1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Arbon D, Ženíšková K, Šubrtová K, Mach J, Štursa J, Machado M, Zahedifard F, Leštinová T, Hierro-Yap C, Neuzil J, Volf P, Ganter M, Zoltner M, Zíková A, Werner L, Sutak R. Repurposing of MitoTam: Novel Anti-Cancer Drug Candidate Exhibits Potent Activity against Major Protozoan and Fungal Pathogens. Antimicrob Agents Chemother 2022; 66:e0072722. [PMID: 35856666 PMCID: PMC9380531 DOI: 10.1128/aac.00727-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Many of the currently available anti-parasitic and anti-fungal frontline drugs have severe limitations, including adverse side effects, complex administration, and increasing occurrence of resistance. The discovery and development of new therapeutic agents is a costly and lengthy process. Therefore, repurposing drugs with already established clinical application offers an attractive, fast-track approach for novel treatment options. In this study, we show that the anti-cancer drug candidate MitoTam, a mitochondria-targeted analog of tamoxifen, efficiently eliminates a wide range of evolutionarily distinct pathogens in vitro, including pathogenic fungi, Plasmodium falciparum, and several species of trypanosomatid parasites, causative agents of debilitating neglected tropical diseases. MitoTam treatment was also effective in vivo and significantly reduced parasitemia of two medically important parasites, Leishmania mexicana and Trypanosoma brucei, in their respective animal infection models. Functional analysis in the bloodstream form of T. brucei showed that MitoTam rapidly altered mitochondrial functions, particularly affecting cellular respiration, lowering ATP levels, and dissipating mitochondrial membrane potential. Our data suggest that the mode of action of MitoTam involves disruption of the inner mitochondrial membrane, leading to rapid organelle depolarization and cell death. Altogether, MitoTam is an excellent candidate drug against several important pathogens, for which there are no efficient therapies and for which drug development is not a priority.
Collapse
Affiliation(s)
- Dominik Arbon
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kateřina Ženíšková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Karolína Šubrtová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Štursa
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Marta Machado
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Tereza Leštinová
- Faculty of Sciences, Charles University, Department of Parasitology, Prague, Czech Republic
| | - Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Faculty of Sciences, Charles University, Department of Parasitology, Prague, Czech Republic
| | - Markus Ganter
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lukáš Werner
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
3
|
Abstract
Despite a remarkable improvement in health care and continued drug discovery efforts, malaria control efforts are continuously challenged by the emergence of drug-resistant parasite strains. Given a long and risky development path of new drugs, repurposing existing drugs for the treatment of malaria is an attractive and shorter path. Tamoxifen, a selective estrogen receptor modulator (SERM) for the treatment and prevention of estrogen receptor-positive breast cancer, possesses antibacterial, antifungal, and antiparasitic activities. Hence, we assessed tamoxifen, raloxifene, and bazedoxifene, which represent the first-, second-, and third-generation SERMs, respectively, for antimalarial activity. Raloxifene and bazedoxifene inhibited the erythrocytic development of Plasmodium falciparum with submicromolar 50% inhibitory concentration (IC50) values. Among the three, bazedoxifene was the most potent and also decreased P. berghei infection in female mice but not in male mice. However, bazedoxifene similarly inhibited P. falciparum growth in erythrocytes of male and female origin, which highlights the importance of sex-specific host physiology in drug efficacy. Bazedoxifene was most potent on early ring-stage parasites, and about 35% of the treated parasites did not contain hemozoin in the food vacuole. Bazedoxifene-treated parasites had almost 34% less hemozoin content than the control parasites. However, both control and bazedoxifene-treated parasites had similar hemoglobin levels, suggesting that bazedoxifene inhibits hemozoin formation and that toxicity due to accumulation of free heme could be a mechanism of its antimalarial activity. Because bazedoxifene is in clinical use and bazedoxifene-chloroquine combination shows an additive antiparasitic effect, bazedoxifene could be an adjunctive partner of currently used antimalarial regimens. IMPORTANCE The emergence and spread of drug-resistant strains of the human malaria parasite Plasmodium falciparum has necessitated new drugs. Selective estrogen receptor modulators are in clinical use for the prevention and treatment of breast cancer and postmenopausal osteoporosis. We demonstrate that bazedoxifene, a third-generation selective estrogen receptor modulator, has potent inhibitory activity against both susceptible and drug-resistant strains of Plasmodium falciparum. It also blocked the development of Plasmodium berghei in mice. The inhibitory effect was strongest on the ring stage and resulted in the inhibition of hemozoin formation, which could be the major mechanism of bazedoxifene action. Hemozoin is a nontoxic polymer of heme, which is a by-product of hemoglobin degradation by the malaria parasite during its development within the erythrocyte. Because bazedoxifene is already in clinical use for the treatment of postmenopausal osteoporosis, our findings support repurposing of bazedoxifene as an antimalarial.
Collapse
|
4
|
Sfogliarini C, Pepe G, Dolce A, Della Torre S, Cesta MC, Allegretti M, Locati M, Vegeto E. Tamoxifen Twists Again: On and Off-Targets in Macrophages and Infections. Front Pharmacol 2022; 13:879020. [PMID: 35431927 PMCID: PMC9006819 DOI: 10.3389/fphar.2022.879020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Beyond the wide use of tamoxifen in breast cancer chemotherapy due to its estrogen receptor antagonist activity, this drug is being assayed in repurposing strategies against a number of microbial infections. We conducted a literature search on the evidence related with tamoxifen activity in macrophages, since these immune cells participate as a first line-defense against pathogen invasion. Consistent data indicate the existence of estrogen receptor-independent targets of tamoxifen in macrophages that include lipid mediators and signaling pathways, such as NRF2 and caspase-1, which allow these cells to undergo phenotypic adaptation and potentiate the inflammatory response, without the induction of cell death. Thus, these lines of evidence suggest that the widespread antimicrobial activity of this drug can be ascribed, at least in part, to the potentiation of the host innate immunity. This widens our understanding of the pharmacological activity of tamoxifen with relevant therapeutic implications for infections and other clinical indications that may benefit from the immunomodulatory effects of this drug.
Collapse
Affiliation(s)
- Chiara Sfogliarini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giovanna Pepe
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Chakrabarti M, Joshi N, Kumari G, Singh P, Shoaib R, Munjal A, Kumar V, Behl A, Abid M, Garg S, Gupta S, Singh S. Interaction of Plasmodium falciparum apicortin with α- and β-tubulin is critical for parasite growth and survival. Sci Rep 2021; 11:4688. [PMID: 33633135 PMCID: PMC7907060 DOI: 10.1038/s41598-021-83513-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023] Open
Abstract
Cytoskeletal structures of Apicomplexan parasites are important for parasite replication, motility, invasion to the host cell and survival. Apicortin, an Apicomplexan specific protein appears to be a crucial factor in maintaining stability of the parasite cytoskeletal assemblies. However, the function of apicortin, in terms of interaction with microtubules still remains elusive. Herein, we have attempted to elucidate the function of Plasmodium falciparum apicortin by monitoring its interaction with two main components of parasite microtubular structure, α-tubulin-I and β-tubulin through in silico and in vitro studies. Further, a p25 domain binding generic drug Tamoxifen (TMX), was used to disrupt PfApicortin-tubulin interactions which led to the inhibition in growth and progression of blood stage life cycle of P. falciparum.
Collapse
Affiliation(s)
- Malabika Chakrabarti
- grid.10706.300000 0004 0498 924XSpecial Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Nishant Joshi
- grid.410868.30000 0004 1781 342XDepartment of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Noida, 201314 UP India
| | - Geeta Kumari
- grid.10706.300000 0004 0498 924XSpecial Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Preeti Singh
- grid.10706.300000 0004 0498 924XSpecial Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Rumaisha Shoaib
- grid.411818.50000 0004 0498 8255Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Akshay Munjal
- grid.10706.300000 0004 0498 924XSpecial Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Vikash Kumar
- grid.10706.300000 0004 0498 924XSpecial Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ankita Behl
- grid.10706.300000 0004 0498 924XSpecial Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Mohammad Abid
- grid.411818.50000 0004 0498 8255Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Swati Garg
- grid.10706.300000 0004 0498 924XSpecial Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sonal Gupta
- grid.10706.300000 0004 0498 924XSpecial Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Shailja Singh
- grid.10706.300000 0004 0498 924XSpecial Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067 India ,grid.410868.30000 0004 1781 342XDepartment of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Noida, 201314 UP India
| |
Collapse
|
6
|
Weinstock A, Gallego-Delgado J, Gomes C, Sherman J, Nikain C, Gonzalez S, Fisher E, Rodriguez A. Tamoxifen activity against Plasmodium in vitro and in mice. Malar J 2019; 18:378. [PMID: 31775753 PMCID: PMC6882195 DOI: 10.1186/s12936-019-3012-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tamoxifen is an oestrogen receptor modulator that is widely used for the treatment of early stage breast cancer and reduction of recurrences. Tamoxifen is also used as a powerful research tool for controlling gene expression in the context of the Cre/loxP site-specific recombination system in conditional mutant mice. METHODS To determine whether the administration of tamoxifen affects Plasmodium growth and/or disease outcome in malaria, in vitro studies assessing the effect of tamoxifen and its active metabolite 4-hydroxytamoxifen on Plasmodium falciparum blood stages were performed. Tamoxifen effects were also evaluated in vivo treating C57/B6 mice infected with Plasmodium berghei (ANKA strain), which is the standard animal model for the study of cerebral malaria. RESULTS Tamoxifen and its active metabolite, 4-hydroxytamoxifen, show activity in vitro against P. falciparum (16.7 to 5.8 µM IC50, respectively). This activity was also confirmed in tamoxifen-treated mice infected with P. berghei, which show lower levels of parasitaemia and do not develop signs of cerebral malaria, compared to control mice. Mice treated with tamoxifen for 1 week and left untreated for an additional week before infection showed similar parasitaemia levels and signs of cerebral malaria as control untreated mice. CONCLUSIONS Tamoxifen and its active metabolite, 4-hydroxytamoxifen, have significant activity against the human parasite P. falciparum in vitro and the rodent parasite P. berghei in vivo. This activity may be useful for prevention of malaria in patients taking this drug chronically, but also represents a major problem for scientists using the conditional mutagenic Cre/LoxP system in the setting of rodent malaria. Allowing mice to clear tamoxifen before starting a Plasmodium infection allows the use the Cre/LoxP conditional mutagenic system to investigate gene function in specific tissues.
Collapse
Affiliation(s)
- Ada Weinstock
- Departments of Medicine (Cardiology) and Cell Biology, and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Julio Gallego-Delgado
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, NY, 10468, USA.
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY, 10016, USA.
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.
| | - Cláudia Gomes
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Cyrus Nikain
- Departments of Medicine (Cardiology) and Cell Biology, and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sandra Gonzalez
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Edward Fisher
- Departments of Medicine (Cardiology) and Cell Biology, and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
7
|
Abstract
The concept of repurposing previously approved medications to the treatment of new indications by taking advantage of off-target effects has gained traction in recent years, particularly in areas of medicine that do not offer large profits to pharmaceutical firms. As infectious disease discovery research has declined among large pharmaceutical companies, the potential payoff of repurposing has become attractive. The concept of repurposing previously approved medications to the treatment of new indications by taking advantage of off-target effects has gained traction in recent years, particularly in areas of medicine that do not offer large profits to pharmaceutical firms. As infectious disease discovery research has declined among large pharmaceutical companies, the potential payoff of repurposing has become attractive. From these efforts, the triphenylethylene class of selective estrogen receptor modulators related to tamoxifen has shown activity against a wide range of medically important human pathogens, including bacteria, fungi, parasites, and viruses. Because it has activity against many pathogens affecting people in resource-limited areas of the world, TAM and related drugs may be particularly useful. Here, we review the in vitro, in vivo, and mechanistic studies of the anti-infective activity of tamoxifen, toremifene, clomiphene, and their analogs. We also discuss the pharmacologic properties of this privileged scaffold and its potential utility in treating infectious diseases.
Collapse
|