1
|
Wang L, Xue Y, Yang S, Bo T, Xu J, Wang W. Mismatch Repair Protein Msh2 Is Necessary for Macronuclear Stability and Micronuclear Division in Tetrahymena thermophila. Int J Mol Sci 2023; 24:10559. [PMID: 37445734 DOI: 10.3390/ijms241310559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Mismatch repair (MMR) is a conserved mechanism that is primarily responsible for the repair of DNA mismatches during DNA replication. Msh2 forms MutS heterodimer complexes that initiate the MMR in eukaryotes. The function of Msh2 is less clear under different chromatin structures. Tetrahymena thermophila contains a transcriptionally active macronucleus (MAC) and a transcriptionally silent micronucleus (MIC) in the same cytoplasm. Msh2 is localized in the MAC and MIC during vegetative growth. Msh2 is localized in the perinuclear region around the MIC and forms a spindle-like structure as the MIC divides. During the early conjugation stage, Msh2 is localized in the MIC and disappears from the parental MAC. Msh2 is localized in the new MAC and new MIC during the late conjugation stage. Msh2 also forms a spindle-like structure with a meiotic MIC and mitotic gametic nucleus. MSH2 knockdown inhibits the division of MAC and MIC during vegetative growth and affects cellular proliferation. MSH2 knockdown mutants are sensitive to cisplatin treatment. MSH2 knockdown also affects micronuclear meiosis and gametogenesis during sexual development. Furthermore, Msh2 interacts with MMR-dependent and MMR-independent factors. Therefore, Msh2 is necessary for macronuclear stability, as well as micronuclear mitosis and meiosis in Tetrahymena.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Yuhuan Xue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Sitong Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
2
|
Xiong Y, Xia H, Yuan L, Deng S, Ding Z, Deng H. Identification of compound heterozygous DNAH11 variants in a Han-Chinese family with primary ciliary dyskinesia. J Cell Mol Med 2021; 25:9028-9037. [PMID: 34405951 PMCID: PMC8435457 DOI: 10.1111/jcmm.16866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a group of genetically and clinically heterogeneous disorders with motile cilia dysfunction. It is clinically characterized by oto‐sino‐pulmonary diseases and subfertility, and half of the patients have situs inversus (Kartagener syndrome). To identify the genetic cause in a Han‐Chinese pedigree, whole‐exome sequencing was conducted in the 37‐year‐old proband, and then, Sanger sequencing was performed on available family members. Minigene splicing assay was applied to verify the impact of the splice‐site variant. Compound heterozygous variants including a splice‐site variant (c.1974‐1G>C, rs1359107415) and a missense variant (c.7787G>A, p.(Arg2596Gln), rs780492669), in the dynein axonemal heavy chain 11 gene (DNAH11) were identified and confirmed as the disease‐associated variants of this lineage. The minigene expression in vitro revealed that the c.1974‐1G>C variant could cause skipping over exon 12, predicted to result in a truncated protein. This discovery may enlarge the DNAH11 variant spectrum of PCD, promote accurate genetic counselling and contribute to PCD diagnosis.
Collapse
Affiliation(s)
- Ying Xiong
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xia
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Sheng Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zerui Ding
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Development of an expression system in Tetrahymena inner arm dyneins and motile properties of the single-headed subspecies (Dyh8p and Dyh12p). Biochem Biophys Res Commun 2020; 523:253-257. [PMID: 31864710 DOI: 10.1016/j.bbrc.2019.12.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 11/21/2022]
Abstract
Diverse inner arm dyneins cooperate with outer arm dyneins to produce ciliary beating. This study demonstrates an expression system for inner arm dyneins in Tetrahymena. The motor domain of inner arm dynein (Dyh8p or Dyh12p) was fused with the tail of outer arm dynein (Dyh3p) and expressed in viable DYH3-knockout (vKO-DYH3) cells. The chimeric dyneins were observed in the oral apparatus and cilia on the cell bodies, and did not change the swimming speed of vKO-DYH3 cells. In a gliding assay, the motor domains of Dyh8p and Dyh12p moved toward the minus ends of microtubules at 0.8 and 0.3 μm/s, respectively. The gliding velocities of Dyh8p and Dyh12p were decreased in 5 mM ATP but not increased in 0.1 or 0.5 mM ADP. This expression system will be useful for molecular studies on diverse inner arm dyneins.
Collapse
|