1
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Lu M, Li M, Luo T, Li Y, Wang M, Xue H, Zhang M, Chen Q. Beta-naphthoflavone increases the differentiation of osteoblasts and suppresses adipogenesis in human adipose derived stem cells involving STAT3 pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Sabandal MMI, Schäfer E, Petsching S, Jung S, Kleinheinz J, Sielker S. Pleiotropic effects on proliferation and mineralization of primary human adipose tissue-derived stromal cells induced by simvastatin. Open Biol 2022; 12:210337. [PMID: 35673853 PMCID: PMC9174717 DOI: 10.1098/rsob.210337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The circulating low-density lipoprotein concentration in blood can be reduced by the administration of statins. Frequently simvastatin (SV) is prescribed. Due to the reported pleiotropic effects of SV the aim of this study was to evaluate mineralization effects on human adipose tissue-derived stromal cells upon administration of SV. After informed consent human adipose tissue-derived stromal cells were obtained from tissue surplus of regular treatments of 14 individuals. According to established protocols after adding various SV concentrations (0.01 µM, 0.1 µM, 1.0 µM, 2.0 µM), alkaline phosphate (osteoblastic marker), mineralization capability and viability were determined at day 18, 21 and 28. The Kruskal-Wallis test was performed for statistical analysis. After adding SV a dose-dependent significant decreased viability and levels of alkaline phosphatase (p < 0.01) and a significantly increased mineralization (p < 0.01) of the primary cultures was recognized during the late mineralization stage. Mineralization of the human adipose tissue-derived stromal cells was induced by SV, possibly originated from alternative pathways than the alkaline phosphatase pathway. Further investigations should be performed regarding switching into the osteoblastic differentiation and as a possible source of cells that can be used as the basis for a potential bone graft substitute, which may allow an extension of the field of application.
Collapse
Affiliation(s)
- Martin Mariano Isabelo Sabandal
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149 Münster, Germany
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149 Münster, Germany
| | - Simon Petsching
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Susanne Jung
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Sonja Sielker
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
4
|
Jin H, Ji Y, Cui Y, Xu L, Liu H, Wang J. Simvastatin-Incorporated Drug Delivery Systems for Bone Regeneration. ACS Biomater Sci Eng 2021; 7:2177-2191. [PMID: 33877804 DOI: 10.1021/acsbiomaterials.1c00462] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Local drug delivery systems composed of biomaterials and osteogenic substances provide promising strategies for the reconstruction of large bone defects. In recent years, simvastatin has been studied extensively for its pleiotropic effects other than lowering of cholesterol, including its ability to induce osteogenesis and angiogenesis. Accordingly, several studies of simvastatin incorporated drug delivery systems have been performed to demonstrate the feasibility of such systems in enhancing bone regeneration. Therefore, this review explores the molecular mechanisms by which simvastatin affects bone metabolism and angiogenesis. The simvastatin concentrations that promote osteogenic differentiation are analyzed. Furthermore, we summarize and discuss a variety of simvastatin-loaded drug delivery systems that use different loading methods and materials. Finally, current shortcomings of and future development directions for simvastatin-loaded drug delivery systems are summarized. This review provides various advanced design strategies for simvastatin-incorporated drug delivery systems that can enhance bone regeneration.
Collapse
Affiliation(s)
- Hui Jin
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China.,Department of Pain, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Youbo Ji
- Department of Pain, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Li Xu
- Department of Orthopedics, Weihai Guanghua Hospital, Weihai 264200, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
5
|
Shen BY, Li JX, Wang XF, Zhou Q. Impact of Different Proportions of 2D and 3D Scaffolds on the Proliferation and Differentiation of Human Adipose-Derived Stem Cells. J Oral Maxillofac Surg 2021; 79:1580.e1-1580.e11. [PMID: 33675701 DOI: 10.1016/j.joms.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/28/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To observe the proliferation and differentiation of human adipose-derived stem cells (hADSCs) on 2D and 3D scaffolds, the sodium alginate and collagen interpenetrating network hydrogel were developed to determine optimal properties for bone tissue engineering. METHODS Three groups of scaffold materials were prepared according to the ratio of sodium alginate to collagen: A (4:1), B (2:1), and C (1:1), respectively. For each group, gel beads (3D surfaces) and freeze-dried films (2D surfaces) were respectively prepared. For gel beads, hADSCs were mixed during the preparation of the beads, and then stem cells were applied to the surface of each film after freeze-drying and sterilization during the preparation of the freeze-dried films. Cell proliferation and osteogenic differentiation potential were detected by cell counting kit, viable/dead cell staining kit, quantitative reverse transcription polymerase chain reaction, and immunofluorescent staining, respectively. RESULTS Results showed that cell proliferation rate progressively increased with the increase of collagen ratio, with group C of 3D surfaces of gel beads achieving the highest rate. In particular, highest cell viability on the 2D surfaces was achieved in group B. Differences in BGLAP and RUNX2 expression in hADSCs on 2D or 3D surfaces of the 3 groups were statistically significant. Particularly, BGLAP and RUNX2 gene expression levels were highest in group C of freeze-dried films and were highest in group B of gel beads. Furthermore, the trend of immunofluorescence expression of RUNX2 and osteocalcin expression were consistent with the genetic testing results. CONCLUSIONS All data indicated that sodium alginate-collagen scaffolding materials had no adverse impact on the proliferation and osteogenic differentiation of hADSCs. Cell differentiation and proliferation of bone tissue engineering can be promoted with the use of sodium alginate and collagen interpenetrating network hydrogel, and the appropriate ratio of sodium alginate and collagen is 2:1.
Collapse
Affiliation(s)
- Bei-Yong Shen
- Resident, Department of Stomatology, Shenzhen Second Peoples Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong Province, China
| | - Jun-Xin Li
- Resident, Department of Stomatology, Shenzhen Second Peoples Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong Province, China
| | - Xiao-Fei Wang
- Resident, Department of Stomatology, Shenzhen Second Peoples Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong Province, China
| | - Qi Zhou
- Department Head, Department of Stomatology, Shenzhen Second Peoples Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
6
|
Zhang J, Wu K, Xu T, Wu J, Li P, Wang H, Wu H, Wu G. Epigallocatechin-3-gallate enhances the osteoblastogenic differentiation of human adipose-derived stem cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1311-1321. [PMID: 31114166 PMCID: PMC6485322 DOI: 10.2147/dddt.s192683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose The aim of this study is to investigate the effects of epigallocatechin-3-gallate (EGCG), a major polyphenol extracted from green tea, on the osteoblastogenic differentiation of human adipose-derived stem cells (hASCs). Patients and methods hASCs were acquired from human adipose tissue. With informed consent, subcutaneous adipose tissue samples were harvested from periorbital fat pad resections from ten healthy female adults who underwent double eyelid surgery. hASCs were cultured in osteogenic medium with or without EGCG (1 μM, 5 μM, or 10 μM) for 14 days. We evaluated the effects of EGCG by quantifying cell growth, ALP activity (an early osteoblastogenic differentiation marker), BSP, OCN (a late osteoblastogenic differentiation marker), and extracellular matrix mineralization. We also performed Western blots to measure osteoblastogenesis-related proteins such as Runx2 and adipoblastogenesis-related transcription factors, such as STAT3, C/EBP-α, and PPAR-γ. Results EGCG at 5 μM resulted in significantly higher cell proliferation and ALP activity than did the control on days 3, 7, and 14. On day 7, 5 μM EGCG significantly enhanced BSP expression. On day 14, EGCG at all concentrations promoted OCN expression. In addition, EGCG at 5 μM resulted in the highest level of extracellular matrix mineralization. On day 3, the expression levels of Runx2 were significantly higher in the 5 μM EGCG group than in the other groups, whereas later, on days 7 and 14, Runx2 expression levels in the EGCG group were significantly lower than those of the control group. EGCG at all three concentrations was associated with significantly lower levels of phosphorylated STAT3, C/EBP-α, and PPAR-γ. Conclusion EGCG at 5 μM significantly enhanced the osteoblastogenic differentiation of hASCs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China,
| | - Kai Wu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ting Xu
- Department of Stomatology, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jiajun Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China,
| | - Pengfei Li
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China,
| | - Hong Wang
- Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Centre, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, North Holland, the Netherlands
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China,
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, North Holland, the Netherlands,
| |
Collapse
|
7
|
Alhamdi JR, Peng T, Al-Naggar IM, Hawley KL, Spiller KL, Kuhn LT. Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings. Biomaterials 2019; 196:90-99. [PMID: 30075952 PMCID: PMC6336526 DOI: 10.1016/j.biomaterials.2018.07.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/07/2018] [Accepted: 07/08/2018] [Indexed: 12/11/2022]
Abstract
Older adults suffer from weakened and delayed bone healing due to age-related alterations in bone cells and in the immune system. Given the interaction between the immune system and skeletal cells, therapies that address deficiencies in both the skeletal and the immune system are required to effectively treat bone injuries of older patients. The sequence of macrophage activation observed in healthy tissue repair involves a transition from a pro-inflammatory state followed by a pro-reparative state. In older patients, inflammation is slower to resolve and impedes healing. The goal of this study was to design a novel drug delivery system for temporal guidance of the polarization of macrophages using bone grafting materials. A biomimetic calcium phosphate coating (bCaP) physically and temporally separated the pro-inflammatory stimulus interferon-gamma (IFNγ) from the pro-reparative stimulus simvastatin (SIMV). Effective doses were identified using a human monocyte line (THP-1) and testing culminated with bone marrow macrophages obtained from old mice. Sequential M1-to-M2 activation was achieved with both cell types. These results suggest that this novel immunomodulatory drug delivery system holds potential for controlling macrophage activation in bones of older patients.
Collapse
Affiliation(s)
- Jumana R Alhamdi
- Biomedical Engineering, University of Connecticut (UConn) Health, Farmington, CT, USA
| | - Tao Peng
- Biomedical Engineering, University of Connecticut (UConn) Health, Farmington, CT, USA
| | - Iman M Al-Naggar
- Center on Aging, University of Connecticut (UConn) Health, Farmington, CT, USA
| | - Kelly L Hawley
- Department of Pediatrics, University of Connecticut (UConn) Health, Farmington, CT, USA; Division of Infectious Diseases, Connecticut Children's Medical Center, Hartford, CT, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, PA, USA
| | - Liisa T Kuhn
- Biomedical Engineering, University of Connecticut (UConn) Health, Farmington, CT, USA.
| |
Collapse
|
8
|
Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, Kasalkova NS, Svorcik V, Kolska Z, Motarjemi H, Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv 2018; 36:1111-1126. [PMID: 29563048 DOI: 10.1016/j.biotechadv.2018.03.011] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023]
Abstract
Stem cells can be defined as units of biological organization that are responsible for the development and the regeneration of organ and tissue systems. They are able to renew their populations and to differentiate into multiple cell lineages. Therefore, these cells have great potential in advanced tissue engineering and cell therapies. When seeded on synthetic or nature-derived scaffolds in vitro, stem cells can be differentiated towards the desired phenotype by an appropriate composition, by an appropriate architecture, and by appropriate physicochemical and mechanical properties of the scaffolds, particularly if the scaffold properties are combined with a suitable composition of cell culture media, and with suitable mechanical, electrical or magnetic stimulation. For cell therapy, stem cells can be injected directly into damaged tissues and organs in vivo. Since the regenerative effect of stem cells is based mainly on the autocrine production of growth factors, immunomodulators and other bioactive molecules stored in extracellular vesicles, these structures can be isolated and used instead of cells for a novel therapeutic approach called "stem cell-based cell-free therapy". There are four main sources of stem cells, i.e. embryonic tissues, fetal tissues, adult tissues and differentiated somatic cells after they have been genetically reprogrammed, which are referred to as induced pluripotent stem cells (iPSCs). Although adult stem cells have lower potency than the other three stem cell types, i.e. they are capable of differentiating into only a limited quantity of specific cell types, these cells are able to overcome the ethical and legal issues accompanying the application of embryonic and fetal stem cells and the mutational effects associated with iPSCs. Moreover, adult stem cells can be used in autogenous form. These cells are present in practically all tissues in the organism. However, adipose tissue seems to be the most advantageous tissue from which to isolate them, because of its abundancy, its subcutaneous location, and the need for less invasive techniques. Adipose tissue-derived stem cells (ASCs) are therefore considered highly promising in present-day regenerative medicine.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic.
| | - Jana Zarubova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Martina Travnickova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Nikola Slepickova Kasalkova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Zdenka Kolska
- Faculty of Science, J.E. Purkyne University, Ceske mladeze 8, 400 96 Usti nad Labem, Czech Republic
| | - Hooman Motarjemi
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| | - Martin Molitor
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| |
Collapse
|