former, among others, the epigenetic disturbance observed would affect the function of the opioid analgesic system, whereas in the latter it would affect that of the GABAergic reward system. This study presents biological findings that help to characterize NOCI- and NEURO-affected pathways and opens the possibility of developing epigenetic diagnostic assays. PERSPECTIVE: Our results help to explain the various biological pathways modifications underlying the different clinical manifestations of nociceptive and neuropathic pains. Furthermore, the new targets identified in our study might help to discover more specific treatments for nociceptive or neuropathic pains.
Collapse
Affiliation(s)
- Ludwig Stenz
- Department of Genetic Medicine and Development, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Joane Le Carré
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Medical Research, Clinique romande de réadaptation, Sion, Switzerland
| | - François Luthi
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Musculoskeletal Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Physical Medicine and Rehabilitation, Orthopaedic Hospital, Lausanne University Hospital, Lausanne, Switzerland
| | - Philippe Vuistiner
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Medical Research, Clinique romande de réadaptation, Sion, Switzerland
| | - Cyrille Burrus
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Musculoskeletal Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland
| | - Ariane Paoloni-Giacobino
- Department of Genetic Medicine and Development, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Bertrand Léger
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Medical Research, Clinique romande de réadaptation, Sion, Switzerland.
| |
Collapse
|
5
|
Kim YE, Park C, Kim KE, Kim KK. Histone and RNA-binding protein interaction creates crosstalk network for regulation of alternative splicing. Biochem Biophys Res Commun 2018; 499:30-36. [PMID: 29551686 DOI: 10.1016/j.bbrc.2018.03.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
Alternative splicing is an essential process in eukaryotes, as it increases the complexity of gene expression by generating multiple proteins from a single pre-mRNA. However, information on the regulatory mechanisms for alternative splicing is lacking, because splicing occurs over a short period via the transient interactions of proteins within functional complexes of the spliceosome. Here, we investigated in detail the molecular mechanisms connecting alternative splicing with epigenetic mechanisms. We identified interactions between histone proteins and splicing factors such as Rbfox2, Rbfox3, and splicing factor proline and glutamine rich protein (SFPQ) by in vivo crosslinking and immunoprecipitation. Furthermore, we confirmed that splicing factors were bound to specific modified residues of histone proteins. Additionally, changes in histone methylation due to histone methyltransferase inhibitor treatment notably affected alternative splicing in selected genes. Therefore, we suggested that there may be crosstalk mechanisms connecting histone modifications and RNA-binding proteins that increase the local concentration of RNA-binding proteins in alternative exon loci of nucleosomes by binding specific modified histone proteins, leading to alternative splicing. This crosstalk mechanism may play a major role in epigenetic processes such as histone modification and the regulation of alternative splicing.
Collapse
Affiliation(s)
- Yong-Eun Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyoon Eon Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|